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1. Introduction

The empirical option pricing literature has revealed a considerable divergence be-
tween the risk-neutral distributions estimated from option prices after the 1987
crash and conditional distributions estimated from time series of returns on the
underlying index. Three facts come out clearly. First, the implied volatility ex-
tracted from at-the-money options di¤ers substantially from the realized volatility
over the lifetime of the option. Second, risk neutral distributions feature a sub-
stantial negative skewness which is revealed by the asymmetric implied volatility
curves when plotted against moneyness. Third, the shape of these volatility curves
changes over time, in other words the skewness is time-varying.1

One possible explanation for the divergence between the objective and the
risk neutral distributions is the existence of time-varying risk premia. Pan (2002)
estimates a jump-di¤usion model proposed by Bates (2000) and investigates how
volatility and jump risks are priced in S&P 500 index options. Based on a joint
time series of the spot price and of one at-the-money option, Pan (2002) shows
that the addition of both volatility and jump risk premia allows to …t well the
joint time series of spot and option price data. The model can explain well the
changing shapes of the implied volatility curves over time and the skewed pat-
terns are largely due to investors’ aversion to jump risks. However, it is not
clear how this non-arbitrage continuous-time model relates to the preferences of
a representative agent since in this approach investors may have di¤erent risk at-
titudes towards the di¤usive return shocks, volatility shocks and jump risks. In a
nonparametric framework, Aït-Sahalia and Lo (2000) and Jackwerth (2000) un-
cover the risk-aversion function implied by the comparison between the objective
and the risk-neutral distributions, while Rosenberg and Engle (2002) investigate
the empirical characteristics of investor risk aversion by estimating a daily semi-
parametric pricing kernel. Jackwerth (2000) …nds that the preferences are oddly
shaped, with marginal utilities increasing for some wealth levels. However, the
implied-tree and the kernel methodologies used to recover the risk-neutral and
the subjective probabilities are not likely to separate neatly the preferences from
the probabilities, especially if the stochastic discount factor depends on state vari-
ables. These results underline the potential importance of investors’ preferences

1These facts come out of a string of studies by Bakshi, Cao and Chen (1997), Bates (1996,

2000), Chernov and Ghysels (2000), and Pan (2002), among others.
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for option prices but leave the question of knowing if option prices are compatible
with reasonable preferences largely unanswered.

In this paper, we propose a utility-based option pricing model with stochastic
volatility and jump features to better understand the relationships between the
preferences embedded in risk premia and the aforementioned empirical facts. The
model is cast within the recursive utility framework of Epstein and Zin (1989) in
which the respective roles of discounting, risk aversion and intertemporal substi-
tution are disentangled. This separation might be important for option pricing
since an option contract will naturally be a¤ected by the value of time as well as
the price of risk associated with the underlying asset. We derive an option pricing
formula which generalizes the Black and Scholes (1973) and the Hull and White
(1987) and Heston (1993) stochastic volatility formulas, hereafter referred to as
BS and SV formulas.2

An essential feature of this generalized option pricing formula is that it is
not in general preference-free. In so-called preference-free formulas of which BS
and SV are examples, it happens that these parameters are eliminated from the
option pricing formula through the observation of the bond price and the stock
price. In other words, preference parameters are hidden in the observed stock and
bond prices. In our case, the bond pricing formula and the stock pricing formula
provide two dynamic restrictions relating the characteristics of the stochastic dis-
count factor of the model (which include the preferences) to the bond and stock
price processes. The key assumption underlying this result is the presence of an
unobserved state variable driving the fundamentals (consumption and dividends)
of the economy as in Cecchetti, Lam and Mark (1990, 1993) and Bonomo and
Garcia (1994a, 1994b, 1996). This state variable captures the states of the econ-
omy which are typically represented by a low consumption growth associated with
a high volatility of dividend growth or by a high consumption growth together
with a low volatility of dividend growth. A contemporaneous correlation between
the state variable and the fundamentals makes the preference parameters play an
additional role over and above their impact on stock and bond prices. Therefore,
it appears natural to investigate the informativeness of option prices about pref-

2Our formula can be seen as a discrete-time Heston-type formula. However, in contrast with

Heston, the risk premia are explicitly linked to the preference parameters of a representative

agent.
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erence parameters and to con…rm the dependence of option prices on preference
parameters.

First, based on simulations, we show that option prices are more informative
than stock returns about the structural parameters of the asset pricing model.
More precisely, we show that a set moment conditions based on the mean, vari-
ance and autocovariance of order one of stock returns does not provide good
estimates of the preference parameters in …nite samples. Therefore, one can pos-
sibly question the empirical tests of intertemporal asset pricing models that have
been based mostly on bond and stock returns. On the other hand, similar moment
conditions with option prices recover with great accuracy the preference parame-
ters. Part of the explanation lies probably in the better spanning of the stochastic
discount factor (or the underlying risk neutral probability distribution) by a panel
of option prices. The nonlinear nature of the option payo¤s could also help given
the nonlinearity in parameters of the model.

We further show that a simple method of moments with a panel of simulated
option prices provides good estimates of all the parameters of the model, that
is, parameters associated with the fundamentals in the economy along with the
preference parameters. This lays the ground for an empirical assessment of the
model with S&P 500 option prices in terms of out-of-sample pricing errors and
a comparison with usual stochastic volatility and expected utility models which
appear as particular cases of our general framework. Our results indicate clearly
that the explicit incorporation of preferences improves the performance of the
option pricing model and that time non-separable preferences improve the results
further. Preference parameter estimates appear reasonable and stable over a …ve-
year period (1991-1995).

Apart from the economic interest of recovering preference parameters from
this new option pricing formula, there is always the question of its practical use
say for forecasting the price of other options. Taking options of all moneyness
and all maturities at once, we con…rm that the absolute and relative errors of the
non-expected utility model are lower than the errors produced by the expected
utility model and a stochastic volatility model. However, the magnitude of the
errors remains very large with respect to the errors associated with practitioners’
ad hoc approaches such as plugging in the BS formula implied volatilities of the
day or the week before. To put the model on a level playing …eld with ad hoc
approaches, we separate the options according to maturity for estimation, we
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reduce the period over which empirical moments are computed to the last …ve
days and …nally we introduce conditioning information in the estimation. The
volatility of the dividend growth is made a function of the implied volatility of
the same class of moneyness the day before. This has the e¤ect of reducing the
errors to levels more in line with the practitioners’ ad hoc approaches, but given
the complex structure of our model, it does not appear as a practical substitute to
the simple practitioners’ Black-Scholes. Moreover, this shorter-term calibration
blurs the distinctions between the expected utility and the non-expected utility
models since they perform quite similarly in terms of predictive ability.

The interplay between preferences and latent factors that a¤ect the stochastic
discount factor has been explored to a certain extent in the literature. Amin and
Ng (1993) provide an extension of the equilibrium model of Rubinstein (1976) and
Brennan (1979) with a systematic stochastic volatility in stock returns. Garcia,
Luger and Renault (2001) show that the option pricing model we estimate in this
paper can reproduce the various patterns observed in implied volatility curves as
well as changing skewness over time. David and Veronesi (1999) show that option
prices are a¤ected by investors’ beliefs about the drift of a …rm’s fundamentals. In
particular, they emphasize how investors’ beliefs and their degree of risk aversion
a¤ect stock returns and hence option prices. Guidolin and Timmermann (1999)
explain the empirical biases of the Black-Scholes option pricing model by Bayesian
learning e¤ects. The importance of preference parameters in explaining ‡uctua-
tions in equity prices has also been explored by Mehra and Sah (1998) who show
that small changes in investors’ subjective discount factors and attitudes towards
risk can induce volatility in equity prices. The main thesis of the paper is that
some instantaneous causality e¤ects between state variables and asset prices can
capture the stylized facts of interest without having to introduce any ‡uctuation
in beliefs or preferences or learning.

