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Temporal Aggregation of Volatility Models*

Nour Meddahi†, Éric Renault‡

Résumé / Abstract

Dans cet article, nous considérons l’agrégation temporelle des modèles de
volatilité. Nous introduisons une classe de modèles de volatilité semi-
paramétrique dénommée SR-SARV et caractérisée par une variance stochastique
ayant une dynamique autorégressive. Notre classe contient les modèles GARCH
usuels ainsi que plusieurs variantes asymétriques. De plus, nos modèles à
volatilité stochastique sont caractérisés par des moments conditionnels
observables et à plusieurs horizons. La classe des modèles SR-SARV est une
généralisation naturelle des modèles GARCH faibles. Notre extension présente
quatre avantages : i) nous ne supposons pas que le moment d’ordre quatre est fini;
ii) nous permettons des asymétries (de type skewness et effet de levier) qui sont
exclues par les modèles GARCH faibles; iii) nous dérivons des restrictions sur des
moments conditionnels utiles pour l’inférence non-linéaire; iv) notre cadre de
travail nous permet d’étudier l’agrégation temporelle des modèles IGARCH ainsi
que des modèles non linéaires comme le modèle EGARCH et les modèles
exponentiels à volatilité stochastique en temps discret et continu.

In this paper, we consider temporal aggregation of volatility models. We
introduce a semiparametric class of volatility models termed square-root
stochastic autoregressive volatility (SR-SARV) and characterized by an
autoregressive dynamic of the stochastic variance. Our class encompasses the
usual GARCH models and various asymmetric GARCH models. Moreover, our
stochastic volatility models are characterized by observable multiperiod
conditional moment restrictions. The SR-SARV class is a natural extension of the
weak GARCH models. Our extension has four advantages: i) we do not assume
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that the fourth moment is finite; ii) we allow for asymmetries (skewness, leverage
effect) that are excluded by the weak GARCH models; iii) we derive conditional
moment restrictions which are useful for non-linear inference; iv) our framework
allows us to study temporal aggregation of IGARCH models and non-linear
models such as EGARCH and Exponential SV in discrete and continuous time.

Mots Clés : GARCH, volatilité stochastique, espace-état, SR-SARV, agrégation, rendements
d’actifs, processus de diffusion, générateur infinitésimal, fonctions propres

Keywords: GARCH, stochastic volatility, state-space, SR-SARV, aggregation, asset returns,
diffusion processes, infinitesimal generator, Eigenfunctions



1 Introduction

Prices of �nancial assets, such as stocks, bounds or currencies, are available at many frequencies from

intradaily to annual. When modeling volatility of the returns of such series, issues related to the e�ect

of temporal aggregation and the choice of the observation frequency arise naturally. Basically, two

modeling strategies can be considered: the model can be speci�ed for the observable frequency by

implicitly assuming that it is the correct model for this frequency (an assumption which is testable),

or the model can be set for a high frequency, say continuous time, and observable restrictions can

be derived for a lower frequency. Typically, models from the ARCH1 family belong to the �rst class,

while models in Drost and Nijman (1993) and Hansen and Scheinkman (1995) stem from the second

strategy.2 In the latter case, we say that a class of models is closed under temporal aggregation if it

keeps the same structure, with possibly di�erent parameter values, for any frequency.

Drost and Nijman (1993) consider the temporal aggregation of volatility models. They show that

the usual GARCH models of Bollerslev (1986) are not closed under temporal aggregation. The main

reason is that such models imply that the squared residual process is a semi-strong ARMA (where

the innovation process is a martingale di�erence sequence, m.d.s.) which is not closed under temporal

aggregation. The ARMA literature teaches us that weak ARMA models, where the innovation process

is serially uncorrelated (weak white noise), are closed under temporal aggregation. Therefore, Drost

and Nijman (1993) introduce the class of weak GARCH models characterized by the weak ARMA

structure of the squared innovation process and show that it is closed under temporal aggregation.

However, weak GARCH models have several limitations. First, since weak GARCH models are

characterized by the weak ARMA structure of the squared innovation process, Drost and Nijman

(1993) assume that the fourth moment of the innovation process is �nite. This seems to be empirically

violated by several �nancial time series, especially by high frequency data.3 Second, in the weak

GARCH setting, only linear projections and not conditional expectations are considered. It is an

important drawback if one considers that the conditional variance provides the relevant measure of

risk. It is also a limitation for statistical purposes since the QMLE setting is violated. Indeed, in a

Monte Carlo study we show clearly that QMLE is not consistent for temporally aggregated GARCH

models.4 Finally, for temporal aggregation of ow variables (e.g., returns), Drost and Nijman (1993)

1ARCH models were introduced by Engle (1982) and extended by Bollerslev (1986) to GARCH. For a review of the
ARCH literature, see, e.g., Bollerslev, Engle and Nelson (1994), and Diebold and Lopez (1995).

2Hansen and Scheinkman (1995) consider continuous time stochastic di�erential equations and derive moment
restrictions for a given frequency of data. DuÆe and Glynn (1997) extend this to randomly sampled observations.
Nelson bridges the gap between discrete time ARCH models and continuous time models by taking an approximating,
�ltering or smoothing approach: Nelson (1990, 1992, 1996), Nelson and Foster (1994).

3Recently, Davis and Mikosch (1998) show that for an ARCH(1) of Engle (1982) with in�nite fourth moment, the
standard estimator of the correlation between "2t and it lags converges to a random variable.

4This is an important di�erence with Drost and Nijman (1992) who report simulation results which suggest that the
QMLE of temporally aggregated GARCH is consistent or has a very small bias. Our results are di�erent from theirs
because we aggregate over a much longer period and we take empirically more relevant low frequency parameters.
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exclude asymmetries such as skewed innovations and leverage e�ects (Black, 1976, Nelson, 1991).

The aim of this paper is to propose a new class of volatility models which closed under temporal

aggregation and which avoids the limitations of the weak GARCH class. We follow the main idea of

Drost and Nijman (1993) by considering an ARMA structure of the squared residuals. However, our

approach is based on linear state-space modeling, that is, according to �nancial terminology, stochastic

volatility (SV) modeling.5 We consider the Square-Root Stochastic Autoregressive Volatility (SR-

SARV) models characterized by AR dynamics of the conditional variance process. Special ARCH-

type examples of SR-SARV include ARCH of Engle (1982) and GARCH of Bollerslev (1986), the

asymmetric GARCH models of Glosten, Jagannathan and Runkle (1989), Engle and Ng (1993). The

SR-SARV class is a natural generalization of the weak GARCH class that avoids their limitations.

In particular, even if the variance is stochastic, we derive observable conditional moment restrictions

for non-linear inference. When the fourth moment of the residual process is �nite, these restrictions

imply that the squared residual process is an ARMA process. Besides, we prove that any symmetric

SR-SARV model with �nite fourth moment is a weak GARCH. Hence, weak GARCH are SV processes

rather than standard GARCH and our results generalize those of Drost and Nijman (1993) and of

Drost andWerker (1996). Finally, our framework allows us to study temporal aggregation of IGARCH

and non-linear models such as EGARCH and exponential SV.

Several models in the literature share the property of autoregression of the variance: GARCH

models, structural GARCH models of Harvey, Ruiz and Sentana (1992), SV models of Barndor�-

Nielsen and Shephard (1999) and the SR-SARV models of Andersen (1994).6 Our class of models

is closely related to the Andersen (1994) SR-SARV, and we adopt his terminology. However, while

Andersen (1994) speci�es a parametric setting, we take a semiparametric approach without any

assumption on the probability distributions, because distributional assumptions are not closed under

temporal aggregation. In the SV setting, it is usual and indeed necessary to specify the complete

probability distribution which is required, e.g. for inference or forecasting, in the presence of non-linear

transformations of latent variables (see, e.g., Gouri�eroux and Jasiak, 1999). However, we consider

here linear models and so we do not require any distributional assumptions. In particular, we derive

observable multiperiod conditional moment restrictions (Hansen, 1985) for inference purposes.

Since Akaike (1974), it is well-known that there is an equivalence between weak ARMA and

weak state-space models. In particular, given an ARMA process with �nite variance, we can

�nd a state-space model, generally not unique, such that the observable restrictions are the same

for both models. In a companion paper, Meddahi and Renault (2000a), we extend this result to

5See Ghysels, Harvey and Renault (1996) and Shephard (1996) for a review.
6Several multivariate models in factor GARCH literature also share this property: Diebold and Nerlove (1989), Engle,

Ng and Rothschild (1990), King, Sentana and Wadhwani (1994).

2



semi-strong models. However, there is not an equivalence between semi-strong ARMA models and

semi-strong state-space models. More precisely, we show that while the semi-strong ARMA model

admits a particular semi-strong state-space representation, the latter amounts to some multiperiod

conditional moment restrictions which are less restrictive than those implied by a semi-strong ARMA.

For instance, consider the ARMA(1,1) case. We show that zt admits a semi-strong state representation

if and only if there exist ! and  such that E[zt � ! � zt�1 j z� ; � � t � 2] = 0:7 It turns out that

these weakened multiperiod conditional moment restrictions are closed under temporal aggregation.

In other words, the previous particular state-space representation of the semi-strong ARMA(1,1)

is robust to temporal aggregation while semi-strong ARMA models are not. Multiperiod conditional

moment restrictions are very useful for inference (see Hansen and Singleton, 1996). When the variance

of zt is �nite, these restrictions imply that zt is a weak and not a semi-strong ARMA: it is in between.

Starting from the SR-SARV(1) class characterized by the AR(1) dynamics of the conditional

variance process, we propose several extensions. In the spirit of GARCH (p,p) modeling, we introduce

the SR-SARV(p) class: the variance process is the sum of the components (marginalization) of a

positive multivariate VAR(1) of size p. This class contains the usual GARCH(p,p) model. Besides,

the multiperiod restrictions ful�lled by the squared process are of p lags. When the fourth moment

is �nite, this implies that the squared process is an ARMA(p,p). In continuous time, this leads up to

consider a SV model where the variance is a marginalization of a vector of size p, that is a multi-factor

model for the variance (e.g., Heston, 1993; DuÆe and Kan, 1996).8 Exact discretization of such models

is a SR-SARV(p), hence the process of squared residuals ful�lls multiperiod restrictions.

We also consider the SR-SARV(1) class to study temporal aggregation of SV non-linear models.

We do this by plugging the non-linear models in a linear SR-SARV model by considering a natural

expansion of the volatility process. For instance, in the Gaussian exponential SV model of Taylor

(1986), we expand the conditional variance process on the Hermite polynomials which are AR(1)

and uncorrelated processes. In other words, the conditional variance process is a linear combination

of an in�nite number of AR(1) processes and hence a Gaussian exponential SV is SR-SARV(1).

In continuous time, we do this expansion on the eigenfunctions of the in�nitesimal generator of

the volatility di�usion process (see, Hansen, Scheinkman and Touzi, 1998). We show that the SR-

SARV(1) class is closed under temporal aggregation.

Finally, we consider temporal aggregation of IGARCH models. In this case, we consider the ISR-

SARV class where we relax the assumption of integrability of the variance process while maintaining

the stationarity assumption. We show that this class is closed under temporal aggregation.

7This restriction is less restrictive than saying that the innovation process of zt is a m.d.s.
8Heston (1993) considers a SV model where the volatility is a Constant Elasticity of Variance (CEV) process

introduced by Cox (1975). They are charecterized by a linear drift and popular in �nance for their nonnegativity.

3



The rest of the paper is organized as follows. In section 2, we summarize some classical results of

ARMA theory and present the main results of Meddahi and Renault (2000a). In particular, we stress

the relationships between ARMA and state-space representation. Furthermore, the latter is used to

derive multiperiod conditional moment restrictions, exact discretization of continuous time models and

temporal aggregation properties. Then we introduce in section 3 the SR-SARV(p) model in discrete

and continuous time. Temporal aggregation, exact discretization and multiperiod conditional moment

restrictions for volatility models are then deduced from the state-space representation. In particular,

we characterize the relations between SR-SARV, semi-strong GARCH, weak GARCH and ARMA

representations for squared innovations. Section 4 focuses more speci�cally on SR-SARV(1) processes

to make more speci�c the characterization of the subclass of GARCH(1,1) and to discuss asymmetry

issues (leverage e�ect and skewness). Section 5 considers temporal aggregation of IGARCH models,

while section 6 studies temporal aggregation of non-linear models as exponential SV in discrete and

continuous time. Section 7 provides a synthesis of the various models that we consider. A Monte

Carlo study is presented in section 8 and we conclude in section 9. The proofs of the results are

provided in the Appendix.

2 State-space and multiperiod ARMA models

In this section, we revisit standard ARMA theory to enhance its main lessons for volatility modeling.

We particularly focus on the state-space representation of an ARMA model, the implied conditional

moments restrictions (for inference purposes) and the discretization of autoregressive continuous time

models. Finally, we give several examples of positive autoregressive processes.

2.1 State-space representation

In the time series literature (see, e.g., Brockwell and Davis, 1990), two types of ARMA processes are

generally studied. The �rst one considers the case of strong white noise, that is independent and

identically distributed (i.i.d.) innovations with a �nite variance, D(0; �2). Note that in some cases,

the existence of the variance is not necessarily assumed, D(0). In the second type, the innovations

are only assumed to be second-order stationary and serially uncorrelated (weak white noise). On the

other hand, several economic models imply conditional moment restrictions (�rst order conditions,

rational expectations...). Thus the econometric literature often focuses on an intermediate type of

ARMA models based on conditional expectations: the innovation process is a m.d.s. (semi-strong

white noise).

De�nition 2.1. Strong, semi-strong and weak ARMA: Let fzt; t 2 Zg be a stationary integrable
process such that P (L)zt = !+Q(L)�t, with P (L) = 1�Pp

i=1 aiL
i, Q(l) = 1�Pq

j=1 biL
i, where L is

the lag operator. We assume that ap 6= 0; bq 6= 0 and the polynomials P (L) and Q(L) have di�erent

roots which are outside the unit circle. We say that:

4



i) zt is a strong ARMA(p,q) if the process �t is i.i.d. D(0);

ii) zt is a semi-strong ARMA(p,q) if �t is a m.d.s. (E[�t j �� ; � � t� 1] = 0);

iii) zt is a weak ARMA(p,q) if E[�t] = 0 and Cov[�t; �t�h] = 0 for h � 1:

Note that in both strong and semi-strong cases, we only assume integrability of the process zt.

Moreover, the strong case implies the semi-strong one which implies, when the second moment of

zt is �nite, the weak one. Under normality and homoskedasticity, the three notions are equivalent.

Another approach to describe time series is based on state-space modeling:

De�nition 2.2. Strong, semi-strong and weak state-space representation:Consider an

integrable process fzt; Gt; t 2 Zg such that

zt = gt�1 + �t; with (2.1)

gt = e0Gt; (2.2)

Gt = 
+ �Gt�1 + Vt; (2.3)

where e 2 IRp and the eigenvalues of � are assumed to be smaller than one in modulus. De�ne the

increasing �ltration Jt = �(zt; Gt;mt) where mt is a given process.

i) When fzt; Gtg is a strictly stationary process, and the process (�t; Vt) is i.i.d. with zero mean and

independent of Jt�1, we say that fztg admits the strong state-space representation of order p fGt; �tg
w.r.t. Jt�1;

ii) when the process fzt; Gtg is strictly stationary and the process (�t; Vt) is a m.d.s. w.r.t Jt, that is

E[�t j Jt�1] = 0; (2.4)

E[Vt j Jt�1] = 0; (2.5)

we say that fztg admits the semi-strong state-space representation of order p fGt; �tg w.r.t. Jt;
iii) when fzt; Gtg is a stationary second-order process and the process (�t; Vt) is weak white noise, and

not correlated with (z� ; G� ;m� ); � < t�1, we say that fztg admits the weak state-space representation
of order p fGt; �tg w.r.t. Jt.

Again, in both strong and semi-strong state-space representations, we only assume that the

processes are integrable, possibly with in�nite variance. In such models, the dynamics of the process

zt are de�ned through the process gt which is a marginalization of the VAR(1) process Gt of size

p. Therefore gt is a weak ARMA(p,p-1) (see, e.g., Lutkepohl, 1991).9 The process Gt is possibly

unobservable by the economic agent or by the econometrician. For instance, gt can represent the

(rational) expectation of an economic agent of a variable zt+1. In this case, g is observable by the

economic agent and not by the econometrician. As we already mentioned, Akaike (1974) shows that

weak ARMA models are tantamount to weak state-space models. We extend this result in Meddahi

and Renault (2000a) to semi-strong models by proving Propositions 2.1, 2.2 and 2.3 below:

9Note however that the above de�nition in terms of a VAR(1) process Gt of state variables is not tantamount to
a de�nition directly in terms of a state process gt ARMA(p,p-1); the important di�erence relies on the conditioning
information set.
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Proposition 2.1 State-space representation of a semi-strong ARMA

Let fzt; t 2 Zg be a semi-strong ARMA(p,p) with a corresponding representation P (L)zt = !+Q(L)�t

with P (L) = 1�Pp
i=1 aiL

i and Q(L) = 1�Pp
i=1 biL

i. De�ne the processes fGt; gt; vt; t 2 Zg by
Gt�1 � (E[zt+p�1 j It�1]; E[zt+p�2 j It�1]; ::; E[zt j It�1])

0; (2.6)

gt�1 � (0; 0::; 0; 1)Gt�1 ; (2.7)

and vt � zt� gt�1 where It = �(z� ; � � t). Then zt admits the semi-strong state-space representation

fGt; vt; t 2 Zg. Moreover, Gt = 
+ �Gt�1 + Vt where 
 = (!; 0; 0 � � � 0)0 and

� =

2
66666664

a1 a2 � � � ap
1 0 � � � 0
0 1 � � � 0
: � � � � � � :
: � � � � � � :
0 � � � 1 0

3
77777775
: (2.8)

Note that this result concerns semi-strong ARMA and therefore strong ARMA. However, it is

not true for weak ARMA because the weak noise property is too poor to provide conditional

moment restrictions like (2.4) and (2.5). These conditional moment restrictions are the only binding

restrictions w.r.t. the Wold representation setting. Of course, any ARMA(p,q) can be written as

an ARMA(r,r) with r=max(p,q). But the above property shows that the state-space representation

requires something intermediate between weak and semi-strong ARMA(p,p) properties, characterized

by the following multiperiod conditional moment restrictions of order p on observable variables:

Proposition 2.2 State-space representation and multiperiod conditional moments

restrictions A stationary process fzt; t 2 Zg admits a semi-strong state-space representation of

order p i� there exist (p+1) real numbers !, a1,..,ap, such that the roots of 1�Pp
i=1 aiL

i are outside

the unit circle and
E[zt � ! �

pX
i=1

aizt�i j z� ; � � t� p� 1] = 0: (2.9)

To summarize, the state-space representation of order p characterizes a class of processes which

contains strictly the class of semi-strong and strong ARMA(p,p) and is, when the second moment is

�nite, strictly included in the weak ARMA(p,p) one. For a review of examples where the multiperiod

restrictions (2.9) occur or of the optimal instruments issue for (2.9), see Hansen and Singleton (1996).

On the other hand, temporal aggregation properties of ARMA models are proven only for weak

ARMA,10 see e.g., Palm and Nijman (1984) and Granger (1990) for a survey. However, the class of

semi-strong VAR(1) is closed under temporal aggregation for stock variables. This allows us to prove

that the state-space representation of order p is closed under temporal aggregation:

10Under normality and homoskedasticity, temporal aggregation holds for semi-strong and strong ARMA since they
are equivalent to weak ARMA.
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Proposition 2.3 Temporal aggregation of the state-space representation

Let fzt; t 2 Zg be a stationary process which admits a semi-strong state-space representation of order

p fGt; �t; t 2 Zg w.r.t. Jt = �(z� ; G� ;m� ; � � t). De�ne for a given integer m and real numbers

(a0; a1; ::; am�1) the process fz(m)
tm ; t 2 Zg by z

(m)
tm � Pm�1

i=0 aiztm�i. Then fz(m)
tm ; t 2 Zg admits a

semi-strong state-space representation of order p w.r.t. J
(m)
tm = �(z

(m)
�m ; G�m;m�m; � � t). More

precisely, we have z
(m)
tm = g

(m)
tm�m + �

(m)
tm where

g
(m)
tm�m � E[z

(m)
tm j Jtm�m] = e0(A(m)Gtm�m +B(m)); (2.10)

with A(m) =
m�1X
i=0

ai�
m�i�1 and B(m) = (

m�1X
i=0

ai(
m�i�2X
k=0

�k))
: (2.11)

Assume that e0A(m) 6= 0, i.e. z
(m)
tm is not a m.d.s., then g

(m)
tm�m = e(m)0G

(m)
tm�m with

e(m) = A(m)0e; G
(m)
tm�m = Gtm�m + e(m)(e(m)0e(m))�1e0B(m): (2.12)

Besides, G
(m)
tm�m is a VAR(1) process with an autoregressive matrix �(m) given by

�(m) = �m: (2.13)

This proposition means that while the semi-strong ARMA class is not closed under temporal

aggregation, the particular state-space representation that we consider is.11 Thus, the class of ARMA

processes de�ned by the multiperiod conditional moment restrictions (2.9) is closed under temporal

aggregation. Note that this class is endowed with richer properties than the weak ARMA which

makes it more interesting for both �nancial and statistical purposes (see below).

Let us focus at this stage on the interpretations of the above results which will be particularly pertinent

in the context of the temporal aggregation of volatility models. The resulting variable g
(m)
tm at the

low frequency is the conditional mean of the aggregated process z
(m)
(t+1)m given the information at the

high frequency �(ztm�� ; Gtm�� ; � � 0) (see the �rst part of (2.10)). Thus, it is an aÆne function

of the initial state variable Gtm (second part of (2.10)).12 Then, assuming that e0A(m) 6= 0,13 we can

rewrite g
(m)
tm as a marginalization of a new state variable G

(m)
tm which is indeed the original one plus a

constant (see (2.12)).14 Therefore, it is also a VAR(1) and the low frequency autoregressive coeÆcient

is equal to the high frequency coeÆcient to the power m (see (2.13)). Thus persistence increases

exponentially with the frequency. Finally, note that even when we consider temporal aggregation of

ow variables, the corresponding state variable is considered as a stock variable. This is why the

temporal aggregation result holds since semi-strong AR(1) stock variables are closed under temporal

aggregation.

11Temporal aggregation of stock variables observed at the dates m, 2m, 3m,.., Tm, corresponds to a = (1; 0; 0:::; 0)0

while for ow variables a = (1; ::; 1)0.
12This is due to the Markovianity in mean and to the autoregressive form of gtm.
13This assumption is not restrictive. Indeed, e0Am = 0 means that the process z

(m)
tm is a m.d.s.; Therefore, it is a

degenerate state-space model.
14As usual, the state-space representation is not unique. For instance, we can consider ~G

(m)
tm = A(m)Gtm + B(m) as

a state variable. In this case, if one assumes that the matrix A(m) is non singular, then ~G
(m)
tm is a VAR(1) with an

autoregressive matrix equal to �(m). In other words, we refer to the state G
(m)
tm rather than ~G

(m)
tm because we have to

assume only that e0A(m) 6= 0 rather than A(m) being non singular.
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2.2 From continuous time to discrete time

Several models in �nancial economics are de�ned in continuous time. However, the data are typically

available in discrete time. Therefore, for inference purposes, it is necessary to derive the implied

restrictions ful�lled by the data. A natural approach is to derive the exact likelihood of the data from

a fully parametric continuous time model. However this likelihood does not admit in general a closed

form expression (see however Ait-Sahalia, 1998). Therefore alternative approaches are developed like

non parametric methods (Ait-Sahalia, 1996), simulated methods (see Gouri�eroux and Monfort, 1996),

Bayesian methods (Elarian, Chib and Shephard, 1998) or GMM method (Hansen and Sheinkman,

1995). However, the template of continuous time process allowing one to derive the likelihood for

discrete time data is the Ornstein-Uhlenbeck (OU) process:

dYt = K(�� Yt)dt+�dWt; (2.14)

where Yt 2 IRp, � 2 IRp, K is a matrix of size (p�p) and dWt is a p-variate standard Wiener process.

In this case, for any h > 0, the process fY�h; � 2 Zg is a conditionally Gaussian VAR(1) process with

a conditional mean given by (Id � e�Kh)� + e�KhY(��1)h. Note however that the VAR structure of

the conditional mean is indeed only due to the linear structure of the drift. Therefore, given a process

fYt; t 2 IRpg de�ned by
dYt = K(�� Yt)dt+�tdWt; (2.15)

where the matrix �t can depend on Yt or on additional variables Ft,
15 the process fY�h; � 2 Zg is a

semi-strong VAR(1) process, that is:

E[Yth j Y�h; � � t� 1] = (Id� e�Kh)� + e�KhY(t�1)h: (2.16)

Such processes will be of interest in our paper. Furthermore, we also require their positivity for

volatility modeling purposes.

2.3 Autoregression and positivity

We consider three examples of autoregressive processes which are at the same time nonnegative.

� Example 1: Let us consider the process fzt; t 2 IRg which is the stationary solution of:

dzt = k(� � zt)dt+ Æ(zt)
�dWt; (2.17)

where 1=2 � � � 1 ensures that there exists a nonnegative stationary process solution of (2.17).16

This is the class of CEV processes. When � = 1=2, we say that it is the square-root process. Note

that (2.17) is a univariate version of (2:15). Thus, from (2.16) we deduce that the nonnegative

process fz�h; � 2 Zg is a semi-strong AR(1) process.

� Example 2: Let fxt; t 2 Zg the process de�ned by xt = axt�1 + ut where j a j< 1 and the ut are

i.i.d. N (0; �2): De�ne fzt; t 2 Zg by zt � x2t . Then it is straightforward to show that

E[zt j z� ; � < t] = a2zt�1 + �2 and V ar[zt j z� ; � < t] = 2�2(�2 + 2a2zt�1): (2.18)

15Of course, the choice of �t is such that there exists a unique stationary solution of (2.15).
16Note that the existence of a stationary solution can be guaranted without the restriction � � 1; see Conley et al.

(1995).
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The �rst result of (2.18) says that the nonnegative process zt is an AR(1) while the second one

implies that it is conditionally heteroskedastic. Note, however, that conditional heteroskedasticity is

not necessary to ensure the nonnegativity of an AR process (see the following example). We can also

adapt this example in continuous time. More precisely, consider fxt; t 2 IRg the stationary solution

of the stochastic di�erential equation (SDE) dxt = �kxtdt+�dWt, with k > 0, and de�ne the process

fzt; t 2 IRg by zt � x2t . Then by the Ito Lemma we have dzt = (�2�2kzt)dt+2xt�dWt, which can be

rewritten as dzt = (�2� 2kzt)dt+2
p
zt�d ~Wt. In other words, zt is a constrained square-root process.

� Example 3: Let fzt; t 2 Zg the process de�ned by zt = ! + �zt�1 + vt where, 0 < !, 0 � � < 1

and vt i.i.d. D(0; �2). The process zt has the following MA(1) representation: zt =
P+1

i=0 �
i(vt +!).

Thus, nonnegativity of zt is ensured when vt � � ! almost surely. A particular example is an AR(1)

plus a positive noise (e.g., Barndor�-Nielsen, Jensen and Sorensen, 1998; and Barndor�-Nielsen and

Shephard, 1999). More precisely, let ~vt be an integrable positive i.i.d. process. De�ne zt as the

stationary solution of zt = ~! + �zt�1 + ~vt, with ~! > 0 and 0 < � < 1. Then zt = ! + �zt�1 + vt with

! = ~! +E[~vt], vt = ~vt �E[~vt] and, hence, vt � �E[~vt] � �!.
3 SR-SARV(p) model

In this section we introduce the Square Root Stochastic Autoregressive Volatility model of order

p (SR-SARV(p)) in discrete and continuous times. The main feature of these models involves a

state-space representation of order p for the squared (innovation) process. We prove the consistency

between these two models by showing that exact discretization of continuous time SR-SARV(p) model

is a discrete time SR-SARV(p) model. This result suggests that this class of models is closed under

temporal aggregation and we therefore prove the aggregation result. Then we derive observable

restrictions of our model. It provides multiperiod conditional moment restrictions of p lags which

hold for the squared process. When the fourth moment is �nite, it ensures an ARMA structure for

the squared innovation process which is intermediate between weak and semi-strong. Finally we recall

the de�nitions of semi-strong GARCH and weak GARCH and their links with the ARMA structure

of the squared innovations.

3.1 The model

3.1.1 Discrete time SR-SARV(p) model

De�nition 3.1. Discrete time SR-SARV(p) model: A stationary squared integrable process

f"t; t 2 Zg is called a SR-SARV(p) process with respect to an increasing �ltration Jt; t 2 Z, if:
i) the process "t is adapted w.r.t. Jt, that is It � Jt where It = �("� ; � � t);

ii) "t is a martingale di�erence sequence w.r.t. Jt�1, that is E["t j Jt�1] = 0;

iii) the conditional variance process ft�1 of "t given Jt�1 is a marginalization of a stationary Jt�1-

adapted VAR(1) of size p:
ft�1 � V ar["t j Jt�1] = e0Ft�1; (3.1)
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Ft = 
+ �Ft�1 + Vt; with E[Vt j Jt�1] = 0; (3.2)

where e 2 IRp, 
 2 IRp and the eigenvalues of � have modulus smaller than one.

Observe that our de�nition is de�ned for a given information set Jt. Jt can strictly contain the

information set It = �("� ; � � t), which is the minimal information set. In particular, Jt may contain

macroeconomic variables, information about other assets and markets, the volume of transactions,

the spread, the order book and so on.17 Indeed, we never assume that the econometrician observes

the full information set Jt even if the economic agent does. Thus, the model is a Stochastic Volatility

(SV) model since the conditional variance process is a function of possibly latent variables.

The process of interest "t is assumed to be a martingale di�erence sequence w.r.t the large information

Jt and therefore w.r.t. It. Typically, "t could be the log-return of a given asset with a price at

time t denoted by St: "t = Log(St=St�1). This assumption of m.d.s. is widespread in �nancial

economics and related to the notion of informational eÆciency of asset markets. However, we do

not preclude predictable log-returns; in this case, our "t should be interpreted as the innovation

process (see Meddahi and Renault, 1996). In addition, "2t admits the state-space representation

"2t = e0Ft�1 + ("2t � E["2t j Jt�1]). Therefore, "2t is endowed with the state-space model properties

like, e.g., multiperiod conditional moment restrictions. Note however that we do not assume that the

fourth moment is �nite. We only assume the integrability of the conditional variance process and,

hence, the �niteness of the second moment. Observe also that we do not assume that the components

of the vectors e and Ft are nonnegative. We need only that the process e0Ft is non negative. A

suÆcient but not necessary condition for this is that all the components of e and Ft are nonnegative.

For instance consider the case of p = 2. Assume that e = (1; 1)0 and Ft = (f1;t; f2;t)
0 where f1;t

and f2;t are positive and independent AR(1) processes (for instance following the example 3 in the

previous section). De�ne ~f1;t = f1;t +E[f2;t] and ~f2;t = f2;t �E[f2;t] and ~Ft = ( ~f1;t; ~f2;t)
0. Obviously

~f2;t is not a nonnegative process while e0 ~Ft is (since e0 ~Ft = e0Ft).