The rest of the paper is organized as follows. Section 2 develops a gener-
alized option pricing formula with latent variables based on a recursive utility
consumption-based asset pricing model. Section 3 explores, in a simulation ex-
periment, the information about preference parameters contained in option prices
compared with that in stock returns. Preference parameters are also estimated us-
ing S&P 500 option and stock prices. Section 4 calibrates the model for practical
option pricing. Section 5 concludes.
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2. An Intertemporal Option Pricing Model with Latent Variables

We adopt the recursive utility framework proposed by Epstein and Zin (1989).
Many identical in…nitely lived agents maximize their lifetime utility and receive
each period an endowment of a single nonstorable good. Their recursive utility
function is of the form:

Vt =W (Ct; ¹t); (2.1)

where W is an aggregator function that combines current consumption Ct with
¹t = ¹(eVt+1 j Jt), a certainty equivalent of random future utility eVt+1; given Jt the
information available to the agents at time t, to obtain the current-period lifetime
utility Vt. Following Kreps and Porteus (1978), Epstein and Zin (1989) propose
the CES function as the aggregator function, i.e.,

Vt = [C½t + ¯¹
½
t ]

1
½ : (2.2)

The way the agents form the certainty equivalent of random future utility is
based on their risk preferences, which are assumed to be isoelastic, i.e., ¹®t =
E[eV ®t+1jJt]; where ® · 1 is the risk aversion parameter (1-® is the Arrow-Pratt
measure of relative risk aversion). Given these preferences, the following Euler
condition must be valid for any asset j if an agent maximizes his lifetime utility
(see Epstein and Zin 1989):

E [¯°(Ct+1
Ct

)°(½¡1)M°¡1t+1 Rj;t+1jJt] = 1; (2.3)

whereMt+1 represents the return on the market portfolio, Rj;t+1 the return on any
asset j, and ° = ®

½ . The parameter ½ is associated with intertemporal substitution,
since the elasticity of intertemporal substitution is 1=(1 ¡ ½): The position of ®
with respect to ½ determines whether the agent has a preference towards early
resolution of uncertainty (® < ½) or late resolution of uncertainty (® > ½).

Since the market portfolio price, say PMt at time t, is determined in equilibrium,
it should also verify the …rst-order condition:

E[¯°(
Ct+1

Ct
)°(½¡1)M °t+1jJt] = 1: (2.4)

In this model, the payo¤ of the market portfolio at time t is the total endow-
ment of the economy Ct: Therefore the return on the market portfolio Mt+1 can
be written as follows:
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Mt+1 =
PMt+1 + Ct+1

PMt
:

Replacing Mt+1 by this expression; we obtain:

¸°t = E
·
¯°

µ
Ct+1
Ct

¶°½
(¸t+1+ 1)°jJt

¸
; (2.5)

where ¸t =
PMt
Ct
: Under some regularity and stationarity assumptions, there exists

a unique solution ¸t to (2.5) of the form ¸t = ¸(Jt) with ¸(¢) solution of:

¸(J)° = E
·
¯°

µ
Ct+1
Ct

¶°½
(¸(Jt+1) + 1)° jJt = J

¸
: (2.6)

Similarly, we will be looking for a solution 't ='(Jt) = St
Dt

to the stock pricing
equation:

'(J) = E

"
¯°

µ
Ct+1
Ct

¶°½¡1 µ
¸t+1 + 1
¸t

¶°¡1
('(Jt+1) + 1)

Dt+1

Dt
jJt = J

#
: (2.7)

It is then possible, for given ¸ and ' functions, to compute the market portfolio
price and the stock price as PMt = ¸(Jt)Ct and St = '(Jt)Dt: The dynamic
behavior of these prices, or equivalently of the associated rates of return:

LogMt+1 = Log
¸(Jt+1) + 1
¸(Jt)

+Log
Ct+1

Ct
(2.8)

and

LogRt+1 = Log
St+1 +Dt+1

St
= Log'(It+1) + 1

'(It)
+ log Dt+1

Dt
; (2.9)

is determined by the joint probability distribution of the stochastic process (Xt; Yt; Jt)
where: Xt = Log CtCt¡1

and Yt = Log DtDt¡1
:

2.1. A pricing model conditional on latent state variables

We shall de…ne these dynamics through a stationary vector-process of state vari-
ables Ut such that:

Jt = _¿·t[X¿; Y¿ ; U¿ ]: (2.10)
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We want these state variables to be exogenous and stationary and to subsume
all temporal links between the variables of interest (Xt; Yt): This framework has
alreadybeen used in asset pricing models (see Cecchetti, Lam and Mark 1990,1993,
Bonomo and Garcia 1994a, 1994b, 1996 and Amin and Ng 1993). We achieve this
through assumptions 1, 2 and 3 below:

Assumption 1.: The pairs (Xt; Yt)1·t·T ; t = 1; :::; T ; are mutually indepen-
dent given UT1 = (Ut)1·t·T.

Assumption 2.: The fundamentals (X;Y ) do not cause the state variables
U in the Granger sense or equivalently, given assumption 1, the conditional prob-
ability distribution of (Xt;Yt) given UT1 = (Ut)1·t·T coincides, for any t = 1; :::; T ;
with the conditional probability distribution given U t1 = (U¿)1·¿·t:

Assumption 3.: The conditional probability distribution of (Xt+1;Yt+1; Ut+1)
given U t1 only depends upon Ut:

Under assumptions 1, 2 and 3 we have:

PMt = ¸(Ut)Ct; St = '(Ut)Dt;

where ¸(Ut) and '(Ut) are respectively de…ned by:

¸(Ut)° = E
·
¯°

µ
Ct+1

Ct

¶°½
(¸(Ut+1) + 1)° jUt

¸
;

and

'(Ut) = E

"
¯°

µ
Ct+1
Ct

¶°½¡1 µ
¸(Ut+1) + 1
¸(Ut)

¶°¡1
('(Ut+1) + 1)

Dt+1

Dt
jUt

#
: (2.11)

In this setting, a contraction mapping argument may be applied as in Lucas
(1978) to ensure existence and unicity of the functions ¸(¢) and '(¢)3: Using the
de…nitions of returns on the market portfolio and asset St, we can write:

3 It should be emphasized that this framework is more general than the Lucas one because

the state variables Ut are given by a general multivariate Markovian process (while a Markovian

dividend process is the only state variable in Lucas 1978).
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LogMt+1 = Log
¸(Ut+1) + 1
¸(Ut)

+Xt+1 (2.12)

and

LogRt+1 = Log
'(Ut+1) + 1
'(Ut)

+ Yt+1:

Hence, the return processes (Mt+1; Rt+1) are stationary as U;X and Y , but, con-
trary to the stochastic setting in the Lucas (1978) economy, are not Markovian
due to the presence of unobservable state variables U .