This model is related to Andersen (1994) SR-SARV and indeed we adopt his terminology.

However, there are several di�erences between the models.18 More precisely, Andersen (1994)

considers a fully parametric model by specifying the complete distribution of the process ("t; F
0
t )
0.

The temporal aggregation requirement prevents us from completely specifying the probability

distributions. Indeed, neither distributional assumptions nor homo-conditional moments restrictions

(homoskewness, homokurtosis) are closed under temporal aggregation (see below). Furthermore,

Andersen (1994) excludes leverage e�ects while we do not. Note that we do specify neither this

17Note also that �("� ; f� ; � � t) � Jt since the process ft is adapted w.r.t. Jt.
18Andersen (1994) considers the general class of SARV models where a function of the conditional variance process is

a polynomial of an AR(1) Markov process. When this function is the square-root, Andersen (1994) calls it Square-Root
(SR) SARV while he terms Exponential SARV when this function is the exponential one, corresponding to the Taylor
(1986) and Harvey, Ruiz and Shephard (1994) lognormal SV model.
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leverage e�ect Cov["t; Ft] (which is a multivariate leverage e�ect) nor the high order moments of "t

(third, fourth...) and Vt.
19 To summarize, we consider a semiparametric SV model.

Now we consider continuous time stochastic volatility models which are popular in �nance due

to their positivity; then, we prove that exact discretization of these processes are discrete time SR-

SARV(p) ones.

3.1.2 Continuous time SR-SARV(p) model

De�nition 3.2. Continuous time SR-SARV(p) model: A continuous time stationary process

fyt; t 2 IRg is called a SR-SARV(p) process with respect to an increasing �ltration Jt; t 2 IR, if and
only if there exists a p-variate process F c

t such that yt is the stationary solution of

d(
yt
F c
t
) = (

0
K(�� F c

t )
)dt+Rt dWt; (3.3)

where Wt is a (p + 1)-variate standard Wiener process adapted w.r.t Jt, K is a p � p matrix with

eigenvalues that have positive real parts20 and Rt is a (p+ 1)� (p+ 1) lower triangular matrix, such

that the coeÆcient r11;t is the square-root of r211;t � �2t = e0F c
t ; with e 2 IRp

+:

The instantaneous conditional variance of (yt; F
c
t ) given Jt is RtR

0
t. The matrix Rt is lower

triangular,21 therefore the conditional variance of yt given Jt is r
2
11;t. In other words, we follow the

main idea of the discrete time SR-SARV(p) model, that is the conditional variance is a marginalization

of a p dimensional VAR(1) positive process F c
t . Note that as for the discrete time model, we have a

semiparametric SV model since we do not de�ne completely the matrix Rt. In particular, we allow for

a leverage e�ect. Of course, the matrix Rt has to ful�ll conditions ensuring existence and uniqueness

of a stationary solution of the SDE (3.3). For instance, this is consistent with the DuÆe and Kan

(1996) setting of a multivariate square-root process such that each coeÆcient of RtR
0
t is of the form

(1; F c0
t )~e with ~e 2 IRp+1.22 For p = 1, we can consider a CEV process23

d�2t = k(� � �2t )dt+ Æ(�2t )
�dW2;t; with 1=2 � � � 1: (3.4)

Finally, note that the framework allows for models where there are additional factors in Rt.

We will now prove that the two previous de�nitions are indeed consistent since exact discretization

of continuous time SR-SARV(p) model is a discrete time SR-SARV(p) one:

Proposition 3.1 Exact discretization of continuous time SR-SARV(p)

19Andersen (1994) considers only one factor, so his model is related to a SR-SARV(1). However, he de�ned the
volatility process as a function of a polynomial, say of degree p, of an AR(1) state-variable Kt. Thus, it is a
marginalization of the vector (Kt; K

2
t ; :::; K

p
t )

0 which is indeed a VAR(1) of size p. In other words, Andersen (1994)
considers implicitly a particular SARV(p) model.

20Indeed, a usual assumption, see e.g. Bergstrom (1990), page 53, is that the eigenvalues of K are distinct. Therefore
K is diagonalisable, i.e. there exists a matrix H such that HKH�1 = Diag(�1; :::; �p) � �. As a consequence, for u > 0,

He�uKH�1 = e�u� = Diag(e�u�1 ; :::; e�u�p) with eZ =
P1

i=0
Zi

i!
. The positivity of the real parts of the eigenvalues

K ensures the existence of e�uK 8u > 0.
21This Gramm-Schmidt normalization rule is standard and can be maintained without loss of generality.
22See DuÆe and Kan (1996) for suÆcient conditions of existence of a stationary solution of (3.3) in this case.
23Since there is only one factor, we change the notations by taking F c

t � �2t , Wt = (W1;t;W2;t)
0.
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Let fyt; t 2 IRg be a continuous time SR-SARV(p) process with a corresponding factor process fF c
t ; t 2

IRg. Then, for any sampling interval h, the associated discrete time process "
(h)
th = yth�y(t�1)h, t 2 Z,

is a SR-SARV(p) process w.r.t. J
(h)
th , J

(h)
th = �("

(h)
�h ; F

c
�h; � � t; � 2 Z). The corresponding conditional

variance process f
(h)
(t�1)h � V ar["

(h)
th j J (h)

(t�1)h] is given by f
(h)
th = e0F (h)

th with F
(h)
th = A(h)F c

th + B(h),

where A(h) = K�1(Id� e�Kh) and B(h) = (hId �A(h))�:

This proposition24 means that exact discretization of the factor or stochastic volatility models of DuÆe

and Kan (1996), Constantinides (1992), Heston (1993), are also factor or SV models. Moreover, such

models imply conditional moment restrictions based only on the observable variables (see later).

More recently, Barndor�-Nielsen and Shephard (1999) have considered a new class of continuous time

stochastic volatility models, termed positive OU processes, that can be exactly discretized. Indeed

we can prove that exact discretization of positive OU processes are SR-SARV (see Lemma A.3 in the

Appendix). This positive OU processes are very useful in �nance, since they allow us to simulate the

integrated volatility which is important in option pricing of SV models (Hull and White, 1987).

The previous result suggests that the SR-SARV(p) class is closed under temporal aggregation.

This is the main focus of interest of the paper and the purpose of the next subsection.

3.2 Temporal aggregation of SR-SARV(p) models

We consider here the general temporal aggregation of a given process. More precisely, let consider a

process f"t; t 2 Zg, where it is assumed that we observe the process f"(m)
tm ; t 2 Zg de�ned by

"
(m)
tm =

m�1X
k=0

ak"tm�k; (3.5)

with m 2 N�, a = (a0; a1; ::; am�1)
0 2 IRm. Temporal aggregation of stock variables observed at the

dates m, 2m, 3m,.., Tm, corresponds to a = (1; 0; 0:::; 0)0 , while for ow variables a = (1; ::; 1)0. This

latter case is particularly suitable for log-returns and continuously-compounded interest rates.

Proposition 3.2 Temporal aggregation of SR-SARV(p) models

Let "t be a SR-SARV(p) process w.r.t. an increasing �ltration Jt and a conditional variance process

ft = e0Ft. For a given integer m, the process "
(m)
tm de�ned by (3.5) is a SR-SARV(p) w.r.t. J

(m)
tm =

�("
(m)
�m ; F�m; � � t). More precisely, we have:

f
(m)
tm�m � V ar["

(m)
tm j Jtm�m] = e0(A(m)Ftm�m +B(m)); (3.6)

where A(m) =
m�1X
k=0

a2k�
m�k�1 and B(m) = (

m�1X
k=0

a2k(
m�k�2X
i=0

�i))
: (3.7)

Assume that e0A(m) 6= 0, then f
(m)
tm = e(m)0F

(m)
tm with

e(m) = A(m)0e; F
(m)
tm = Ftm + e(m)(e(m)0e(m))�1e0B(m): (3.8)

As well, F
(m)
tm is a VAR(1) process with an autoregressive matrix �(m) given by

�(m) = �m: (3.9)
24Note that in this proposition, the discrete time state variable is A(h)F c

th +B(h) and not, as in Proposition 2.3, F c
th

plus a constant. The reason is that we are sure that the matrix A(h) is not singular (see footnote 14).
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Therefore, models where the conditional variance is a marginalization of a VAR(1) process are robust

to temporal aggregation. Note that this result is not a direct application of the temporal aggregation

property of the state-space representation (Proposition 2.3): here we consider the dynamics of

(
Pm

i=0 ai"tm�i)
2, while in the previous case we had characterized the dynamics of

Pm
i=0 aiztm�i.

Actually, in section 2, the process zt has a state-space representation of order p while here it is

"2t and not "t. However, the two results stem from the same intuition. Consider the initial process

"t with the information Jt at high frequency and de�ne the process at low frequency "
(m)
tm by (3.5).

De�ne f
(m)
tm as the conditional variance of "

(m)
(t+1)m given the information at high frequency Jtm (�rst

part of 3.6). This information is generally not observable either by the agent or by the econometrician

and thus the variance is stochastic. But by something like a Markovian property,25 the conditional

variance f
(m)
tm is a function of Ftm. By the linearity of the model, this function is indeed aÆne (second

part of (3.6)). De�ne the information at low frequency by J
(m)
tm � �("

(m)
�m ; F

(m)
�m ; � � t). Then "

(m)
tm is

still a m.d.s. with respect to J
(m)
tm since E["

(m)
tm+m j Jtm] = 0 and J

(m)
tm � Jtm. Of course, by de�nition,

the conditional variance f
(m)
tm of "

(m)
tm+m given J

(m)
tm is positive. Then assuming that e0A(m) 6= 0,26 we

can rewrite this conditional variance as a marginalization of a new state variable F
(m)
tm . The latter is

a VAR(1) since it is the sum of a VAR(1) and a constant. Thus, "
(m)
tm is a SR-SARV(1) w.r.t. J

(m)
tm .

Finally, the autoregressive parameter of the VAR(1) Fm
tm is equal to the autoregressive parameter of the

high frequency vector Ft to the power m (3.9). It means that the persistence increases exponentially

with the frequency. Conversely, conditional heteroskedasticity vanishes when the frequency is low.

This corresponds to a well-documented empirical evidence and was pointed out by Diebold (1988),

Drost and Nijman (1993), and by Christo�ersen and Diebold (2000) in a free model framework.

Temporal aggregation of conditionally heteroskedastic models was already considered by Drost

and Nijman (1993) and lead to the weak GARCH paradigm while the links between continuous time

SV models and weak GARCH were put forward by Drost and Werker (1996). In the next subsection,

we will recap these results and characterize the links between weak GARCH and SR-SARV models.

3.3 Observable restrictions

3.3.1 Multiperiod conditional moment restrictions

The SR-SARV is de�ned w.r.t. an increasing �ltration Jt, which may not be observable by the

economic agent or the econometrician. However, as in the previous section, since a SR-SARV(p)

implies that "2t has a state-space representation of order p, we can derive conditional moments ful�lled

25If one has in mind an underlying continuous time representation like (3.3), the low frequency process (y
(m)
tm ; F

(m)
tm )

is Markovian. More generally, our setting ensures that the conditional variance f
(m)
tm depends on past information only

through Ftm.
26As in the previous section, this assumption is not restrictive. The equality e0A(m) = 0 would mean that the process

"
(m)
tm is homoskedastic which is a degenerate SR-SARV model. In other words, temporal aggregation would cancel the
volatility e�ect.
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by the observable process "t given the minimal information It = �("� ; � � t). This means that the

information generated by the returns should belong, in any case, to the econometrician's information

set. These restrictions are multiperiod ones of order p.

Proposition 3.3 SR-SARV and multiperiod restrictions

Let f"t; t 2 Zg be a stationnary process. It admits a SR-SARV(p) representation w.r.t. an increasing

�ltration Jt if and only if there exist p+1 reals !, 1,..,p, such that the roots of 1 �Pp
i=1 iL

i are

outside the unit circle and

E["2t � ! �
pX
i=1

i"
2
t�i j "� ; � � t� p� 1] = 0: (3.10)

Note that this result is not a direct application of Proposition 2.2 since the information structures are

di�erent. However, the proof is similar. Therefore, when the fourth moment of "t is �nite, "
2
t is an

ARMA(p,p) de�ned by (3.10), that is an ARMA property which is intermediate between weak and

semi-strong. The (semi-strong) ARMA structure was the main idea of the ARCH models introduced

by Engle (1982) and generalized by Bollerslev (1986). Indeed, the clustering e�ect in �nancial data

that these models account for is directly related to the ARMA structure of the squared residuals.

For temporal aggregation purposes, Drost and Nijman (1993) introduce the weak GARCH models

where the squared residuals process is a weak ARMA. Following the Drost and Nijman (1993)

terminology, we precisely de�ne below the various concepts and show how they are nested.

3.3.2 GARCH(p,q)

De�nition 3.3. GARCH(p,q): Let a stationary process f"t; t 2 Zg and de�ne the processes

fht; ut; t 2 Zg by the stationary solution of

B(L)ht = ! +A(L)"2t (3.11)

and ut = "t=
p
ht, with A(L) =

Pq
i=1 �iL

i, B(L) = 1�Pp
i=1 �iL

i where the roots of B(L)�A(L) and
B(L) are assumed to be di�erent and outside the unit circle. We say that:

i) "t is a strong GARCH(p,q) if the process ut is i.i.d. D(0; 1);

ii) "t is a semi-strong GARCH(p,q) if the process ut is such that

E[ut j "� ; � � t� 1] = 0 and V ar[ut j "� ; � � t� 1] = 1; (3.12)

iii) "t is a weak GARCH(p,q) if

EL["t j Ht�1] = 0 and EL["2t j Ht�1] = ht; (3.13)

where EL[xt j Ht�1] denotes the best linear predictor of xt on the Hilbert space, Ht�1, spanned by

f1; "� ; "2� ; � � t� 1g, that is
E[(xt �EL[xt j Ht�1])"

r
t�i] = 0 for i � 1 and r = 0; 1; 2: (3.14)

Note that in the strong and semi-strong cases, we do not assume that the fourth moment is �nite

while the weak setting requires this assumption.
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Proposition 3.4 Semi-strong GARCH and ARMA

Let f"t; t 2 Zg be a m.d.s. (E["t j "� ; � � t � 1]). It is a semi-strong GARCH(p,q) if and only if "2t

is a semi-strong ARMA(maxfp; qg,p) with an innovation process which is a m.d.s. w.r.t. It.

We specify in our Proposition that the innovation process of the squared process is a m.d.s. w.r.t.

It and not only w.r.t. ~It = �("2� ; � � t)) since the conditional variance process is de�ned given

It (and not ~It). Bollerslev (1988) already remarked that a strong GARCH(p,q) is a semi-strong

ARMA(maxfp; qg,p). Note that strong GARCH implies only semi-strong ARMA: when "2t =ht is

i.i.d., the ARMA process "2t should in general be conditionally heteroskedastic.

Since "2t is a semi-strong ARMA, it ful�lls a multiperiod conditional moment restriction of order

max(p,q).27 Therefore, Proposition 3.3 implies that "t admits a SR-SARV(maxfp; qg) representation.
Corollary 3.1 Semi-strong GARCH and SR-SARV

Let f"tg be a semi-strong GARCH(p,q). Then f"tg is a SR-SARV(maxfp; qg) w.r.t. It.
Furthermore, the continuous time SR-SARV(p) is related to GARCH(p,p) model. To our knowledge,

the relationship between GARCH(p,p) modeling of higher order (p > 1) and continuous time

stochastic volatility models was not clearly stated before in the literature, whatever the approach

of di�usion approximating (Nelson, 1990), �ltering (Nelson and Foster, 1994) or closing the GARCH

Gap (Drost and Werker, 1996). Finally, the temporal aggregation of a GARCH model is a SR-SARV

model. In other words, to close the class of GARCH processes, we have to plug it into the stochastic

volatility class of models. This is not a surprising result since we know from that semi-strong ARMA

are not closed under temporal aggregation.

In the next section, we give additional insights as to why GARCH models are not robust to

temporal aggregation. Drost and Nijman (1993) already focused on this weakness of standard GARCH

models. They give examples of strong and semi-strong GARCH which are not closed under temporal

aggregation. Then, they introduce the weak GARCH model where the squared residuals are weak

ARMA in order to bene�t from the temporal aggregation of the weak ARMA structure.

Proposition 3.5 Weak GARCH and ARMA

Let Hs
t�1 the Hilbert space spanned by f1; "2� ; � � t � 1g and fhst ; �tg the processes de�ned by hst =

EL["2t j Hs
t�1] and �t = "2t � hst . If "t is a weak GARCH(p,q) process, then ht = hst a.s. and, hence,

"2t is a weak stationary ARMA(maxfp; qg,p) process and
Cov(�t; "� ) = 0; 8� < t: (3.15)

Conversely, if "2t is a weak stationary ARMA(q,p) process and (3.15) holds, then "t is a weak

GARCH(p,q).

27More precisely, a semi-strong ARMA(~q; ~p) implies a multiperiod conditional moment restrictions of order equal to
maxf~q; ~pg. Thus a semi-strong ARMA(maxfp; qg,p) implies a multiperiod restriction of order maxfp; qg.
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Thus, the weak GARCH property is slightly more restrictive than the weak ARMA assumption for

the squared residuals. In particular, (3.15) is like a symmetry assumption, which is implied by the

maintained condition m.d.s. for "t when assuming semi-strong GARCH. In fact, Drost and Nijman

(1993) take a \coherent" de�nition in the sense that they project both the residual and its square

onto the same space Ht�1. However, the ARMA structure of the squared residuals was the main idea

of the weak GARCH.28 As we can already see, the class of weak ARMA strictly contains the class of

ARMA models with a semi-strong state-space representation and �nite variance. Therefore, it means

that weak GARCH are in fact Stochastic Volatility models, i.e., Drost and Nijman (1993) plug

also the class of GARCH models into the SV one.29

However, to show that weak GARCH class is closed under temporal aggregation for ow variables,

Drost and Nijman (1993) maintain at least one of the following symmetry assumptions:

8h 2 N�;8(ak)1�k�h 2 f�1; 1gh; ("t+k)1�k�h = (ak"t+k)1�k�h in distribution; or (3.16)

80 � i � j E["t"t�i"t�j ] = 0 and 8 0 � i � j � k; i 6= 0 or j 6= k E["t"t�i"t�j"t�k] = 0: (3.17)

Such symmetry restrictions are indeed quite restrictive both from theoretical and empirical grounds.

They preclude two types of asymmetry which appear relevant for �nancial data. First, even in the

strong GARCH setting, the probability distribution of the standardized innovations "t=
p
ht may

be skewed. Second, since the weak GARCH models are SV ones (outside the standard GARCH

class), another type of asymmetry (termed the leverage e�ect by Black, 1976, and popularized by

Nelson, 1991) may matter. A clear distinction between these two types of asymmetric behavior of a

general SR-SARV(1) process will be made in section 4 below. Equivalently, the leverage e�ect can

be introduced in the continuous time setting by allowing the volatility matrix Rt to be non-diagonal,

unlike the case considered by Drost and Werker (1996) and Andersen and Bollerslev (1998). Finally,

note that our results concerning temporal aggregation and exact discretization are consistent with

those of Drost and Nijman (1993) and Drost and Werker (1996).30 In particular, the restrictions on

the parameters are the same (�(m) = �m).31

4 SR-SARV(1)
4.1 SR-SARV(1) and GARCH(1,1)

The GARCH(1,1) model is nowadays dominant w.r.t. any other ARCH or GARCH type model

in the empirical �nance literature. We now discuss in more detail its relationships with the

general SR-SARV(1). In the previous section, we proved that a semi-strong GARCH(p,q) is also

28When Nijman and Sentana (1996) and Drost and Weker (1996) prove respectively that a marginalization of a
multivariate GARCH and that the discretization of (3.3) for p=1 under (3.4) are weak GARCH, they only deal with
the ARMA property of squared residuals.

29See the following section where we establish the exact links between SR-SARV and weak GARCH.
30Nevertheless, Drost and Werker (1993) consider only the one factor case.
31For more details, see Meddahi and Renault (1996).
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a SR-SARV(maxfp; qg). We �rst characterize the SR-SARV(1) processes which are also semi-strong

GARCH(1,1).

Proposition 4.1 Semi-strong GARCH(1,1) and SR-SARV(1)

Let f"t; t 2 Zg be a SR-SARV(1) process with a conditional variance process ft. "t is a semi-strong

GARCH(1,1) with � > 0 and � � 0 if and only if: i) "2t and ft are conditionally perfectly positively

correlated given Jt�1; ii) the ratio V ar[ft j Jt�1]=V ar["
2
t j Jt�1] is constant and smaller or equal to

2. In this case: ht+1 = ft, Jt = It and � =  � � with � =
q
V ar[ft j Jt�1]=V ar["

2
t j Jt�1].

The �rst restriction means that GARCH models correspond to the degenerate case where there are no

exogenous sources of randomness in the conditional variance. This degeneracy corresponds to GARCH

only if it is a perfect linear conditional correlation. The second restriction is less known even though

it was already coined by Nelson and Foster (1994). They observed that the most commonly used

ARCH models assume that the variance of the variance rises linearly with the square of the variance,

which is the main drawback of GARCH models in approximating SV models in continuous time.

Thus, semi-strong GARCH setting implies nontrivial restrictions on conditional kurtosis dynamics.

On the other hand, Nelson (1991) stressed that one limitation of GARCH models is that only

the magnitude and not the sign of unanticipated excess returns a�ects the conditional variance.

Therefore, alternative asymmetric GARCH models have been introduced in the literature. For

instance, Glosten, Jagannathan and Runkle (1989, GJR) introduce a model based on a GARCH

formulation but accounting for the sign of the past residuals. More generally, asymmetric models

have been studied and compared by Engle and Ng (1993) who consider the following models:

GJR : ht = ! + �"2t�1 + �ht�1 +  St�1"
2
t�1; where St = 1 if "t < 0; St = 0 otherwise (4.1)

Asymmetric GARCH : ht = ! + �("t�1 + )2 + �ht�1; (4.2)

Nonlinear Asymmetric GARCH : ht = ! + �("t�1 + 
q
ht�1)

2 + �ht�1; (4.3)

VGARCH : ht = ! + �("t�1=
q
ht�1 + )2 + �ht�1; (4.4)

Let us also consider a related model considered by Heston and Nandi (1999):32

Heston and Nandi : ht = ! + �("t�1=
q
ht�1 � 

q
ht�1)

2 + �ht�1: (4.5)

Actually, we show that all these models are in the SR-SARV(1) class.33

Proposition 4.2 Asymmetric GARCH and SR-SARV(1)

Let f"t; t 2 Zg be a m.d.s. and de�ne ht the conditional variance of "t, i.e. ht � V ar["t j "� ; � � t�1].
Assume that ht is given by (4.2), (4.3), (4.4), or by (4.5), then "t is a SR-SARV(1) model. If

ut = "t=
p
ht is i.i.d., then the GJR model de�ned by (4.1) is also a SR-SARV(1).

32Heston and Nandi (1999) show that the di�usion limit of (4.5) is the stationary solution of (3.4) with � = 1=2, i.e.
the model considered by Heston (1993). Both the discrete time and the continuous time models provide closed-form
option pricing formulas.

33Finally, Drost (1993) shows that symmetric QARCH of Sentana (1995) are weak GARCH. Indeed, it is easy to show
that any QARCH is a SR-SARV model. This is also the case of the HARCH model of Muller and al. (1997) since this
model is a restricted QARCH.
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4.2 SR-SARV(1) and weak GARCH(1,1)

We will now focus on the relationships between SR-SARV and weak GARCH. As already mentioned,

Drost and Nijman (1993) prove the temporal aggregation property of symmetric weak GARCH

(assuming (3.16) or (3.17)) which excludes the leverage e�ect and all the asymmetric models

considered in Proposition 4.2. We specify two kinds of asymmetries for the SR-SARV model:

De�nition 4.1. Leverage e�ect and skewness: Let f"t; t 2 Zg be a SR-SARV(1) process w.r.t.

a �ltration Jt with corresponding processes fft; ut; �tg where ft = ! + ft�1 + �t. We say that:

i) "t does not present (conditional) leverage e�ect w.r.t. Jt if and only if

E[ut�t j Jt�1] = 0 or E["t"
2
t+1 j Jt�1] = 0; (4.6)

ii) "t does not present (conditional) skewness w.r.t. Jt if and only if

E[u3t j Jt�1] = 0 or E["3t j Jt�1] = 0: (4.7)

We show in the Appendix that the two conditions of (4.6) (and (4.7)) are equivalent. Now we can

show that a SR-SARV model without leverage e�ect and skewness is a weak GARCH.

Proposition 4.3 Weak GARCH(1,1) and SR-SARV(1)

If "t is a SR-SARV(1) process with �nite fourth moment and without leverage e�ect and skewness,

that is if (4.6) and (4.7) hold, then "t is a weak GARCH(1,1) process.

Therefore, there is no major di�erence between symmetric weak GARCH and symmetric SR-SARV.

However, we do not prove an equivalence result, and it is clear that the class of symmetric weak

GARCH is larger than one of symmetric SR-SARV. Indeed, one can interpret the weak GARCH

model as a SV model, but not endowed with a suÆciently rich speci�cation for statistical inference

and economic interpretation. In addition, we have proved in section 3 that this weakness is not

needed to close the GARCH gap with continuous time as in Drost and Werker (1996). In a sense, by

introducing the SR-SARV, we have enriched the weak GARCH models by adding useful restrictions

for �nancial and statistical interpretations. Furthermore, SR-SARV allows for asymmetries like the

leverage e�ect and skewness. Indeed, the corresponding symmetry assumptions are closed under

temporal aggregation.

Proposition 4.4 Temporal aggregation, leverage e�ect and skewness

Let f"t; t 2 Zg be a SR-SARV process w.r.t. an increasing �ltration Jt with corresponding processes

fft; ut; �t; t 2 Zg. De�ne "
(m)
tm by (3.5) and the corresponding SR-SARV(1) representation of

Proposition 3.2, J
(m)
tm , ff (m)

tm ; u
(m)
tm ; �

(m)
tm ; g. Then the symmetric SR-SARV class is closed under

temporal aggregation. More precisely, we have:

E[ut�t j Jt�1] = 0 =) E[u
(m)
tm �

(m)
tm j J (m)

tm�m] = 0; and (4.8)

E[ut�t j Jt�1] = E[u3t j Jt�1] = 0 =) E[(u
(m)
tm )3 j J (m)

tm�m] = 0: (4.9)
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This proposition means that our results generalize those of Drost and Nijman (1993) and Drost

and Werker (1996), since symmetric SR-SARV are weak GARCH and are closed under temporal

aggregation. Besides, the relationships between parameters at various frequencies, already stressed

by these authors (particularly the persistence parameter) are maintained in our SR-SARV setting.

Furthermore this proposition means that a symmetry assumption about the standardized innovation

(a no-skewness e�ect) cannot be alleged without precluding leverage e�ect as well (see 4.9). Therefore,

when one observes signi�cant skewness at a low frequency, it may be due either to genuine skewness

or to leverage e�ect at the high frequency, while the presence of the leverage e�ect at a low frequency

implies the same feature at the high frequency.

Proposition 4.5 Observable restrictions of leverage e�ect and skewness

Let "t be a SR-SARV(1) w.r.t. an increasing �ltration Jt.

i) If "t is without leverage e�ect ((4.6) holds), then

E["t"
2
t+1 j It�1] = 0: (4.10)

ii) If "t is without skewness ((4.7) holds), then

E["3t j It�1] = 0: (4.11)

Therefore we can derive moments restrictions based on observable data which can be used to test

the absence of leverage e�ect or skewness. Moreover, usual GARCH allows for leverage e�ect as soon

as there is skewness since the conditions (4.6) and (4.7) are equivalent in this case. Indeed, in the

introduction of his EGARCH paper, Nelson (1991) explicitly mentions that symmetric GARCH

models do not take into account leverage e�ect.

5 Temporal aggregation of IGARCH models

We have considered in the previous sections temporal aggregation of volatility models with integrable

volatility. However, some empirical evidence supports the Integrated GARCH model introduced by

Engle and Bollerslev (1986). This process is not second-order stationary, since the second moment is

in�nite. This evidence is even more pronounced for high frequency data (5 and 10 minutes returns); see

for instance Andersen and Bollerslev (1997a) and Gen�cay et al. (1998). While the second moment of

the residuals is not �nite, the notion of conditional variance is valid since the squared residual process

is nonnegative and hence admits a conditional expectation. Moreover, we know that the GARCH(1,1)

process is strictly stationary when E[ln(� + �u2t )] < 0 (and ! > 0) with i.i.d. standardized residuals

(see Nelson, 1990). This condition is ensured when �+ � = 1,34 that is for IGARCH(1,1). Therefore

we can extend our notion of SR-SARV to nest the IGARCH class.

De�nition 5.1. Integrated SR-SARV(1) model: A strictly stationary process f"t; t 2 Zg is

called an ISR-SARV(1) process w.r.t. Jt if:

34By Jensen inequality, we have E[ln(� + �u2t )] < lnE[� + �u2t ] = ln(�+ �) = 0.
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i) the process "t is adapted w.r.t. Jt, that is It � Jt where It = �("� ; � � t);

ii) "t is a martingale di�erence sequence w.r.t. Jt�1, that is E["t j Jt�1] = 0;

iii) the conditional variance process ft�1 of "t given Jt�1 is such that:

E[ft j Jt�1] = ! + ft�1: (5.1)

Obviously an IGARCH(1,1) is an ISR-SARV(1). Note that strict stationarity is not important for

modeling purposes since we can remove it in the de�nition of an ISR-SARV. However, it is useful for

inference. We now consider temporal aggregation of ISR-SARV:

Proposition 5.1 Temporal aggregation of ISR-SARV(1)

Let "t be an ISR-SARV(1) process w.r.t. an increasing �ltration Jt and a conditional variance

process ft�1. The process "
(m)
tm de�ned by "

(m)
tm � Pm�1

k=0 ak"tm�k is an ISR-SARV(1) w.r.t. J
(m)
tm =

�("
(m)
�m ; f�m; � � t):

As a consequence, a temporally aggregated IGARCH process is also an integrated process but of SV

type.35 Empirically, the IGARCH model is rejected at low frequencies, e.g. monthly. Therefore by the

aggregation result, one has to conclude that the model at high frequency is not an integrated one. A

potential explanation of this is long memory in the volatility. For instance, Bollerslev and Mikkelsen

(1998) (resp Comte and Renault, 1998) show via a Monte Carlo study that when the true model

is FIGARCH (resp long memory continuous time SV), estimation of a GARCH model by QMLE

suggests an IGARCH model. Temporal aggregation of long memory volatility models is beyond the

scope of this paper; see Andersen and Bollerslev (1997b) and Bollerslev and Wright (1998).

6 Temporal aggregation of non-linear volatility models

In this section, we consider temporal aggregation of non-linear volatility models. While our approach

is general, we present it in details in the second subsection for the exponential SV model in discrete

time. Then we propose in the last subsection a generalization of our approach to any non-linear model

in discrete or continuous time.

6.1 SR-SARV(1)

As already mentioned, non-linear models are not robust to temporal aggregation while linear ones

are. Therefore the natural way to close a non-linear model w.r.t temporal aggregation is to plug it

into a class of linear models. We will do so by considering a natural expansion of the considered

non-linear function of the underlying process, such as the Hermite expansion in the Gaussian case.