Given this intertemporal model with latent variables, we will show how stan-
dard asset pricing models will appear as particular cases under some speci…c con-
…gurations of the stochastic framework. In particular, we will analyze the pricing
of bonds, stocks and options and show under which conditions the usual models,
such as the CAPM or the Black-Scholes model, are obtained. To achieve this, we
introduce an additional assumption on the probability distribution of the funda-
mentals X and Y given the state variables U:

Assumption 4:
µ
Xt+1
Yt+1

¶
jU t+1
t » @

·µ
mXt+1
mY t+1

¶
;
·
¾2Xt+1 ¾XY t+1
¾XY t+1 ¾2Y t+1

¸¸
;

where mXt+1 = mX(U t+1
1 );mY t+1 = mY (U t+11 ); ¾2Xt+1 = ¾2X(U t+11 ); ¾XY t+1 =

¾XY (U t+11 ); ¾2Y t+1 = ¾2X(U t+1
1 ). In other words, these means and variance-covariance

functions are time-invariant and measurable functions with respect to U t+1
t ; which

includes both Ut and Ut+1:
This conditional normality assumption allows for skewness and excess kurtosis

in unconditional returns4 . It is also useful for recovering as a particular case the
Black-Scholes formula.5

4Actually, it even allows for skewness and excess kurtosis in conditional returns, given the

information available to the agents at the beginning of the period.
5 It can also be argued that, if one considers that the discrete-time interval is somewhat arbi-

trary and can be in…nitely split, log-normality (conditional on state variables U ) is obtained as

a consequence of a standard central limit argument given the independence between consecutive

(X; Y ) conditional on U:
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2.2. Pricing Formulas for Bonds, Stocks and Options

In all three following subsections we will price the respective assets using the Euler
conditions and use our assumptions 1 to 4 to derive a pricing formula. In each
case, we will emphasize the prominent role of the latent variable in pricing the
assets. We will insist especially on its contemporaneous correlation with the asset
returns.

2.2.1. The Pricing of Bonds

Given the Euler condition (2.3) and assumptions 1, 2 and 3, the time t price of a
bond delivering one unit of the good at time T, B(t; T); is given by the following
formula:

B(t; T ) = Et

"
¯°(T¡t)

µ
CT
Ct

¶®¡1 T¡1Y

¿=t

·
(1 + ¸(U ¿+1

1 )
¸(U¿1 )

¸°¡1#
;

which can be written as:

B(t; T ) = Et[ eB(t; T)]; (2.13)

with:

eB(t; T ) = ¯°(T¡t)aTt (°) exp((® ¡ 1)
T¡1X

¿=t

mX¿+1 +
1
2
(® ¡ 1)2

T¡1X

¿=t

¾2X¿+1);

where: aTt (°) =
QT¡1
¿=t

h
(1+¸(U¿+1

1 )
(̧U¿1 )

i°¡1
:

This formula shows how the interest rate risk is compensated in equilibrium, and
in particular how the term premium is related to preference parameters. Given
the expression for eB(t; T ) above, it can be seen that for von-Neuman preferences
(° = 1) the term premium is proportional to the square of the coe¢cient of relative
risk aversion (up to a conditional stochastic volatility e¤ect). Another important
observation is that even without any risk aversion (® = 1); preferences still af-
fect the term premium through the non-indi¤erence to the timing of uncertainty
resolution (° 6= 1):

There is however an important sub-case where the term premium will be
preference-free because the stochastic discount factor eB(t; T) coincides with the
observed rolling-over discount factor (the product of short-term future bond prices,
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B(¿; ¿ + 1), ¿ = t; :::; T ¡1). Noticing that eB(t;T ) = QT¡1
¿=t

eB(¿ ; ¿ + 1); this will
occur as soon as eB(¿ ; ¿ + 1) = B(¿; ¿ + 1); that is, when eB(¿ ; ¿ + 1) is known
at time ¿: From the expression of eB(t; T ) above, it is easy to see that this last
property holds if and only if the mean and variance parameters mX¿+1 and ¾X¿+1

depend on U¿+1
¿ only through U¿ . In this case, the conditional distribution of Xt

given the whole past and future path of U is equal to the conditional distribution
of X given only the past of U , that is `(XtjUT1 ) = `(XtjU t¡11 ): It is this property
which ensures that short-term stochastic discount factors are predetermined, so
the bond pricing formula becomes preference-free:

B(t; T ) = Et
T¡1Y

¿=t

B(¿; ¿ + 1):

Of course, this does not necessarily cancel the term premia but it makes them
preference-free in the sense that the role of preference parameters is fully hidden
in short-term bond prices. Moreover, when there is no interest rate risk because
the consumption growth rates Xt are i.i.d., it is straightforward to check that
constant mXt+1 and ¾2Xt+1 imply constant ¸(¢) and in turn eB(t; T) = B(t; T );
with zero term premia.

2.2.2. The Pricing of Stocks

By a recursive argument on the Euler condition (2.11), the stock price formula
can be written as follows:

Et

"
¯°(T¡t)aTt (°)bTt

µ
CT
Ct

¶®¡1 DT
Dt

#
= 1; (2.14)

with: bTt =
QT¡1
¿=t

(1+'(U¿+11 ))
'(U¿1 )

: Using the conditional log-normality assumption 3,
we obtain:

Et

"
eB(t; T)bTt exp(

TX

¿=t+1

mY ¿ +
1
2

TX

¿=t+1

¾2Y ¿ + (® ¡ 1)
TX

¿=t+1

¾XY ¿)

#
= 1: (2.15)

With the de…nitional equation:

E [
ST
St

jUT1 ] =
'(U T1 )
'(U t1)

exp(
TX

¿=t+1

mY ¿ +
1
2

TX

¿=t+1

¾2Y ¿); (2.16)
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a useful way of writing the stock pricing formula is:

Et [QXY (t; T)] = 1; (2.17)

where:

QXY (t; T ) = eB(t; T)bTt
'(U t1)
'(UT1 )

exp((® ¡ 1)
TX

¿=t+1

¾XY ¿)E [
ST
St

jUT1 ]: (2.18)

To understand the role of the factor QXY (t; T); it is useful to notice that it
can be factorized as:

QXY (t; T) =
T¡1Y

¿=t

QXY (¿; ¿ + 1);

and that there is an important particular case whereQXY (¿ ; ¿+1) is known at time
¿ and therefore equal to one by (2.17). This is when `(Xt; YtjU T1 ) = `(Xt; YtjU t¡11 ):
This means that neither the conditional means and variances of Xt or Yt at time t
nor the covariance ¾XY t depend on Ut: In this case, we have QXY (t; T) = 1: Since
we also have eB(¿ ; ¿ + 1) = B(¿ ; ¿ + 1); we can express the conditional expected
stock return as:

E
·
ST
St

jU T1
¸
=

1QT¡1
¿=t B(¿ ; ¿ + 1)

1
bTt

'(UT1 )
'(U t1)

exp((1¡ ®)
TX

¿=t+1

¾XY ¿):

For pricing over one period (t to t+ 1); this formula provides the agent’s expec-
tation of the next period return (since in this case the only relevant information
is U t1):

E
·
St+1
St

1 + '(U t+11 )
'(U t+1

1 )
jU t1

¸
=

1
B(t; t+ 1) exp[(1 ¡ ®)¾XY t+1];

that is:

E
·
St+1 +Dt+1

St
jU t1

¸
=

1
B(t; t+ 1)

exp[(1¡ ®)¾XY t+1]: (2.19)

This is a particularly interesting result since it is very close to a standard con-
ditional CAPM equation (and unconditional in an i.i.d. world), which remains
true for any value of the preference parameters ® and ½: While Epstein and Zin
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(1991) emphasize that the CAPM obtains for ® = 0 (logarithmic utility) or ½ = 1
(in…nite elasticity of intertemporal substitution), we emphasize here that this re-
lationship is obtained under a particular stochastic setting for any values of ® and
½. As we will see in the next section, the stochastic setting which produces this
CAPM relationship will also produce most standard option pricing models (for
example Black and Scholes 1973 and Hull and White 1987), which are of course
preference-free.6