So we still get a linear model but with an in�nite number of components, which lead us to introduce

the SR-SARV(1) class:

35Engle and Bollerslev (1986) consider temporal aggregation of IGARCH model with ! = 0 which is not, however, a
strictly stationary process. Moreover, the variance process converges a.s. to a constant (Nelson, 1991).
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De�nition 6.1. SR-SARV(1) model: A stationary squared integrable process f"t; t 2 Zg is called
a SR-SARV(1) process with respect to an increasing �ltration Jt; t 2 Z, if:
i) the process "t is adapted w.r.t. Jt, that is It � Jt where It = �("� ; � � t);

ii) "t is a martingale di�erence sequence w.r.t. Jt�1, that is E["t j Jt�1] = 0;

iii) the conditional variance process ft�1 of "t given Jt�1 is given by

ft�1 =
1X
i=1

eifi;t�1; where (6.1)

the sequence ffi;t�1; t 2 Z; i 2 Ng is such that 9q with: a) the vector Fq;t = (f1;t; :::; fq;t)
0 is a

stationary VAR(1) (E[Fq;t j Jt�1] = 
q +�qFq;t�1) and uncorrelated with any fn;t; n > q; b) 8n > q,

the processes ffn;tg are uncorrelated and univariate centered stationary AR(1) (E[fn;t j Jt�1] =

ifn;t�1) where supi>q j i j< 1 and the roots of �11 are outside the unit circle; c)

supnE j fn;t j2< +1 and
1X
i=1

j ei j2< +1: (6.2)

In other words, with a misuse of terminology, we maintain the assumption that the conditional

variance of "t given Jt�1 is a marginalization of an in�nite VAR(1), Ft � (f1;t; f2;t; :::)
0: Note that

the AR(1) assumption of fn;t for n suÆciently large might be relaxed since it is not needed for the

concept of SR-SARV(1). However, it is useful for temporal aggregation purposes. With a misuse

of notation, we have E[Ft j Jt�1] = 
 + �Ft�1. For temporal aggregation, we need to de�ne power

of in�nite matrix, e.g. �m. The sequence ffi;t�1; t 2 Z; i 2 Ng is well-suited for this. This is also

the reason why we make the assumption on supi j i j. Under (6.2),
Pp

i=1 eifi;t converges in mean

square to
P1

i=1 eifi;t. We implicitly assume that the fourth moment of the residual is �nite, because

we consider an in�nite dimensional Hilbert space. However, this assumption is not restrictive in most

non-linear volatility models as Exponential SV and EGARCH.36 Finally, note that recently Giraitis,

Kokoszka and Leipus (2000) studied the probabilistic and statistical properties of a broad class of

non-negative ARCH(1) models. We can now state the generalization of the Proposition 3.2 to the

case of SR-SARV(1), i.e., SR-SARV(1) class is closed under temporal aggregation:

Proposition 6.1 Temporal aggregation of SR-SARV(1) model

Let "t be a SR-SARV(1) process w.r.t. an increasing �ltration Jt and ff1;t; f2;t; :::g the corresponding
sequence de�ng the variance process. The process "

(m)
tm de�ned by "

(m)
tm � Pm�1

k=0 ak"tm�k is a SR-

SARV(1) w.r.t. J
(m)
tm = �("

(m)
�m ; f1;� ; f2;� ; :::; � � t):

36This is an important di�erence between EGARCH and GARCH models. EGARCH share this property with SV
models. The main reason is that in EGARCH and SV models, the (log of the) variance is the in�nite sum of an i.i.d
process. Therefore there are no restrictions on the variance of the (log) variance. In the GARCH case, the variance of
the variance is a function of the variance. However in the VGARCH model de�ned by (4.4), it is easy to show that any
moment is �nite as soon as � < 1. For moment properties of various volatility models, see Carrasco and Chen (1999).
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Let us apply this general result to the Exponential SV model by showing that these model is SR-

SARV(1) and, hence, its SR-SARV(1) structure is closed under temporal aggregation.

6.2 Temporal aggregation of exponential SV models

In this section, we consider temporal aggregation of the exponential SV model considered by Taylor

(1986) and popularized by Harvey, Ruiz and Shephard (1994). This model is de�ned by

"t = exp(gt�1=2) ut; with (6.3)

gt = ! + gt�1 + vt; where (6.4)

(ut; vt) is i.i.d. and normal N (0;�), with �[1; 1] = 1 and �[2; 2] = �2v .
37

Note that in order to accommodate leverage e�ect we do not assume that �[1; 2] is equal to zero.

In this model, the log of the squared residual process has a linear strong state-space representation.

Therefore we can not use Proposition 3.2 to address the temporal aggregation issue of such models

since the conditional variance process of "t given Jt�1 = �("� ; g� ; � � t�1), which is equal to exp(gt�1),

is not linear in the state variable gt�1. However we can adapt them to study the temporal aggregation

of non-linear SV models by considering an expansion of the conditional variance exp(gt�1) in terms of

Hermite Polynomials. In other words, we will consider linear models with an in�nite number of factors

corresponding to a SR-SARV(1). More precisely, de�ne � (resp �2) as the mean (resp variance) of

gt (� = !=(1 � ), �2 = �2v=(1� 2)), and Hi(:) the Hermite polynomials, characterized by

H0(x) = 1; H1(x) = x and 8i > 1;Hi(x) = xHi�1(x)� (i� 1)Hi�2(x): (6.5)

It is well known that fHi(:); i 2 Ng is an orthonormal basis of the squared integrable function of

Gaussian processes (see e.g., Granger and Newbold, 1977, page 305), i.e.,

8f(:) such that E[f(gt)
2] <1; 9 i; i = 0; 1; :::; f(gt) =

1X
i=0

 iHi(
gt � �

�
); where (6.6)

8i 6= 0 E[Hi(
gt � �

�
)] = 0 and E[H2

i (
gt � �

�
)] = i!; 8i; j; i 6= j E[Hi(

gt � �

�
)Hj(

gt � �

�
)] = 0: (6.7)

Moreover, 8i � 1, Hi(
gt � �

�
) is a semi-strong AR(1) with autoregressive coeÆcient equal to i:

8i � 1; E[Hi(
gt+1 � �

�
) j g� ; u� ; � � t] = iHi(

gt � �

�
): (6.8)

Consider the normalized Hermite polynomials de�ned byH�
i (:) � Hi(:)=i!. The log-normal conditional

variance exp(gt�1) of "t is square-integrable and then

ft�1 = V ar["t j "� ; g� ; � � t� 1] = exp(gt�1) =
1X
i=0

 �iH
�
i (
gt�1 � �

�
) (6.9)

with  � =  
p
i!. Hence ft�1 =

P1
i=1 eifi;t�1 where e1 = 1, f1;t�1 =  �0 +  �1H

�
1 (

gt�1��
� ), ei =  �i

and fi;t�1 = H�
i (

gt�1��
� ) for i > 2. The elements of the sequence ffi;t; ig are uncorrelated and

are univariate semi-strong AR(1). This suggests that the exponential SV is a SR-SARV(1) w.r.t.

Jt = �("� ; g� ; � � t): 38

37Several methods for estimating this model are considered in the literature. For instance, Harvey, Ruiz and Shephard
(1994) propose a QMLE method based on a Kalman-�ltering approach while Jacquier, Polson and Rossi (1994) consider
a Bayesian approach.

38Since H�
1 (x) = x, we have Jt = �("� ; g� ; � � t) = �("� ; H

�
i (
g� � �

�
); � � t; i = 1; 2; ::) = �("� ; H

�
1 (
g� � �

�
); � � t).
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Proposition 6.2 Exponential SV model is a SR-SARV(1)

The exponential SV process f"tg de�ned by (6.3-6.4) is a SR-SARV(1) w.r.t. Jt = �("� ; g� ; � � t).

Therefore, while the class of exponential SV models is not closed under temporal aggregation, it

can be plugged into the SR-SARV(1) class which is. Of course the aggregated process is not an

exponential SV model (in general).39 Moreover, distributional assumptions like Gaussianity of the

standardized residuals are note closed under temporal aggregation. Such assumptions are crucial in

non-linear models, in particular for multi-step prediction. Note that, like exponential SV, Gaussian

EGARCH are SR-SARV(1) by a similar argument.

6.3 Temporal aggregation of non-linear models

Consider now a more general non-linear model in discrete or continuous time. The main idea of the

temporal aggregation of exponential volatility models is to plug this class into the SR-SARV(1) by

taking an appropriate expansion of the conditional variance process. The approach used above in the

Gaussian exponential SV case can be extended to non-Gaussian and continuous time settings. Note

however that, while presented now in continuous time, the same arguments can be applied in discrete

time as well. Consider any continuous time SV model de�ned by

dyt = �tdwt; (6.10)

�2t = f(zt); (6.11)

dzt = �(zt)dt+ �(zt)d ~wt; (6.12)

where (dwt; d ~wt)
0 is a bivariate Wiener process and assume that:

Assumption A1 The process fztg is stationary and time reversible;

Assumption A2 The in�nitesimal generator of fztg has discrete spectrum, with eigenvalues �i and

corresponding eigenfunctions fi(t), i = 0; 1; :::; such that �0 = 0, �0 > �1 > �2:::;

Assumption A3 The function f(:) is in the domain of the in�nitesimal generator of fztg.
As shown by Hansen, Scheinkman and Touzi (1998), under appropriate boundary protocol, stationary

scalar di�usions are time reversible.40 Moreover, they give suÆcient conditions related to the

boundaries to ensure Assumption 2 and characterize the domain of the in�nitesimal generator of

fztg. Note that Assumption 3 implies that the process �2t = f(zt) is square integrable.

Then, under A1-A3 (see, e.g., Darolles, Florens and Gouri�eroux, 1998)

�2t = f(zt) =
1X
i=0

eifi(zt); with (6.13)

ei = E[f(zt)fi(zt)] and

8i � 0; 8h > 0; E[fi(zt�1+h) j Jt�1] = exp(��ih)fi(zt�1) (6.14)

39Note that one considers temporal aggregation of stock variables of Gaussian exponential SV, then the aggregated
process is also a Gaussian exponential SV model.

40See Florens, Renault and Touzi (1998) for a discussion of the observable implications of reversibility.
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where Jt�1 = �("� ; z� ; � � t � 1). This expansion was recently considered by Chen, Hansen and

Scheinkman (1999) and Darolles, Florens and Renault (1998). In particular, they call the functions

fi(zt) as the non-linear principal components.41 The AR(1) dynamics (6.14) of these principal

components will allow us to show that "t =
R t
t�1 �udWu is a SR-SARV(1) w.r.t. Jt�1. De�ne

ft�1 � V ar["t j "� ; z� ; � � t� 1]. Then

ft�1 = E[

Z t

t�1
�2u j Jt�1] =

Z t

t�1

1X
i=0

eiE[fi(zu) j Jt�1] =

Z t

t�1

1X
i=0

ei exp[��i(u� (t� 1)]fi(zt�1)du:

Hence,42 ft�1 =
P1

i=0 ~eifi(zt�1), where ~ei = ei
R t
t�1 exp[��i(u�(t�1)]du = ei(1�exp(��i))=�i: Note

that j ~ei j�j ei j. By Parseval identity, we haveP1
i=0 e

2
i = E[f(zt)

2] and hence
P1

i=0 ~e
2
i <1. Moreover

E[fi(t)
2] = 1 8i. Therefore, f"tg is a SR-SARV(1) w.r.t. Jt�1, i.e. any exact discretization of (6.10),

(6.11) and (6.12) is, under A1-A3, a SR-SARV(1) which is closed under temporal aggregation.

7 A summary

In this section, we provide a synthesis of the various volatility models we have considered. Let "t be

a stationary m.d.s. with respect to an increasing �ltration Jt. Assume that the conditional variance

of "t given Jt�1, is a linear combination of the components of a VAR(1) process of size p where p

may be in�nite. This is what we de�ne as a SR-SARV(p) process w.r.t. Jt. This de�nition means

that the squared residual is equal to this combination plus noise, i.e., we have a linear state-space

representation for the squared residual. When the information set Jt is fully (resp partially) observed

by the econometrician, we say that we have an ARCH-type (resp SV) model. The main result of this

paper is that, for a given p, the SR-SARV(p) class is closed under temporal aggregation. Moreover,

additional symmetry assumptions (e.g., no leverage e�ect) are closed under temporal aggregation.

Assume for the moment that p is �nite and that the conditional variance is integrable. This

class of models contains most of the linear volatility models considered in the literature, as GARCH

(Engle, 1982, Bollerslev, 1986), asymmetric GARCH (Glosten, Jagannathan and Runkle, 1989, Engle

and Ng, 1993), QARCH (Sentana, 1995), parametric SR-SARV (Andersen, 1994). The SR-SARV(p)

is characterized by multiperiod conditional moment restrictions of type (3.10) ful�lled by "2t . These

restrictions are weaker than the standard restrictions stating that "t is a semi-strong GARCH(p,p),

or equivalently that "2t is a semi-strong ARMA(p,p). This is the reason why semi-strong GARCH

models are not closed under temporal aggregation.

If we now assume in addition that the conditional variance is square-integrable, i.e. the fourth

moment of "t is �nite, then "2t is a weak ARMA(p,p). This is less restrictive than the weak

GARCH speci�cation which maintains a symmetry assumption. If one makes the additional symmetry

41Their nonparametric extraction is considered in Chen, Hansen and Scheinkman (1998) and Darolles, Florens and
Gouri�eroux (1998).

42We adopt the convention that (1� exp(��i))=�i = 1 if �i = 0.
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assumptions that the standardized residuals are not skewed and that there is no leverage e�ect, then

the SR-SARV process is a weak GARCH. As a consequence, weak GARCH are SV models rather than

ARCH-type ones. Moreover, the SR-SARV class is the natural generalization of the weak GARCH one

which allows for asymmetries and to maintain conditional moment restrictions for inference purposes.

Finally, our results generalize those of Drost and Nijman (1993) and Drost and Werker (1996), since

these symmetry assumptions are closed under temporal aggregation; see Figure 1.

Assume now that p is in�nite and that the conditional variance is square-integrable. This class

of models contains most of the non-linear volatility models as EGARCH (Nelson, 1991), exponential

SV in discrete time (Taylor, 1986) and continuous time (Hull and White, 1987). More generally, this

class contains any volatility model such that the conditional variance process can be decomposed in

a Hilbertian basis of square-integrable AR(1) processes. Special examples are any Gaussian volatility

models in discrete time as well as continuous time di�usion models such that the volatility process is

Markovian, time-reversible, and the in�nitesimal generator of the volatility has a discrete spectrum.

Finally, the ISR-SARV(p), p �nite, corresponds to the case where the conditional variance process

is not integrable. This class contains the IGARCH models and is closed under temporal aggregation.

8 A Monte Carlo study
8.1 Three examples

In this section, we consider the estimation of three examples of SR-SARV(1) processes.

M1: Aggregated GARCH with �nite fourth moment

We consider a Gaussian GARCH model at high frequency, that is

yt = �1 + "t = �1 +
p
htut; with ht = !1 + �1"2t�1 + �1ht�1 (8.1)

where ut is i.i.d. N (0; 1) with (�1; !1; �1; �1; 1) = (0; 2:8E-06; :0225; :9770; :9995) where 1 = �1+�1.

We choose these parameters such that after aggregation as ow over m periods with m=400, we

obtain a weak GARCH model with the coeÆcients (�0; !0; �0; �0) = (0; 0:4; 0:206; 0:594; 0:8). The

persistence parameter at the high frequency, 1, is conformable to the empirical study of Andersen

and Bollerslev (1997a). �1 and �1 are chosen such that after temporal aggregation, �0 and �0 are

close to those of a speci�cation considered by Nijman and Sentana (1996).