2.2.3. A Generalized Option Pricing Formula

The Euler condition for the price of a European option is given by:

¼t = Et

"
¯°(T¡t)

µ
CT
Ct

¶®¡1 T¡1Y

¿=t

·
(1 + ¸(U¿+11 )
¸(U¿1 )

¸°¡1
Max[0; ST ¡K]

#
: (2.20)

Under assumptions 1-4, we arrive at a generalized Black-Scholes (GBS) formula
(see proof in the appendix):

¼t
St

= Et

(
QXY (t; T )©(d1) ¡ K

eB(t; T )
St

©(d2)

)
; (2.21)

where:

d1 =
Log

h
StQXY (t;T)
K eB(t;T)

i

(
PT
¿=t+1 ¾

2
Y ¿)1=2

+
1
2
(
TX

¿=t+1

¾2Y ¿)
1=2 and d2 = d1 ¡ (

TX

¿=t+1

¾2Y ¿)
1=2:

It should be noticed that if QXY (t; T) = 1 and eB(t; T) =
QT¡1
¿=t B(¿ ; ¿ + 1);

the option price (2.21) is nothing but the conditional expectation of the Black-
Scholes price,7 where the expectation is computed with respect to the joint prob-
ability distribution of the rolling-over interest rate rt;T = ¡PT¡1

¿=t logB(¿ ; ¿ + 1)
6A similar parallel is drawn in an unconditional two-period framework in Breeden and Litzen-

berger (1978).
7We refer here to a BS option pricing formula where dividend ‡ows arrive during the lifetime

of the option and are accounted for in the de…nition of the risk neutral probability, while the

option payo¤ does not include dividends. In other words, the BS option price is given by:
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and the cumulated volatility ¾t;T =
qPT

¿=t+1 ¾2Y ¿ : This framework nests three
well-known models. First, the most basic ones, the Black and Scholes (1973)
and Merton (1973) formulas, when interest rates and volatility are determin-
istic. Second, the Hull and White (1987) stochastic volatility extension, since
¾2t;T = V ar

h
log STSt jU

T
1

i
corresponds to the cumulated volatility

R T
t ¾

2
udu in the

Hull-White continuous-time setting: Third, the formula allows for stochastic inter-
est rates as in Turnbull and Milne (1991) and Amin and Jarrow (1992). However,
the usefulness of our general formula (2.21) comes above all from the fact that it
o¤ers an explicit characterization of instances where the preference-free paradigm
cannot be maintained. Usually, preference-free option pricing is underpinned by
the absence of arbitrage in a complete market setting. However, our equilibrium-
based option pricing formula does not preclude incompleteness and points out
in which cases this incompleteness will invalidate the preference-free paradigm,
i.e., when the conditions QXY (t; T) = 1 and eB(t; T) =

QT¡1
¿=t B(¿; ¿ +1) are not

ful…lled. In this case, preference parameters appear explicitly in the option pric-
ing formula through eB(t; T) and QXY (t; T): Amin and Ng (1993), who provide a
similar framework by modeling directly stock returns and consumption growth,
associate the preference-free property of the option pricing formula to the pre-
dictability of their respective mean, variance and covariance processes. In other
words, these processes are known at the beginning of the period.

It is worth noting that our results of equivalence between preference-free op-
tion pricing and no instantaneous causality between state variables and asset
returns are consistent with another strand of the option pricing literature, namely
GARCH option pricing. Duan (1995) derived it …rst in an equilibrium frame-

¼BS
t = e¡r(T ¡t)Et [M ax(0; ST ¡ K)] (2.22)

= e¡±(T ¡t)St©(d1) ¡ Ke¡r(T ¡t)©(d2); (2.23)

since in the risk neutral world:

Log
ST

St
Ã N ((r ¡ ±)(T ¡ t); ¾2(T ¡ t)); (2.24)

where ± is the intensity of the dividend ‡ow.
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work, but Kallsen and Taqqu (1998) have shown that it could be obtained with
an arbitrage argument. Their idea is to complete the markets by inserting the
discrete-time model into a continuous time one, where conditional variance is
constant between two integer dates. They show that such a continuous-time em-
bedding makes possible arbitrage pricing which is per se preference-free. It is
then clear that preference-free option pricing is incompatible with the presence
of an instantaneous causality e¤ect, since it is such an e¤ect that prevents the
embedding used by Kallsen and Taqqu (1998).8

3. Estimation of the Option Pricing Model

In this empirical section, we want to assess to what extent one can recover pref-
erence parameters from option prices and to establish if the parameters recovered
from actual option price data are reasonable. Recent evidence brought forward by
Jackwerth (2000) in a nonparametric framework tends to extract preferences that
are not in accordance with theoretical properties such as decreasing marginal util-
ity. Our theoretical equilibrium model suggests that, in general, option prices are
not preference-free in the sense that the information about preference parameters
is not solely contained in bond and stock prices. Therefore, option prices might
allow us to obtain more precise estimates of preference parameters in …nite sam-
ples. We verify this point in a simulation experiment by comparing the preference
estimates obtained with a simple method of moments applied …rst to stock returns
and then to option prices while assuming that the other parameters of the model
are known. We further devise an estimation framework that allows us to recover
jointly all the parameters of the model, that is, the parameters characterizing the
stochastic process of the state variables as well as the parameters of the mean,
variance and covariance functions of the fundamentals of the economy, along with
the price-consumption and price-dividend ratios and the preference parameters.
We apply this estimation method …rst to simulated data to verify if parameters
are well estimated and then to S&P 500 call option prices.

8Heston and Nandi (2000) point out that the GARCH option pricing model of Duan (1995)

is valid if and only if BS is valid over one period.
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3.1. A Markov-Chain Process for the State Variables

Until now, we have not made any speci…c assumption about the nature of the
stochastic process governing the state variables Ut apart from its stationarity and
its Markovianity. In order to estimate the model, we adopt a Markov-chain setup
for these state variables as in Cecchetti, Lam and Mark (1990, 1993) and Bonomo
and Garcia (1994a, 1994b, 1996), based on the regime-switching model introduced
by Hamilton (1989). The process describing the joint evolution of Xt and Yt is
parameterized as follows:

Xt = mX(Ut) + ¾X(Ut)"Xt (3.1)

Yt = mY (Ut) + ¾Y (Ut)"Y t (3.2)

The time-varying means and variances are assumed to be a function of the state
variable process fUtg; which is assumed to be a two-state discrete …rst-order
Markov chain. The transition probabilities between the two states are given by
pij = Pr(Ut = j jUt¡1 = i) for i; j = 1; 2: The unconditional probability of being
in state 1 is denoted ¼1 and is equal to (1¡ p22)=(2 ¡ p11¡p22) and ¼2 = 1 ¡ ¼1:
We further assume that the dependence of the consumption mean and dividend
variance parameters on the state can be written in a linear form, without loss of
generality:

mX(Ut) = mX1 +mX2Ut (3.3)

¾Y (Ut) = ¾Y1 + ¾Y2Ut

Moreover, for simplicity sake and based on empirical evidence, we consider that
the consumption variance and dividend mean parameters are constant between
regimes.