M2: Aggregated GARCH with in�nite fourth moment

We consider a Gaussian GARCH model for high frequency data with the coeÆcients

(�1; !1; �1; �1; 1) = (0; 2:03e-06; :02960; :9700; :9996) such that after temporal aggregation, with

m = 400, (�0; !0; 0) = (0; 0:3; 0:85). The coeÆcients �0 and �0 are not de�ned since the fourth

moment is in�nite43 and the weak GARCH formulas do not apply. However, an automatic application

43The fourth moment is �nite for a stong Gaussian GARCH(1,1) when 3�2 + 2�� + �2 < 1 (Bollerslev, 1986).
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of the weak GARCH formulas for �(m), �(m), with m=400, still provide coeÆcient �0 and �0 which

are real, positive and smaller than one: �0 = :3276 and �0 = :5224.

M3: Cross-sectional aggregated GARCH

Following Nijman and Sentana (1996), we consider the cross-sectional aggregation of two independent

GARCH(1,1) processes with the same persistence parameter. Nijman and Sentana (1996) show

that the aggregated process is a weak GARCH(1,1).44 In Lemma A.4 in the Appendix, we show

that such process is a SR-SARV(1). Even if the scope of our paper is temporal aggregation and

not cross-sectional aggregation, we consider this example for two reasons. First of all, Nijman and

Sentana (1996) show via a Monte Carlo study that the QMLE is not consistent in that case. We

show here that our estimation method is consistent. Second, the literature uses high frequency data

to study temporal aggregation (see e.g., Andersen and Bollerslev, 1997, Andersen and al., 1999).

In this context, the price is often de�ned as the mean of the Bid and the Ask quotes. Therefore

there is cross-sectional aggregation. Since we consider the empirical study of Andersen and Bollerslev

(1997a) as a benchmark, we also consider cross-sectional aggregation. See the companion paper

Meddahi and Renault (2000b) for a general study of cross-sectional aggregation of volatility models.

The individual GARCH processes that we consider are Gaussian with the following parameters:

(�1; !1; �1; �1; 1) = (0; :1; :35; :5; :85) and (�2; !2; �2; �2; 2) = (0; :1; :05; :8; :85). This corresponds

to the sixth example of Nijman and Sentana (1996) in Table 4.45 The aggregated process is a weak

GARCH with the parameters (�0; !0; �0; �0; 0) = (0; :2; :281; :569; :85).

Finally, when the aggregated model is a weak GARCH, that is in the �rst and the third examples, we

also consider a Gaussian GARCH(1,1) with the same parameter (�0; !0; �0; �0; 0) to compare our

inference method with the Maximum Likelihood method. We call theses models M01 and M03.

8.2 Estimation method

Consider a process yt de�ned as a constant plus a SR-SARV(1) process "t (yt = �0 + "t). The

estimation method should be based on the m.d.s. assumption for "t

E[yt � �0 j It�1] = 0 (8.2)

and the multiperiod conditional moment restriction of "2t :

E["2t � !0 � 0"2t�1 j It�2] = 0: (8.3)

We propose a two-step method. We estimate the constant �0 as the sample mean �̂T and then we

estimate the parameters (!0; 0) by using (8.3) after replacing "t by "̂t = yt � �̂T . This two-step

method is consistent but not, in general, eÆcient. However, in our case "t is symmetric and hence

there is no loss of eÆciency. Moreover, we have in mind high frequency applications which lead us to

44In general, when the persistence parameters are not the same, the aggregated process is a weak GARCH(2,2) and
a SR-SARV(2); see Nijman and Sentana (1996) and Meddahi and Renault (1996).

45The coeÆcients !i, i = 1; 2; are not provided in their study since they are scale parameters of the variance.
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consider very large sample size. Following Drost and Nijman (1992) and Nijman and Sentana (1996),

we choose T = 80; 000.46 The sample mean �̂T would be a consistent estimator for �0 even if we

only assume that "t is a weak white noise as in weak GARCH. For the second step, we �rst consider

the instruments (1; "̂2t�2; :::; "̂
2
t�r), r = 9, and compute the corresponding optimal GMM estimator

(Hansen, 1982).47 This is basically the Yule-Walker estimation of the weak ARMA process "2t .
48

Therefore our method is also consistent for weak GARCH. However an implicit assumption is that

the eighth moment is �nite (when we compute the GMM optimal weighting matrix). We call this

estimator �̂GMM1.

To take advantage of the additional information (w.r.t. Yule-Walker equations) provided by the

conditional moment restrictions (8.3), we consider another GMM estimator denoted by GMM2.49

De�ne zt and ẑt by zt = "2t � !0 � 0"2t�1 and ẑt = "̂2t � !̂GMM1 � ̂GMM1"̂2t�1 respectively. When

the fourth moment is �nite, zt is a weak MA(1) zt = �t � �0�t�1. Therefore, we follow Hannan and

Rissanen (1982) to estimate �. We regress ẑt on (1; ẑt�1; :::; ẑt�q) with q = 50. We get the residual

�̂t. When q ! +1, �̂t ! �t since zt is a weak MA(1) and hence a weak AR(1). Thus the regression

of ẑt on ��̂t�1 provides a consistent estimate for �0 called �̂GMM1. We de�ne �0 (resp �̂GMM1)

as 0 � �0 (resp ̂GMM1 � �̂GMM1) and ĥGMM1
t = !̂GMM1 + �̂GMM1"̂2t�1 + �̂GMM1ĥGMM1

t�1 with

"̂20 = ĥGMM1
0 = !̂GMM1=(1� ̂GMM1): Then we estimate (!0; 0) by using (8.3) with the instruments

(1; "̂2t�2; "̂
2
t�3; :::; "̂

2
t�r)=(̂h

GMM1
t�1 )2 and r = 9. This is a GLS-type correction which take into account

the heteroskedasticity of zt. Note however that h
2
t�1 is not the conditional variance of zt given It�2.

50

We also use the Hannan-Rissanen method with this second estimator and obtain

�̂GMM2; �̂GMM2; ĥGMM2
t . When the fourth moment is not �nite, the asymptotic properties of

Hannan-Rissanen estimators are unknown. However the second GMM estimator is consistent for

(�0; !0; 0) since (1; "̂2t�2; "̂
2
t�3; :::; "̂

2
t�r)=(ĥGMM1

t�1 )2 is an admissible instrument.

We also estimate all the models by the Gaussian QML method which is the ML method for the models

M01 and M03.

8.3 Monte Carlo results

In Table 1, we report the results of the three estimation methods. Consider �rst the parameter

of interest of the SR-SARV(1) model, namely �0 = (!0; 0). In the �ve models, both �GMM1 and

�GMM2 are such that the true values fall within the (Monte Carlo) con�dence intervals. However for

46Such large sample size makes negligible the lack of eÆciency of the two-step method.
47Note that in this case, if we estimate the parameter by the unconditional moment restriction E[mt] = 0, the optimal

weighting matrix is V ar(mt) + cov(mt;mt�1) + cov(mt;mt�1)
0 since the multiperiod restrictions are of order 2. In the

empirical study, we use the weight suggested by Newey and West (1987).
48Recently, Francq and Zakoian, 1998, proposes a two-step method to estimate weak GARCH which is related to the

Yule-Walker method. A limitation of this method is that it does not take into account the heteroskedacticity in the
mean and, more importantly, in the variance process.

49Another advantage of GMM2 w.r.t. GMM1 is to relax the restrictive assumption of �nite eighth moment.
50EÆcient IV estimation is very diÆcult in multiperiod restrictions: see Hansen, Heaton and Ogaki (1988).
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models M1 and M2, the �rst estimator presents a systematic bias (!0 is overestimated while 0 is

underestimated). The bias is even more important in model M2 probably because in this model the

fourth moment is not �nite and hence the Yule-Walker method does not work. Both in terms of bias

and variance, the second estimator �GMM2 strictly dominates �GMM1. On the other hand, the lack of

eÆciency of the GMM estimators w.r.t. ML (in the modelsM01 andM03) is not dramatic. Finally,

the QMLE is not consistent in temporal aggregation and cross-sectional aggregation examples (models

M1,M2 andM3). To con�rm this point, we simulate modelsM1 andM2 with a sample size equal to

150,000 and use the QML method. In Table 2, we report the results over 50 replications. The QMLE

is clearly not consistent. This is an important di�erence with Drost and Nijman (1992) who report

simulation results which suggest that the QMLE of temporally aggregated GARCH is consistent or

has a very small bias. Our results are di�erent from theirs because they consider aggregation only

over short periods (m=2,4,8,16) while we consider a much longer one (m=400). Moreover, the low

frequency parameters are small in their case. For instance, the volatility persistence parameter is .663

with m=8 and .44 with m=16, while we consider persistence parameters equal to .8 and .85 which

are empirically more relevant. See Meddahi (2000a) for more details.

Consider now the parameters �0 and �0 which are well de�ned when the fourth moment is �nite. In

models M1 and M3, both (�̂GMM1; �̂GMM1) and (�̂GMM2; �̂GMM2) are such that the true values

fall within the (Monte Carlo) con�dence intervals. However both present much more bias than their

sum. Although, they work quite well for the strong GARCH models (M01 and M03) in terms of

bias, the lack of eÆciency w.r.t. MLE is more signi�cant than the one of their sum. In summary, the

GMM method that take into account the heteroskedasticity, that is �GMM2, works very well for the

parameters of interest (!0; 0) in all the models while the estimation of (�0; �0) (when they are well

de�ned) needs more investigation.

An important outlet of the estimation of the parameters of the volatility process is to produce

volatility �lters and forecasts. Therefore we study the di�erence between the conditional variance of

an SR-SARV(1) process, i.e. ft = E["2t+1 j Jt], with the linear volatility, i.e. ht+1 = EL["2t+1 j Hs
t ].

Note that ht+1 is well-de�ned when the fourth moment is �nite and that this is the volatility provided

by the weak GARCH representation. Observe that ht+1 = EL[ft j Ht]. Hence we consider the R
2 of

the regression of ft onto the constant and ht as a measure of the di�erence between the two processes.

We provide in the Appendix, Lemma A.5, the theoretical formula of the R2 for any SR-SARV(1)

with �nite fourth moment. Table 3 gives the theoretical R2 as well as the Monte Carlo results

about the R2 coeÆcients of the regressions of the true volatility process on the various �ltered ones,

that is hGMM1
t ; hGMM2

t ; hQMLE
t ; as well as ht computed with the true parameter. Observe that the

theoretical R2 in Model 1 is .59, that is the linear prediction of ft (and "2t+1) leads in this case to
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a severe underestimation of the dynamics of the conditional variance. Moreover the di�erence in

the one-step ahead forecasting of the volatility is not so important between the four forecasts.51 An

important point to keep in mind in this respect is that a volatility forecast at horizon h will use

the estimated value of h. Therefore, the gains in estimation of  we have obtained thanks to our

conditional moment restrictions will be very sensible for multistep forecasting for two reasons: on the

one hand, we are safeguarded against the aforementioned possible bias of QMLE; on the other hand,

we take advantage of a signi�cant reduction of variance w.r.t. the Yule-Walker estimation method of

weak GARCH. Moreover, our comparison consider only linear �lters of the volatility process.52 The

SR-SARV model could lead to better volatility �lters by going further in non-linear �ltering. More

precisely, de�ne zt = "2t � ! � "2t�1. While we know that E[zt j It�2] = 0, we would like to go

further in estimating E[zt j It�1]. A more accurate �lter of the conditional variance could then be

!̂ + ̂"̂2t�1 + Ê[ẑt j It�1]. A well-suited nonparametric procedure is left for future research.

9 Conclusion

In this paper, we have considered the temporal aggregation of volatility models. We introduce

a semiparametric class of volatility models termed square-root stochastic autoregressive volatility

(SR-SARV) characterized by an autoregressive dynamic of the stochastic variance. Our class

encompasses the usual GARCH models of Bollerslev (1986), the asymmetric GARCH models of

Glosten, Jagannathan and Runkle (1989) and Engle and Ng (1993). Moreover, even if the volatility is

stochastic, that is may involve a second source of randomness, the considered models are characterized

by observable multiperiod conditional moment restrictions (Hansen, 1985). The SR-SARV class is

a natural extension of the weak GARCH models of Drost and Nijman (1993). It extends the weak

GARCH class since it does not assume that the fourth moment is �nite and, moreover, allows for

asymmetries (skewness, leverage e�ects). On the other hand, it provides a statistical structure which

remains true the concept of conditional variance and maintains the validity of conditional moment

restrictions, which are useful for inference. Finally we also consider temporal aggregation of IGARCH

models and non-linear models as EGARCH and Exponential SV in discrete and continuous time.

In Meddahi and Renault (2000b), we show that our class of SR-SARV is robust to information

reduction and, following Nijman and Sentana (1994), to marginalization and contemporaneous

aggregation. Finally, Meddahi (2000b) considers SR-SARV-M models where conditional mean and

variance may share some factors in common. He shows that this class is closed under temporal

aggregation and that temporal aggregation of these models creates automatically a leverage e�ect.

51As previously noticed in another context by Nelson (1992), a wrong model can produce a forecast as good as one
produced by the true model.

52Moreover, the shortcoming of a direct comparison of volatility forecasts is that parameter uncertainty is not taken
into account; see e.g. Diebold and Mariano (1995) and West (1996).
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Table 1. GMM and QML estimation of various SR-SARV(1) models

Model Method �0 !0 �0 �0 0

M1-M01 0 0.4 .206 .594 .8

M1 GMM1
0:0001937
(0:005612)

0:5256
(0:1149)

0:1773
(0:04910)

0:5549
(0:07239)

0:7322
(0:05900)

GMM2
0:0001937
(0:005612)

0:4064
(0:03587)

0:1773
(0:04910)

0:6170
(0:04667)

0:7942
(0:02015)

QMLE
0:0004368
(0:005546)

0:4629
(0:02318)

0:1963
(0:006935)

0:5688
(0:01547)

0:7651
(0:01219)

M01 GMM1
0:0002450
(0:004660)

0:4150
(0:03230)

0:2080
(0:01960)

0:5850
(0:02870)

0:7920
(0:01620)

GMM2
0:0002450
(0:004660)

0:4000
(0:01950)

0:2080
(0:01960)

0:5920
(0:02070)

0:8000
(0:01040)

MLE
0:0001540
(0:004470)

0:4010
(0:01310)

0:2060
(0:004630)

0:5930
(0:008970)

0:8000
(0:006660)

M2 0 0.3 - - .85

M2 GMM1
�0:0003623
(0:005174)

0:5580
(0:1665)

0:2103
(0:08995)

0:4919
(0:1317)

0:7022
(0:08557)

GMM2
�0:0003623
(0:005174)

0:3283
(0:05215)

0:2103
(0:08996)

0:6181
(0:08116)

0:8284
(0:02959)

QMLE
0:0001183
(0:004887)

0:3906
(0:03870)

0:2899
(0:04298)

0:5059
(0:03156)

0:7958
(0:01959)

M3-M03 0 0.2 .281 .569 .85

M3 GMM1
�0:0007530
(0:004260)

0:2380
(0:06270)

0:2030
(0:06570)

0:6190
(0:09790)

0:8210
(0:04760)

GMM2
�0:0007530
(0:004260)

0:2020
(0:02390)

0:2030
(0:06580)

0:6450
(0:06360)

0:8480
(0:01970)

QMLE
�0:0006850
(0:003910)

0:2520
(0:01110)

0:1220
(0:004770)

0:6840
(0:01090)

0:8070
(0:008940)

M03 GMM1
�0:0005740
(0:003720)

0:2240
(0:03340)

0:2740
(0:03790)

0:5560
(0:05160)

0:8310
(0:02610)

GMM2
�0:0005740
(0:003720)

0:2010
(0:008280)

0:2740
(0:03790)

0:5740
(0:03820)

0:8480
(0:007640)

MLE
�0:0004090
(0:003130)

0:2010
(0:005300)

0:2800
(0:006140)

0:5690
(0:007470)

0:8490
(0:004790)

NOTE. The model M1 (resp M2) corresponds to the temporaly aggregated process "
(m)
tm =

Pm

i=1
"(t�1)m+i, where "t

is a Gaussian strong GARCH(1,1) with �nite (resp in�nite) fourth moment and m = 400; the SR-SARV(1) coeÆcients
at low frequency are (�0; !0; 0) = (0; :4; :8) (resp (0; :3; :85)); the weak GARCH coeÆcients are (�0; !0; �0; �0; 0) =
(0; :4; :206; :594; :8) for M1 and not de�ned for M2 since the fourth moment is not �nite. The model M3 is de�ned as
the cross-sectional aggregation of two independent strong Gaussian GARCH(1,1) processes with �nite fourth moment
and with the same persistence parameter ( = �+�); the SR-SARV(1) coeÆcients are (0; :2; :85) and the weak GARCH
ones are (0; :2; :281; :569; :85). The Model M01 (resp M03) is a Gaussian strong GARCH(1,1) which coeÆcients are
the weak GARCH ones of M1 (respM3). GMM1 and GMM2 are the GMM estimators based on (8.3) described in the
text. The sample size (after aggregation) is 80,000. The reported statistics are based on 100 replications. For each cell,
the �rst number shows the mean and the second the standard deviation error (in parentheses).
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Table 2. QML estimation of temporaly aggregated GARCH models
Model Method �0 !0 �0 �0 0

M1 0 0.4 .206 .594 .8

M1 QMLE
0:000246
(0:003856)

0:4618
(0:01238)

0:1959
(0:004394)

0:5695
(0:008015)

0:7654
(0:006655)

M2 0 0.3 - - .85

M2 QMLE
:00004578
(0:003367)

0:3733
(0:01197)

0:3078
(0:009687)

0:4959
(0:01158)

0:8037
(0:007555)

NOTE. See Table 1 for the characteristics of the models. The sample size is 150,000. The statistics are based on 100
replications. Each cell contains the mean and the standard deviation error (in parentheses).