In order for assumptions 1, 2 and 3 to hold, the ("Xt; "Y t) are supposed to
be serially independent, identically distributed and independent of the state vari-
able process Ut: In accordance with assumption 4, the vector ("Xt; "Y t)0 follows a
standard bivariate normal distribution with correlation coe¢cient ½XY :
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3.2. Informational Content of Option Prices about Preference Parame-

ters

Our …rst goal is to compare the informational content of stock returns and option
prices with respect to the preference parameters. That is, we wish to see from
which series can one better infer the values of the preference parameters of the
structural model. From a comparison of the option pricing formula (2.21) and
the stock return in (2.12), we can see intuitively why option prices might be
more informative than stock prices about the preference parameters. In (2.12)
the preference parameters only appear indirectly through the stock price-earnings
ratios, which in equilibrium are determined as solutions of the Euler conditions
in (2.11). On the other hand, these ratios also appear in the option price through
the termQXY (t; T ): This term in (2.21) along with eB(t; T) depend directly on the
preference parameters in addition to the price-earnings ratios for the stock and
the market portfolio.

3.2.1. A Monte Carlo Experiment

In this section we compare the empirical performances of the estimates based on
option prices and on stock returns in the framework of a simulation experiment.
We simulate asset prices in the economy described by our model. The experiment
was carried out as follows. For given values (¯; °; ®) characterizing preferences
and (p11; p22;mX1;mX2; ¾X1; ¾X2;mY 1;mY 1; ¾Y 1; ¾Y 2; ½XY ) describing the endow-
ment and state variable processes, we …rst obtain the equilibrium values of the
price-dividend ratios (¸1; ¸2; '1; '2) by numerically solving the following set of
simultaneous equations:

¸°i =
2X

j=1

pij
·
¯° exp

½
®mXj +

1
2
(®¾Xj)2

¾
(¸j + 1)°

¸
;

'i =
2X

j=1

pij

"
¯°Aj

µ
¸1 + 1
¸1

¶°¡1
('0j +1)

#
;

where

Aj = exp
½
(®¡ 1)mXj +mY j +

1
2

¡
(®¡ 1)2¾2Xj + ¾

2
Y j +2(® ¡ 1)½XY ¾Xj¾Y j

¢¾
:
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The stock returns frt; t = 1; :::; Ng are obtained as

rt = log 't +1
't¡1

+ Yt; (3.4)

with Yt = log Dt
Dt¡1

given by (3.2). Given the Markov chain process assumed for
Ut; we generate paths of the state variable from time 1 through T; which we set at
100. For each path of the state variable Ut; we generate normalized option prices
Ct(Ut = i; ·; ¿ ) =

¼t
K
; 9 where ¼t is the price of a European call option as given

by the generalized Black-Scholes pricing formula (2.21) when state i is operative
at time t and the option’s moneyness is equal to · = St=K and time to maturity
is ¿ = (T ¡ t): We therefore obtain series of stock returns and normalized option
prices. We repeat the simulation one thousand times.

3.2.2. Estimating Preference Parameters with Simulated Prices

To start the estimation in the simplest way, we apply an exact method of moments
to recover jointly the three preference parameters ¯; ½ and ® while assuming that
the other parameters of the model are known. In this …rst estimation, we focus our
attention on preference parameters but later on, we will estimate all parameters
at once to prepare the ground for estimation with actual data.

The moments for the stock returns that we consider are:

E[rt] =
2X

i=1

2X

j=1

¼ipij
µ
log
'j +1
'i

+mY j
¶
; (3.5)

V ar[rt]=
2P
i=1

2P
j=1
¼ipij

·³
log 'j+1'i

´2
+2mY j

³
log 'j+1'i

´
+m2

Y j+¾
2
Y j

¸
¡E[rt]2; (3.6)

and
9Given the nonstationarity of St; option prices will also be nonstationary since St enters as

an argument in the option pricing formula. However, the variable St=K will be stationary as

strike prices are set at issuing time to bracket the underlying asset price. This suggests using

Ct(Ut = i; ·; ¿) to estimate the parameters of interest instead of ¼t:
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Cov[rt; rt¡1] (3.7)

=
2P
i=1

2P
j=1

2P
k=1
¼ipijpjk

·³
log 'j+1

'i

´2
+m2

Y j

¸ ·³
log 'k+1

'j

´2
+m2

Y k

¸
¡E [rt]2:

For the moments of option prices, it should be noticed that option prices allow
for more ‡exibility than stock returns in the sense that we observe more than
one option at each date, but only one price for the underlying stock. We can for
example apply the method of moments to option prices of di¤erent moneynesses
and maturities as follows:

E
h¼t
K

i
=

2X

i=1

¼iCt(Ut = i; ·; ¿ ): (3.8)

It should be noticed that for a given set of values of the moneyness (possible values
of St=K), option prices are deterministic functions of the current state variable. In
our two-state setting, there are two values of the normalized option price, one for
each state, as there are two price-dividend ratios.10 Estimating parameters on the
basis of this simulated series would have resulted in a perfect …t as the generalized
option pricing model has more parameters that there are sources of randomness
driving the transformed option price series. Therefore, we added noise to the ratio
log(St=K) as log(St=K)+¾Y (Ut)"t where "t is an i:i:d: N(0; 1) process. Note that
the added error term is proportional to the state-contingent standard error of the
dividend process. The additional error term makes for a fair comparison of the
informational content of stock returns vis-à-vis option prices.

Another possibility to construct moment conditions is to choose a particular
option, say at the money, and compute the moments based on the mean, variance
and covariance of a time series of prices for this particular option (always normal-
ized by a given moneyness for stationarity). We will pursue both avenues to infer
preference parameters from option prices.

10The division of the option prices by their strike price results in a binary process in the sense

that for given values of · and ¿ the transformed option prices take one of two values depending

on which state is operative at time t.
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3.2.3. Simulation Results about Estimated Preference Parameters

We investigate the properties of the estimators for the preference parameters while
holding the other parameters of the model …xed at their true values.11 In Tables
1, 2 and 3 we report the results of this simulation experiment in terms of mean,
median, standard error and root mean square error (RMSE) for the three parame-
ters. We report the results for the method-of-moments estimators based on option
prices (from a time series and an across-moneyness perspective), stock returns,
and price-dividend ratios12 respectively. First, we notice that the estimators based
on stock returns are more biased than the estimators based on moment conditions
for options. It is the case even if we use comparable moments computed on the
time series of one particular option. The bias is more pronounced for the pa-
rameters ½ and ® than for the subjective discount factor ¯: A possible reason
for this …nite sample bias could be the nonlinearity in parameters present in the
model.13 It is possible that the nonlinear nature of the option payo¤s helps in this
regard. Improvements in terms of RMSE can be obtained in two directions, one
for options, the other for the stock.

First, by using a set of three options with di¤erent moneyness, we can see that
the RMSE is reduced at least for ½ and ®: The main di¤erence in the information
base of the sets of estimators is that in one case we use a time series of a unique
asset, while in the other we use a panel of option prices.14 To estimate well the

11The values of the endowment process are similar to those estimated from actual data by

Bonomo and Garcia (1996). Other values, such as the ones used in David and Veronesi (1999),

yielded the same conclusions.