Table 3. R2 of the regression of the variance onto the linear variance
Model Method in sample out of sample

M1: R2=.580 GMM1
0:3623

(0:06792)
0:3050

(0:05249)

GMM2
0:3605

(0:06025)
0:3043

(0:05304)

QMLE
0:3643

(0:06711)
0:3068

(0:05437)

True Parameter
0:3646

(0:07027)
0:3175
(0:1044)

M01: R2=1 GMM1
0:9980

(0:004390)
0:6060

(0:05450)

GMM2
0:9990

(0:002550)
0:6150

(0:05010)

MLE
1:000

(0:0002360)
0:6160

(0:04900)

True Parameter
1:000

(0:00002319)
0:99989
(:001702)

M3: R2=.902 GMM1
0:7560

(0:06720)
0:4830
(0:1470)

GMM2
0:7630

(0:06910)
0:5040
(0:1430)

QMLE
0:7590

(0:06670)
0:5310
(0:1340)

True Parameter
0:7620
(0:0771)

0:6480
(0:1340)

M03: R2=1 GMM1
0:9960

(0:008150)
0:6490

(0:06990)

GMM2
0:9980

(0:004610)
0:6670

(0:06410)

MLE
1:000

(0:0001220)
0:6630

(0:05150)

True Parameter
1:000

(0:0000153)
0:9992

(0:002558)

NOTE. See Table 1 for the characteristics of the models. For each model, we regress the true variance ft onto the
constant and the linear variance ht+1 which is the weak GARCH variance and compute the corresponding R2. For each

model we give the theoretical R2. The linear variance is computed by using the three estimators �̂GMM1, �̂GMM2 and

�̂QMLE and by the true parameter �0. The in-sample size is 80,000 while the out-of-sample one is 2,000. The statistics
are based on 100 replications. Each cell contains the mean and the standard deviation error (in parentheses).
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APPENDIX

Lemma A.1. Consider the processes zt; Gt; Vt; �t de�ned as in de�nition 2.2 (state-space

representation) and de�ne Jt as the sigma algebra Jt = �(z� ; G� ;m� ; � � t). Then

Gt+i = (
i�1X
j=0

�j)
 + �iGt +
i�1X
j=0

�jVt+i�j ; with (A.1)

E[�t+i j Jt] = 0; E[Vt+i j Jt] = 0 and (A.2)

E[Gt+i j Jt] = (
i�1X
j=0

�j)
 + �iGt: (A.3)

Proof. By recursive calculus, (2.3) implies (A.1). On the other hand, (2.4) (resp (2.5)) implies that

8i > 0; E[�t+i j Jt] = 0 (resp E[Vt+i j Jt] = 0), that is (A.2) and, hence, (A.3).2

Lemma A.2. Consider fztg a univariate strong AR(1) zt = !+zt�1+ �t with �t i.i.d. and assume

that, for n 2 N, E[j �t jn] is �nite. Then 8i � n Zi;t = (zt; z
2
t ; :::; z

i
t)
0 is a semi-strong VAR(1).

Proof. Let i � n. Then zit =
Pi

j=0(
i
j
)jzjt�1(! + �t)

i�j: De�ne ai;j = E[(! + �t)
i�j]. Then

E[zit j z� ; � � t � 1] =
Pi

j=0 ai;j(
i
j
)jzjt�1: Hence Zi;t is a semi-strong VAR(1). Note that the

autoregressive matrix is lower triangular and that the diagonal coeÆcient are (1; :::; i).2

Proof of Proposition 3.1. From (3.3), we have dyt =
p
e0F c

t dW1t where W1t is the �rst component

of Wt. Therefore "
(h)
th =

R th
th�h

p
e0F c

udW1u and f
(h)
(t�1)h � V ar["

(h)
th j J (h)

(t�1)h] = E[
R th
th�h e

0F c
udu j

J
(h)
(t�1)h] = e0

R th
th�hE[F

c
u j J (h)

(t�1)h]du:

Consider the equation (3.3), then we have dF c
t = K(��F c

t )dt+M22 RtdWt whereM22 is the p�(p+1)
matrix de�ned by M22 = (0; Ip). Therefore, the continuous time version of (A.1) is

8h > 0; F c
t+h = (Id� e�Kh)� + e�KhF c

t + e�Kh
Z t+h

t
eK(u�t)M22RtdWu: (A.4)

Hence, as in the proof of Proposition 2.3, f
(h)
th�h = e0F (h)

th�h with

F
(h)
th�h =

R t
th�h

n
(Id� e�K[u�(th�h])� + e�K[u�(th�h]F c

th�h
o
du = A(h)F c

th�h + B(h) where A(h) =

K�1(Id � e�Kh) and B(h) = (hId � A(h))�: Since fF c
th; t 2 Zg is a VAR(1) due to (A.4) and

since A(h) is non singular, fF (h)
th ; t 2 Zg is also a VAR(1) with the same autoregressive matrix than

fF c
thg that is e�Kh.2

Lemma A.3. Positive OU SV Model is a SR-SARV fx�t ; �tg the stationary solutions of dxt =

�tdwt and �2t = e��t�20 +
R t
0 e

��(t�s)dz(�s) where �20 =
R 0
�1 esdz(s), fzt; t 2 IRg is an integrable

homogenous L�evy process and � a positive number. Then f"t; t 2 Zg de�ned by "t = x�t � x�t�1 is a

SR-SARV w.r.t. Jt = �("� ; �� ; � � t).

Proof. We have "t =
R t
t�1 �udWu. Hence E["t j Jt�1] = 0. Since �2t = e��t�20 +

R t
0 e

��(t�s)dz(�s),

we deduce that �2t+u = e��u�2t +
R t+u
t e��(t+u�s)dz(�s), which is exactly the univariate version of
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(A.4). Therefore, following the Proof of Proposition 3.1, we can show that "t is a SR-SARV(1) w.r.t.

Jt = �("� ; �� ; � � t).2

Proof of Proposition 3.2. We show that the points of the De�nition 3.1. are ful�lled: i) by

de�nition of J
(m)
tm ; ii) we have J

(m)
tm � Jtm. Hence, E["

(m)
tm j J (m)

tm�m] =
Pm�1

i=0 aiE[E["tm�i j Jtm�i�1 j
J
(m)
tm�m] = 0, that is "

(m)
tm is a m.d.s. w.r.t. J

(m)
tm�m; iii) we have: V ar["

(m)
tm j J (m)

tm�m] = E[("
(m)
tm )2 j

J
(m)
tm�m] =

Pm�1
i=0 a2iE["

2
tm�i j J (m)

tm�m] + 2
P

0�i<j�m�1 aiajE["tm�i"tm�j j J (m)
tm�m]

=
Pm�1

i=0 a2iE[E["
2
tm�i j Jtm�i�1] j J (m)

tm�m] + 2
P

0�i<j�m�1 aiajE["tm�jE["tm�i j Jtm�i�1] j J (m)
tm�m]

= E[
Pm�1

i=0 a2i ftm�i�1 j J (m)
tm�m]: This is a conditional expectation of an aggregation of a state space-

model. Following the proof of Proposition 2.3, we have V ar["
(m)
tm j J (m)

tm�m] = E[e0(A(m)Ftm�m+B(m)) j
J
(m)
tm�m] where A

(m) and B(m) are de�ned by (3.7). By de�nition of J
(m)
tm�m, F

(m)
tm�m is adapted w.r.t.

J
(m)
tm�m. Hence, V ar["

(m)
tm j J (m)

tm�m] = e0(A(m)Ftm�m +B(m)) = e(m)0F
(m)
tm�m where e(m) and F

(m)
tm�m are

de�ned by (3.8). As in Proposition 2.3, F
(m)
tm�m is a VAR(1) with autoregressive matrix �m.2

Proof of Proposition 3.3. We follow the proof of Proposition 2.2. of Meddahi and Renault

(2000a). Consider f"t; t 2 Zg a SR-SARV(p). Hence "2t = ft�1 + �t: where fftg admits a state-space

representation fFt; �tg w.r.t Jt: We have Ft = 
+ �Ft�1 + Vt ) (Id � �L)Ft = 
 + Vt ) Det(Id�
�L)Ft = (Id � �L)�(
 + Vt) where L is the Lag Operator, Det(:) is the determinant function and

(Id � �L)� is the adjoint matrix of (Id � �L). Hence : Det(Id � �L)ft = Det(Id � �L)e0Ft =

e0(Id��)�
+e0(Id��L)�Vt We have: Deg(e0(Id��L)�) � p�1 where Deg(:) is the maximal degree

of the lag polynomials, coeÆcients of the matrix. Hence E[Det(Id��L)ft� e0(Id��)�
 j Jt�p] = 0:

Thus E[Det(Id � �L)"2t+1 � e0(Id � �)�
 j Jt�p] = 0 since "2t+1 = ft + �t+1 and the (maximal)

degree of Det(Id � �L) is p. De�ne a1; ::; ap by 1 �Pp
i=1 aiL

i = Det(Id � �L) and the real ! by

! = e0(Id��)�
. By de�nition 3.1, the eigenvalues of � are smaller than one in modulus. Therefore

the roots of 1 � Pp
i=1 aiL

i are outside the unit circle. Finally, �("� ; � � t � p) � Jt�p. Hence

E["2t+1 � ! �Pp
i=1 ai"

2
t+1�i j z� ; � � t� p] = 0, that is (3.10).

Conversely, consider a process "t such that (3.10). De�ne Ft�1 by Ft�1 = (E["2t+p�1 j It�1]; E["
2
t+p�2 j

It�1]; :::; E["
2
t j It�1])

0. Thus "2t = (0; 0; :::; 0; 1)Ft�1 + vt with E[vt j It�1] = 0.

For i = 2; :::; p, we have again E[Ft(i) j It�1] = E["2t+p+1�i j It�1] = Ft�1(i� 1):

E[Ft(1) j It�1] = E["2t+p j It�1] = E[("2t+p � ! �Pp
i=1 ai"

2
t+p�i) + ! +

Pp
i=1 ai"

2
t+p�i j It�1]

= !+
Pp

i=1 aiE["
2
t+p�i j It�1] = !+

Pp
i=1 aiFt�1(i): Hence, E[Ft j It�1] = 
+�Ft�1. As a conclusion,

f"2t g has a state space representation fFt; vtg w.r.t. It. On the other hand, " is a m.d.s. w.r.t. It.

Thus, "t is a SR-SARV(p) w.r.t. It.2

Proof of Proposition 3.4. Let "t be a semi-strong GARCH(p,q) de�ned by (3.11) and (3.12).

Then (B(L) � A(L))"2t = ! + B(L)�t with �t = "2t � ht. By assumption, the roots B(L) � A(L)

and B(L) are not common and are outside the unit circle. Finally, �t is a m.d.s. w.r.t. It since
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E[�t j It�1] = E["2t j It�1]�ht = 0. Conversely, consider a m.d.s. f"tg such that Q(L)"2t = !+P (L)�t

where Q(L) = 1 � Pq
i=1 aiL

i, P (L) = 1 � Pp
i=1 biL

i, aq 6= 0, bp 6= 0 and p � q. Assume that

E[�t j It�1] = 0. De�ne ht by ht � E["2t j It�1]. Hence ht = ! + (1 � Q(L))"2t + (P (L) � 1)�t and

�t = "2t �ht. Thus ht = !+(P (L)�Q(L))"2t +(1�P (L))ht and P (L)ht = !+(P (L)�Q(L))"2t . By
assumption, the roots of P (L) and P (L) � (Q(L) � P (L)), i.e. Q(L), are not common and outside

the unit circle. De�ne ut by ut � "t=
p
ht. We have E[ut j It�1] = 0 since "t is a m.d.s.; moreover,

V ar[ut j It�1] = E["2t j It�1]=ht = 1, i.e. (3.12).2

Proof of Proposition 3.5. Since Hs
t � Ht, EL[ht j Hs

t�1] = hst . But ht = !=B(1) +B(L)�1A(L)"2t

and hence ht 2 Hs
t�1. Thus ht = hst . Therefore "2t is a weak ARMA (since B(L)hst = ! + A(L)"2t )

and cov(�t; "� ) = 0 8� < t.

Conversely, assume that "2t is a weak ARMA and (3.15). We have: ht = EL["2t j Ht�1] = hst +EL[�t j
Ht�1]. By de�nition of �t, 8� < t, cov("2� ; �t) = 0. Therefore, by combination with (3.15), 8z 2 Ht�1,

cov(z; �t) = 0. Thus EL[�t j Ht�1] and ht = hst and "t is a weak GARCH.2

Proof of Proposition 4.1. Let us consider "t a GARCH(1,1). Let ft�1 = ht = E["2t j It�1]

and ut =
"tp
ht
. By de�nition, E[ut j It�1] = 0 and E[u2t j It�1] = 1. while ft is an It-adapted AR(1)

process. with an innovation process: �t = �ft�1(u
2
t �1). Then, given It�1, "

2
t and �t = �ft�1(

"2t
ft�1

�1)
are conditionally perfectly positively correlated (since � > 0). Thus, this is also the case for "2t

and ft = ! + ft�1 + �t: Moreover: V ar[ft j Jt�1] = V ar[�t j Jt�1] = �2V ar["2t j Jt�1] with

�2 � 2 = (� + �)2 since � � 0.

Conversely, let us now consider a SR-SARV(1) process "t which ful�lls the two restrictions of

Proposition 4.1. By the �rst restriction, we know that: ft = at"
2
t + bt; at; bt 2 Jt�1; with (V ar[ft j

Jt�1])
1=2 = at(V ar["

2
t j Jt�1])

1=2:

Thus, by the second restriction, we know that at is a positive constant � smaller or equal to .