12The informational content of price-dividend ratios was suggested by Bansal and Lundblad

(1999).
13This is not a numerical issue. In fact, we gave an advantage to the stock returns conditions

in the sense that we started the optimization at the true parameter values, while for the options

the initial values were taken in a random neighborhood of the true values.
14On the one hand, we use more information by having three price series, on the other hand

we do not use this information as e¢ciently since we limit ourselves to …rst moments in the

estimation to obtain the three moment conditions needed to estimate ¯; ½ and ®:
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preference parameters, it is necessary to recover well the stochastic discount factor
or the underlying risk neutral probability distribution. This is easier with a panel
of option prices than with a time series on the underlying asset or one particular
option. The second direction of improvement is to use moments on the price-
dividend ratio of the stock instead of stock returns to estimate the parameters.
The RMSE is reduced for the three parameters compared to the estimates obtained
with the stock returns. It should be emphasized that in the true model used to
simulate the prices, the price-dividend ratio takes two values, one for each state,
as it is the case for option prices. We therefore added noise to log('(Ut) as
log('(Ut)) + ¾Y (Ut)vt where vt is an i:i:d: N(0; 1) process, in the same way we
did for normalized option prices. However the RMSEs remain higher than the
RMSEs obtained with option prices.

Several conclusions can be drawn from the simulation results. First, it seems
fair to state that stock return data provide poor estimates of the preference para-
meters. While price-dividend ratios produce better estimates, the standard errors
for ½ and ® are higher than for stock returns. Moreover, the distribution of ® is
dramatically skewed to the right, producing a marked underestimation in average
of the risk aversion coe¢cient 1 ¡ ®: The superior inference produced by option
prices is all the more remarkable that we have used not the Euler equations but
the generalized Black-Scholes formula, which already incorporates the information
conveyed by observed bond and stock prices, for estimating the preference para-
meters. In other words, in such an exercise, option pricing formulas that are close
to Hull and White preference-free formula would have led to option price data
without any informational content about preference parameters. What we have
captured in our estimation with moments on options is the marginal information
provided by option prices in excess of the information provided by bond and stock
prices.

3.2.4. Estimating all Model Parameters with Simulated Prices

In reality we cannot consider that we know any of the parameters of the model.
In order to estimate simultaneously all the structural parameters of our model
we combine moment conditions from the stock returns and option price series. It
should be emphasized that the only observables are the stock and option price
data, and the dividend series (to construct the stock returns including dividends).
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The consumption series does not need to be observed. The estimation method
will allow us to infer values for the means and variance of consumption growth
from …nancial market data as it was done by Bonomo and Garcia (1996) using a
maximum likelihood approach. We also need to compute from Euler equations,
given values for the other model parameters, the price-consumption ratios ¸1 and
¸2 for the market portfolio and the price-dividend ratios '1 and '2 for the stock.

In Table 4, we proceed to estimate jointly all the parameters of the model,
again with an exact method of moments applied to the simulated asset prices as
above. We use enough moment conditions from option prices and stock returns to
estimate the 12 parameters of interest. We get 9 moment conditions on options by
considering 3 di¤erent moneynesses (1.1, 1 and 0.9) and times to maturity (1, 2 and
3 periods) and three moment conditions from the stock returns (mean, variance
and covariance). At each stage of the estimation, given the current set of values
for the model parameters, the ¸ and the ' parameters are computed by solving
the Euler equations. The results indicate that the preference parameters, the
transition probabilities and the consumption-dividend correlation parameter are
estimated without bias and rather precisely. It is not the case for the means and
variance of the consumption process, which are biased. The variance parameters of
the dividend process are slightly biased upward.15 Acknowledging these potential
problems in recovering some parameters, we will nevertheless proceed with this
method for estimating the parameters of the model with actual data since it allows
to recover well the preference parameters which are the main focus of our analysis.

3.3. Is There Evidence of Preference Parameters in S&P 500 Option

Prices?

The simulation experiments of the last section lay the ground for a general esti-
mation of the model with option price and stock return data. To estimate the
parameters and assess the out-of-sample pricing performance of the various mod-
els, we use daily price data for S&P 500 Index call European options obtained
from the Chicago Board Options Exchange for the period January 1991 to De-

15However, it should be noted that the median bias of the estimators for the consumption and

dividend parameters is acceptable.
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cember 1995.16 The S&P 500 index option market is extremely liquid and it is
one of the most active options markets in the United States. This market is the
closest to the theoretical setting of the Black-Scholes model and the extensions
proposed in this paper. We also used daily return data for the S&P 500 Index.

3.3.1. Estimation of the Parameters

We used the following method of estimation. At time t, the GBS model is esti-
mated by the method of moments using the moments de…ned in the simulation
study. By estimating parameters for options of di¤erent maturities and moneyness
we take the model to the letter. The same preferences should apply to the pricing
of all assets. Therefore, we include options of all maturities and moneyness. Also,
the same preference parameters will apply to the risk premia associated with the
state variable that makes the mean of the consumption process or the volatility of
the dividend jump. In that sense our approach distinguishes itself from arbitrage-
based methods as developed in Pan (2002), where risk premia are estimated as if
investors had di¤erent risk attitudes towards the various types of risk. To com-
pute the empirical moments, we use a three-month window prior to the time of
estimation. This last feature also pushes in the direction of estimating the struc-
tural parameters of the model. Often option pricing models are estimated with a
window as short as a day making the process more like a calibrating exercise than
an estimation one. We will pursue further such a calibration exercise in the next
section.

More precisely, the parameters are estimated based on matching the following
moments for the options:

f (
St
K
; (T ¡ t); µ) = E

·
GBS

µ
Ut;
St
K
; (T ¡ t)

¶¸
¡ 1
MSt=K

tX

¿=t¡h
¼¿

µ
St
K
; (T ¡ t)

¶
;

(3.9)
where the expectation is with respect to Ut, h equals 3 months, and µ regroups
all the parameters. The notation ¼¿(StK ; (T ¡ t)) denotes a call option on the
underlying stock at time ¿ , with a moneyness equal to St=K and a maturity equal
to (T ¡ t). The quantity MSt=K represents the number of options over the period

16Rosenberg and Engle (2002) use the same 1991-1995 period for estimating empirical pricing

kernels, allowing for comparisons.
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h with a moneyness equal to St=K . We proceeded by partitioning the options
into moneyness categories based on StK and maturity categories based on (T-t). It
should be noted that we take an unconditional expectation of the GBS formula
to build unconditional moments.

We then minimized X X
f(
St
K
; (T ¡ t); µ)2; (3.10)

where the …rst summation is over moneyness categories and the second over the
maturity categories. We also included some moment conditions based on the
stock returns and conditions based on the Euler equations for the identi…cation of
¸ and ';in order to obtain as many moment conditions as there were parameters
to estimate.

For the estimation, we start each trading day with a set of initial values and
use …rst a simplex algorithm to obtain initial estimates followed by a DFP rou-
tine17. The same strategy is also applied to the expected utility model where °
is constrained to a value of 1. We conduct this experiment for …ve years, from
1991 to 1995. Table 5 reports the average values of the preference parameters
that we obtained in each of the …ve years and over the …ve-year period. Look-
ing …rst at the GBS model, we can say that the estimates of the risk aversion
and intertemporal substitution parameters appear reasonable. Over the …ve-year
period, the coe¢cient of relative risk aversion is equal to 0.6838 on average and
the elasticity of intertemporal substitution has a mean value of 0.8532. This is a
result that conforms with intuition since one generally expects that the inverse of
the elasticity of substitution should be greater than the coe¢cient of relative risk
aversion, as emphasized in Weil (1989). As the yearly means and standard errors
indicate, the values obtained are remarkably stable over time, a reassuring fact
for a structural model with a representative investor. It is interesting to compare
these estimates with the values obtained when we constrain the parameter ° to
be equal to 1. Similarly to what was obtained with stock returns series in various
studies aimed at solving the equity premium puzzle, we obtain a high average
value of 7.16 for the coe¢cient of relative risk aversion, with a standard deviation
of 4.83. It is interesting to note that over the same 1991-1995 period, Rosenberg

17To make sure that we explore well the parameter space in the optimization, and especially

the preference parameters, we also used a grid of initial values for the preference parameters.

The …nal results were similar.
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and Engle (2002) …nd an empirical risk aversion of 7.36 with a power utility func-
tion de…ned over wealth (measured by the S&P 500 index), based on S&P 500
option price data. Bakshi, Kapadia and Madan (2001) also estimate by GMM the
coe¢cient of relative risk aversion in a power utility setting based on a relation
between the risk-neutral skewness of index returns and conditional moments of
the physical index distribution. Depending on the set of instruments, estimates
are in the range 1.76 to 11.39.18 Therefore, relaxing the constraint ° = 1 allows
for a more reasonable value for the elasticity of intertemporal substitution. The
value found for ¯ in the expected utility case is somewhat low (0.88 on average),
while it appears more reasonable (0.94 average) when ° is not constrained to be
equal to one.

Another way to assess the reasonableness of the model estimates for the pricing
of the assets is to look at the estimates obtained for the other parameters of the
model, both the fundamental processes and the state variable. The averages over
the 1991-1995 period are given in Table 6. As we saw in the theoretical formulas
in Section 2, the price-consumption (¸) and the price-dividend (') ratios play a
fundamental role in the pricing of the assets. We found averages of around 8 and
11 for the price-consumption ratio and 13 and 19 for the price-dividend ratio with
little variability over the …ve-year period (standard deviations of 0.67 and 0.85
respectively). These values also appear reasonable.

In terms of the state variable we …nd average values of 0.9758 and 0.8078 for the
transition probabilities in state 1 and 2 respectively, implying values of 0.89 and
0.11 respectively for the unconditional probabilities. State 1 is in fact a crash-like
state with a very negative mean for consumption growth (-0.32 on average), but
one should not forget however that the state variable also controls the volatility of
dividends. So state 1 is in fact a low volatility of dividends and low-consumption
state. Given the negative mean value of dividends, it appears that the representa-
tive investor attributes an unreasonably high probability to the bad state, while as
we just saw the inferred preference parameters are reasonable. This is in contrast
with the results obtained by Jackwerth (2000) with a nonparametric methodology.
In a parametric framework, Rosenberg and Engle (2002) …nd results that di¤er

18However, most of the estimated values are in the neighborhood of 2. This is obtained for

short and medium-term options. It is close to the average value of 2.35 that we obtain with

short-term options in section 4.
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from Jackwerth (2000), in particular they do not …nd negative risk aversions when
they use a power pricing kernel. Rosenberg and Engle (2002) …nd results similar
to Jackwerth’s results when they use an orthogonal polynomial pricing kernel. In
particular, they …nd that there is a region of negative risk aversion over the range
from -4% to 2% for returns. Our estimates of the model parameters suggest that
the potential mispricing comes from a very pessimistic assessment of the funda-
mentals of the economy and not from unreasonable preferences.19 In any case,
this exercise illustrates the di¢culty of disentangling the subjective probability
assessments of the states from the preferences. In the nonparametric framework
of Jackwerth (2000), the risk aversion function is recovered by treating as given
both the option prices and the stock index prices to estimate non-parametrically
the risk-neutral and subjective probabilities respectively and by taking their ra-
tios. If prices were generated from our economy with state variables it is possible
that one could recover a bimodal graph for preferences as Jackwerth (2000) does
even though preferences are here constant. The values extracted for the probabil-
ities, say from an implied binomial tree, are pseudo-true values (since the tree is
likely to be misspeci…ed) and will depend on all the parameters of the economy,
including preference parameters. Therefore, the separation between probabilities
and preferences is not as obvious as it seems. Finally, the values estimated for the
volatility parameters, both consumption and dividends, appear quite reasonable.

3.3.2. Pricing Errors

In this section, we will assess the pricing errors associated with our generalized
non-expected utility option pricing formula and compare them with the errors ob-
tained with the expected utility model and a preference-free stochastic volatility
model. Using the estimates obtained each trading day following the estimation

19The unreasonable parameters for the fundamentals process may also result from a misspec-

i…cation of the growth rate equations.We could increase the number of states as in Bonomo and

Garcia (1996) where a three-state bivariate Markov switching model is estimated on an annual

frequency over the last century or so. It should also be noted that our state variable captures

both the jump and the stochastic volatility e¤ects. A way to disentangle the two would be to

introduce a GARCH speci…cation in the volatility of dividends.
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method described in the previous section20 , we forecast the prices for all the
options of the following day separated in long (more than 180 days), medium
(between 180 and 60 days) and short (less than 60 days) maturities irrespective
of moneyness. We average the daily forecast errors over each year for the cor-
responding categories and compare the performance with the absolute and the
relative errors for various maturity categories for all three models. Christo¤ersen
and Jacobs (2001) have recently emphasized that the loss function used in para-
meter estimation and model evaluation should be the same. We use an absolute
dollar measure which is consistent with the mean square criterion used in estima-
tion, but we add also a relative measure to give an idea of the magnitude of the
error. The results are shown in Table 7. The absolute errors appear to be roughly
uniform across maturities, but the relative loss is much smaller for the expensive
long-term options than for the cheap short-term options. However, the ranking of
the models is the same for both measures.

We compare three models: the most general option model for the non-separable
recursive utility model given by formula (2.21), the expected utility model ob-
tained by setting ° equal to one in (2.21) to judge the importance of non-separabilities,
and …nally the preference-free stochastic volatility model which results from (2.21)
when QXY (t; T) = 1 to gauge the importance of preferences for option prices. It
should be emphasized that the objective of this forecasting exercise is to assess
the relative performance of the three models. One cannot hope to obtain errors
of small magnitude by using only unconditional moments in the estimation and a
rather long window in the past. Conditional information needs to be incorporated
in some way to achieve more sensible pricing performances. This can be done in a
structural way by using the option pricing formula as a function of the unobserved
state and by …ltering the current value of the latent state variable. We will take
a simpler approach in the next section by incorporating conditioning information
such as BS implied volatilities in an ad-hoc way in the model.

The results are clear. For all maturities, GBS does better that the speci…cation
where ° is equal to one which in turn is better than the SV speci…cation.21 Com-

20The parameters for the stochastic volatility model are estimated with the same moment

conditions as the two preference models but we impose the constraint that QXY (t; T ) is equal

to one.
21We do not carry a formal statistical test of the equality of errors between the models as
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pared to the stochastic volatility model, the relative error for GBS is reduced by
up to 50 per cent for short-term and medium-term options. This shows that pref-
erences are important in pricing options on the index. Moreover, the data seem to
indicate that preferences are of the non-separable type since the restricted value
of ° generally increases the relative error. Of course, as we advance in maturity,
the relative error falls for all models since the volatility smile ‡attens and pric-
ing tends to approach Black-Scholes. However, for long-term options, the GBS
model performs signi…cantly better than the other two. These results parallel the
simulation results reported in Garcia, Luger and Renault (2001) about the smile
e¤ect. First, it was shown that a non-preference free framework was able to re-
produce the various asymmetries observed in the implied volatility curve inferred
from option price data. Second, the parameter ° was seen to be more important
than the risk aversion parameter ® in calibrating the smile.

To conclude this section, it seems fair to say that we have obtained reasonable
values of the preference parameters based on price data of all options, irrespective
of their moneyness and maturity, but that the pricing errors are very large. In
the next section, we take some liberty with the model and show that by incorpo-
rating conditioning information, focussing on short-term options speci…cally and
reducing the estimation window, the pricing errors are reduced considerably.