Therefore: ft = �"2t +bt and E[ft j Jt�1] = �ft�1+bt: By identi�cation with the AR(1) representation

of ft, we conclude that: bt = ! + �ft�1 where � =  � � � 0. Thus: ft = ! + �"2t + �ft�1, which

proves that ft is also It-adapted (see 0 < � �  < 1). Then we know by Proposition 2.1 that "t is also

a SR-SARV(1) process w.r.t. It and ft = V ar["t+1 j It]. Therefore, with: ht = ft�1 = V ar["t j It�1]

we do get the GARCH(1,1) representation: ht = ! + �"2t�1 + �ht�1:2

Proof of Proposition 4.2. De�ne ut as the standardized residuals (ut = "t=
p
ht). Straightforward

calculus show that all the models can be rewritten as ht = !� + �ht�1 + �t�1 with:

GJR: !� = !, � = �+�+S, �t�1 = �("2t�1�ht�1)+(St�1"
2
t�1�Sht�1); where S = E[Stu

2
t j It�1].

Asymmetric GARCH: !� = ! + �2, � = �+ �, �t�1 = �("2t�1 � ht�1) + 2�"t�1:

Nonlinear Asymmetric GARCH: !� = !, � = �(1 + 2) + �, �t�1 = �ht�1(u
2
t�1 � 1 + 2ut�1):

VGARCH: !� = ! + �(1 + 2), � = �, �t�1 = �(u2t�1 � 1 + 2ut�1):
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Heston-Nandi: !� = ! + �, � = �2 + �, �t�1 = �(u2t�1 � 1� 2"t�1):

By the restrictions E["t�1 j It�2] = E[ut�1 j It�2] = 0, E["2t�1 j It�2] = ht�1 and E[u2t�1 j It�2] = 1,

we have E[�t�1 j It�2] = 0, that is "t is a SR-SARV(1).2

Proof of the equivalence of the two conditions of (4.6) and (4.7). i) We have: E["t"
2
t+1 j

Jt�1] =
p
ft�1E[utE["

2
t+1 j Jt] j Jt�1] =

p
ft�1E[utft j Jt�1] =

p
ft�1E[ut(! + ft�1 + �t) j Jt�1] =p

ft�1E[ut�t j Jt�1]: Hence E[ut�t j Jt�1] = 0() E["t"
2
t+1 j Jt�1] = 0 since ft 6= 0 almost surely.

ii) We have: E["3t j Jt�1] = (ft�1)
3=2E[u3t j Jt�1]. Hence E[u

3
t j Jt�1] = 0() E["3t j Jt�1] = 0.2

Proof of Proposition 4.3. The SR-SARV(1) property implies, by Proposition 3.3, that "2t ful�ll the

multiperiod restrictions (3.10) with p = 1. De�ne !t by !t = "2t � ! � "2t . We have E[!t j It�2] = 0

and !t is a square integrable processe since "t has a �nite fourth moment. Therefore !t is a weak

MA(1) and hence "2t is a weak ARMA(1,1). Therefore, by Proposition 3.5, "t is a weak GARCH(1,1)

if and only if (3.15) is ful�lled. But, since by the ARMA representation of "2t , the Hilbert space

Hs
t coincides with the Hilbert space spanned by 1; �� ; � � t, the condition (3.15) is implied by the

following symmetry property of the process ": Cov("t0 ; "
2
t ) = 0 8 t; t0 that is E("t0"2t ) = 0 8 t; t0: Thus,

we are going to prove this symmetry property. Indeed, we will prove the stronger result (which will

be useful in the following):

E["t0"
2
t j J� ] = 0 8 t; t0 and � =Min(t; t0)� 1 (A.5)

If t0 > t, then E["t0"
2
t j Jt�1] = E["2tE["t0 j Jt0�1] j Jt�1] = 0 since "t0 is an m.d.s. w.r.t. Jt0�1.

If t0 = t, then E["t0"
2
t j Jt�1] = E["3t j Jt�1] = f

3
2
t�1E[u

3
t j Jt�1] = 0 by (4.7).

If t0 < t, then E["t0"
2
t j Jt0�1] = E["t0ft�1E[u

2
t j Jt�1] j Jt0�1] = E["t0ft�1 j Jt0�1]. Since ft is an

AR(1), we have ft�1 =
P1

i=0 
i�t�1�i+E[ft�1]: Hence E["t0ft�1 j Jt0�1] =

P1
i=0 

iE[�t�1�i"t0 j Jt0�1]:

But: if i � t � t0, then E[�t�1�i"t0 j Jt0�1] = �t�1�iE["t0 j Jt0�1]] = 0; if i = t � t0 � 1, then

E[�t�1�i"t0 j Jt0�1] = E[�t0"t0 j Jt0�1] =
p
ft0�1E[ut0�t0 j Jt0�1] = 0 by (4.6); �nally, if i < t � t0 � 1,

then E[�t�1�i"t0 j Jt0�1] = E["t0E[�t�1�i j Jt�i�2] j Jt0�1] = 0 since �t is an m.d.s. w.r.t. Jt. Hence,

E["t0ft�1 j Jt0�1] = 0, which achieves the proof of Proposition 4.3.2

Proof of Proposition 4.4. E[u
(m)
tm �

(m)
tm j J (m)

tm�m] = a(m)q
f
(m)
tm�m

E[
P

0�i;j�m�1 aim
j"tm�i�tm�j j

J
(m)
tm�m]: But (see third case of the proof of Proposition 4.3), (4.6) implies that E["tm�i�tm�j j
Jtm�m] = 0 for i; j = 0; 1; :::;m � 1: Thus, E["tm�i�tm�j j J (m)

tm�m] = 0 and hence E[u
(m)
tm �

(m)
tm j

J
(m)
tm�m] = 0, i.e. (4.8).

E[(u
(m)
tm )3 j J (m)

tm�m] =
1

(f
(m)
tm�m)

3
2
E[
P

0�i;j;k�m�1 aimajmakm"tm�i"tm�j"tm�k j J (m)
tm�m]: Let (i; j; k) as

i � j � k � m � 1. If i < j � k, then E["tm�i"tm�j"tm�k j J (m)
tm�m] = E["tm�j"tm�kE["tm�i j

Jtm�i�1] j J (m)
tm�m] = 0: If i = j = k, then E["tm�i"tm�j"tm�k j J (m)

tm�m] = E[(ftm�i�1)
3
2E[(utm�i)3 j
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Jtm�i�1] j J (m)
tm�m] = 0: If i = j < k, then E["tm�i"tm�j"tm�k j J (m)

tm�m] = E[E["tm�k("tm�i)2 j
Jtm�m] j J (m)

tm�m] = 0 by (A.5). So we have: E[(u
(m)
tm )3 j J (m)

tm�m] = 0:2

Proof of Proposition 4.5. The second part of (4.6) implies (4.10). The second part of (4.7) implies

(4.11).2

Proof of Proposition 5.1. This is exactly the same proof of Proposition 3.2 by taking � = 1.

Proof of Proposition 6.1. All the results of the proof of Proposition 3.2. still hold, in particular

the restrictions i) and ii) of the de�nition of a SR-SARV(1). To achieve the proof, we have to

show that f
(m)
tm�m = V ar["

(m)
tm j J (m)

tm�m] follows the restriction iii). De�ne ~e = (e1; ::; eq). Thus

ft = ~e0qFq;t +
P1

j=q+1 ejfj;t. Then, following the Proof of Proposition 3.2, we have:

f
(m)
tm�m = E[

Pm�1
i=0 a2i ftm�i�1 j J (m)

tm�m] =
Pm�1

i=0 a2iE[ftm�i�1 j J (m)
tm�m]. On the other hand,

E[ftm�i�1 j J (m)
tm�m] = ~e0qE[Fq;tm�i�1 j J (m)

tm�m] +
P1

j=q+1 eiE[fj;tm�i�1 j J (m)
tm�m]

= ~e0q(
Pm�i�2

k=0 
+ �m�i�1
q Fq;tm�m) +

P1
j=q+1 ei

m�i�1
j fj;tm�m: As a consequence,

f
(m)
tm�m =

Pm�1
i=0 a2i ~e

0
q(
Pm�i�2

k=0 
+ �m�i�1
q Fq;tm�m) +

Pm�1
i=0 a2i (

P1
j=q+1 ej

m�i�1
j fj;tm�m)

=
Pm�1

i=0 a2i ~e
0
q(
Pm�i�2

k=0 
+ �m�i�1
q Fq;tm�m) +

P1
j=q+1 ~ejfj;tm�m with ~ej = ej

Pm�1
i=0 a2i 

m�i�1
j .

From the proof of Proposition 3.2, we know that
Pm�1

i=0 a2i ~e
0
q(
Pm�i�2

k=0 
 + �m�i�1
q Fq;tm�m) is a

stationary VAR(1). It is obviously not correlated with any fj;t, j > q.

For j > q; j ~ej j� (
Pm�1

i=0 a2i ) j ei j. Hence, if
P1

j=0 j ei j< 1 (resp
P1

j=0 j ei j2< 1), then
P1

j=0 j ~ei j< 1 (resp
P1

j=0 j ~ei j2< 1). As a conclusion, the SR-SARV(1) class is closed under

temporal aggregation.2

Proof of Proposition 6.2. We have ft�1 = V ar["t j Jt�1] =
P1

i=1 fi;t�1. By construction, for any

i, fi;t�1 is a semi-strong AR(1). Moreover, these processes are uncorrelated. By Parseval identity,
P1

i=0  
�2
i = E[exp(2gt�1)]. Hence

P1
i=1 e

2
i < 1. On the other hand, 8i > 1, E[H�2

i (
gt�1 � �

�
)] = 1:

Thus supnEf
2
n;t < +1. As a conclusion, "t is a SR-SARV(1) w.r.t. Jt.2

Lemma A.4. Consider two independent SR-SARV(1) processes, f"i;tg, i = 1; 2, with the

corresponding information sets Ji;t and conditional variance processes fi;t = !i + fi;t�1 + vi;t. Then

"t � "1;t + "2;t is a SR-SARV(1) processe w.r.t. Jt = �("� ; f1;� ; f2;� ; � � t).

Proof. Obviously "t is Jt-adapted and a m.d.s. Let ft�1 � V ar["t j Jt�1]. We have ft�1 = f1;t+ f2;t.

Thus, (1 � L)ft�1 = !1 + !2 + v1;t + v2;t, that is ft�1 is an AR(1) and, hence, "t is a SR-SARV(1)

process w.r.t. Jt.2

Lemma A.5. Consider "t an SR-SARV(1) w.r.t. Jt de�ned by "t =
p
ft�1ut; ft = ! + ft�1 + vt

where E[ut j Jt�1] = E[vt j Jt�1] = 0 and E[u2t j Jt�1] = 1. Assume that the fourth moment of "t

is �nite. De�ne ht+1 as the weak GARCH volatility, i.e. ht+1 � EL["2t+1 j Hs
t ] = ! + �"2t + �ht

where Ht is the Hilbert space spanned by f1; "2� ; � � tg. Then, the R2 of the regression of ft onto the

constant and ht+1 is given by R2 = 1 � V ar[ t]

(1� �2)V ar[ft]
with  t = vt � ��t where �t is de�ned by
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"2t = ft�1 + �t.

Proof. We have "2t = ft�1u
2
t = ft�1 + ft�1(u

2
t � 1) = ft�1 + �t. The dynamics of ft�1 imply that

"2t = ! + "2t�1 + �t � �t�1 + vt�1 = ! + "2t�1 � �rt�1 + rt = ht + rt: Observe that (1 � �L)rt =

(1 � L)�t + vt�1 = (1 � �L)�t + (vt�1 � ��t�1): Hence rt = �t + (1 � �L)�1 t�1. In other words,

ft�1�ht = rt�1��t�1 = (1��L)�1 t�1. Remark that in the semi-strong GARCH(1,1) case, vt = ��t

and, hence,  t = 0 a:s: and �t = rt a:s:

Note that since �t and vt are m.d.s., we have 8i 6= 0; cov( t;  t�i) = cov(vt � ��t; vt�i � ��t�i) = 0.

Hence V ar[(1��L)�1 t] =
1

1� �2
V ar[ t]: As a consequence, the R

2 of the regression of ft onto the

constant and ht is given by

R2 = 1� V ar[ft � ht+1]

V ar[ft]
= 1� V ar[(1� �L)�1 t]

V ar[ft]
= 1� V ar[ t]

(1� �2)V ar[ft]
:

In practice, one have to compute the variance of  t to obtain the R2. We do this for the examples

M1 and M3 considered in the Monte Carlo study. Recall (from Bollerslev, 1986) that for a

strong Gaussian GARCH(1,1) with �nite fourth moment, "t =
p
ft�1ut where ut is i.i.d. D(0; 1)

and ft�1 = ! + �"2t�1 + �ft�2, we have: E["2t ] =
!

1� 
, V ar[�t] = E[f2t�1](E[u

4
t ] � 1) and

E[f2t�1] = !2 (1 + )

(1� )(1 � �2 � 2�� � 3�2)
.

Application to the temporal aggregation case. De�ne "
(m)
tm =

Pm
i=1 "(t�1)m+i where "t is a

strong GARCH(1,1) with �nite fourth moment. with "t =
p
ft�1ut, ft�1 = ! + �"2t�1 + �ft�2.

Straightforward calculus which are available upon request show that: �
(m)
tm =

Pm
i=1(

�(1�m�i)
1� +

1)�(t�1)m+i +
P

1�i;j�m;i6=j "(t�1)m+i"(t�1)m+j ,

v
(m)
tm = a(m)(

Pm�1
i=0 ivtm�i), where a(m) =

1� m

1� 
: Then, the variance of  

(m)
tm = v

(m)
tm �

�(m)�
(m)
tm is given by V ar[ 

(m)
tm ] = V ar[v

(m)
tm ] + (�(m))2V ar[�

(m)
tm ] � 2�(m)Cov(v

(m)
tm ; �

(m)
tm ) where

V ar[v
(m)
tm ] = (a(m))2 1�

2m

1�2 �
2V ar[�t], V ar[�

(m)
tm ] =

mX
i=1

(
�(1 � m�i)

1� 
+ 1)2V ar[�t] +m(m� 1)(

!

1 � 
)2

and Cov(v
(m)
tm ; �

(m)
tm ) = a(m)�(

mX
i=1

m�i(
�(1 � m�i)

1� 
+ 1))V ar[�t].

Application to the cross-sectional aggregation case. De�ne "t by "t = "1;t + "2;t where "1;t

and "2;t are independent and strong GARCH(1,1) with �nite fourth moment, with "i;t =
p
fi;t�1ui;t,

fi;t�1 = !i + �i"
2
i;t�1 + �ifi;t�2, i = 1; 2: We have "t =

q
ft�1ut where ft�1 = f1;t�1 + f2;t�1 and

ut =
"tp
ft�1

. Hence vt�1 = v1;t�1 + v2;t�1 = �1r1;t�1 + �2r2;t�1 and �t = �1;t + �2;t + 2"1;t"2;t.

Therefore  t = vt � ��t = (�1 � �)�1;t + (�2 � �)�2;t � 2�"1;t"2;t.

We have Cov(�1;t; �2;t) = Cov(�1;t; "1;t"2;t) = Cov(�2;t; "1;t"2;t) = 0 and "1;t and "2;t independent.

Thus, V ar[ t] = (�1��)2V ar[�1;t]+(�2��)2V ar[�2;t]+4�2E["21;t]E["
2
2;t]. Finally, we have V ar[ft] =

E[f21;t] +E[f22;t] + 2E[f1;t]E[f2;t]� (
!

1� 
)2.2
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SR-SARV (p)

Weak ARMA (p,p)
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ε

ε

Figure 1:

Fig. 1. The relationships between the models when the fourth moment of " is ¯nite
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