4. Calibrating the Model for Practical Option Pricing

In the last section, the goal was to obtain estimates of the structural parameters
of the model. In this section, we aim at minimizing the out-of-sample pricing
errors in the spirit of Bakshi, Cao and Chen (1997). In this type of exercise one
typically makes concessions with the structural model. The window for estimating
the parameters is generally very short (from a day to a week) and conditioning
information is included in an ad hoc way, usually inconsistent with the model. The
best example of this ad hoc approach is to use the BS formula to extract implied
volatility on a given day for a certain maturity and moneyness and to use this
volatility to price options the next day with the same maturity and moneyness. In
so doing, practitioners completely ignore the fact that the assumption of constant
most papers in the literature, but tests of predictive accuracy (as in Diebold and Mariano, 1995

or West, 1996) could be applied (see Dumas, Fleming and Whaley, 1998).
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volatility underlying the BS model is obviously violated since the implied volatility
may vary widely from one day to the next. Yet they use the formula as a tool
and the performance of this rather crude method is di¢cult to beat by more
sophisticated models unless one is ready to recognize that the parameters of the
model are unstable and their estimates need to be updated.22

In what follows, we have decided to adapt our model in an ad hoc way in order
to improve its out-of-sample pricing performance. First, we reduce the window
over which we estimate the parameters to 5 days instead of 3 months. Second, we
incorporate the option’s implied volatility ¾¤t into the dividend volatility process
as23:

¾Y (Ut = j) = ±0j + ±1j¾¤t
p

(T ¡ t); (4.1)

for j = 1; 2.
Parameter estimates were then based on a modi…cation of the estimation

method where, for a given maturity (T-t), we minimized

1
MSt=K

tX

¿=t¡h

·
E

·
GBS

µ
Ut;
St
K
; (T ¡ t); ¾¤t

¶¸
¡ ¼¿

µ
St
K
; (T ¡ t)

¶¸2
: (4.2)

Note that we maintain the use of unconditional moments.24 Therefore, there is a
di¤erent set of parameter estimates for each maturity category. (This relaxes the
implicit constraints of the form p(2)ik = p(1)ij p

(1)
jk , where p(s)¢¢ are s-period transition

22Heston and Nandi (2000) claim that their closed-form GARCH option pricing formula out-

perform the ad hoc BS model of Dumas, Fleming and Whaley (1998) even without updating

but a closer look at the results (Table 7) shows that this is not true for short-term options. Even

with updating the GARCH model does not outperform the ad hoc BS approach for close-to-the-

money short-term options. Moreover, a more precise procedure, using a model estimated with

the same criterion as in the out-of-sample performance evaluation, produces a smaller error for

the practitioner Black-Scholes methodology, as pointed out by Christo¤ersen and Jacobs (2001).
23The

p
T ¡ t in the formula below refers to the exact maturity of each option used to extract

the corresponding implied volatility.
24We could have probably improve further the out-of-sample pricing performance by …ltering

the state probability at time t and use this information to compute the expectation of the GBS

formula.

28



probabilities). Also, we now leave aside the moment conditions based on stock
returns and use only the moment conditions associated with the options.

In addition, we impose the following constraints:

Et[QXY (t; T )] = 1; (4.3)

Et[eB(t; T )] = exp(¡r(T ¡ t)); (4.4)

where r is the observed interest rate. These constraints were implicitly embodied
in the original estimation method in section 3 through the Euler equations for ¸
and '. With the modi…ed method, it is no longer (numerically) feasible to enter
the Euler equations into the estimation problem since ' depends on ¾Y , which now
depends on ¾¤t . Therefore, ¸ and ' are treated as free parameters to be explicitly
estimated along with the other model parameters; hence the …rst constraint. The
second constraint serves to incorporate information on the interest rate.

Let us start with pricing errors since the goal of the calibration exercise is to
improve the out-of-sample performance. We now use estimates obtained every
day to forecast the prices for all the short maturity (less than 60 days) options
of the next day irrespective of moneyness. We average the daily forecast errors
over each year and compare the performance of the previous three models (non-
expected utility, expected-utility and preference-free stochastic volatility) to which
we added a practitioner BS model in the spirit of Dumas, Fleming and Whaley
(1998).25 Table 8A reports the absolute and relative pricing errors for each year
in the 1991-1995 period. First, note that the relative errors associated with the
preference-based GBS or EU formulas have fallen considerably and vary between
1% and 9%. It is interesting to note that the two preference-based models produce
now very similar errors. However, the relative errors of the BS ad hoc model
remain smaller. We also report in Table 8B out-of-sample pricing errors at a
horizon of 5 days for the GBS and PBS models. The gap between the two models

25Note that we do not estimate a volatility function as in Dumas, Fleming and Whaley (1998).

We simply group options by moneyness categories and forecast the volatility of an option one

day ahead by the implied volatility of the moneyness category the day before. The procedure

of Christo¤ersen and Jacobs (2001) might have produced a lower error for the practitioners’ BS

model.
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is mostly maintained, except in the beginning of the sample where the BS absolute
error tends to increase faster than the GBS one.26

The reduction in pricing errors with respect to section 3 can come from three
sources. We assess the contribution of each source for the year 1991. First, in this
calibration exercise, we focus the estimation on short-term options, compared with
all options in section 3. Reestimating the same GBS model only for short options
reduces by half the absolute error for the year 1991 (from 3.14 to 1.52 for the
absolute error and from 0.859 to 0.285 for the relative error). The second source
of error reduction is the reduced span of the data to carry out the estimation,
from three months to 5 days. This brings down the absolute error to 1.41 and
the relative error to 0.0935, but these are still higher than the highest errors of
Table 8A for the SV model. Indeed, the introduction of the implied volatility
information reduces substantially the errors, bringing down the absolute error to
0.92 and the relative error to 0.0068 as reported in Table 8A.

The errors of the SV model are de…nitely higher than the ones of the PBS model
yet they both use implied volatility. The main di¤erence comes from the fact that
the PBS method uses the implied volatility of the day before while the SV method
smoothes the implied volatility of the last …ve days. This underlines the penalty
imposed by the averaging over the past values for out-of-sample forecasting. The
risk aversion parameter appears therefore of prime importance since it reduces
the error considerably despite the averaging e¤ect over …ve days for the implied
volatility.

A reassuring result is that the preference parameter estimates obtained for the
GBS model, although much more variable than before both within and between
the years, are close to the estimates we obtained with the 3-month window esti-
mation, as illustrated in Table 9. Both the relative risk aversion coe¢cient and
the elasticity of intertemporal substitution are slightly lower on average (0.42 and
0.66 respectively). The risk aversion parameter in the expected utility model is
now estimated at a lower more reasonable value of 2.35. Notice also that the
estimates of ¯ in the expected utility model are much more reasonable than with
the previous method both for the EU and the GBS models. While the parameters
are di¢cult to interpret in this less structural model, it is worth noting that

26As expected, this trend is even more accentuated for longer horizons such as t+10 and t+15.

The results are not reported here for space considerations.
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we obtained more reasonable parameters for the consumption mean parameters
(1% and -17% in states 1 and 2, where state 1 is also the low dividend volatility
parameter, and where p11 and p22 are 0.80 and 0.22 respectively. Therefore, the
good state (high level of consumption growth and low volatility of dividends27)
appears to be more frequent as one should expect.

5. Conclusion

In this paper, we contribute to the empirical asset pricing literature by estimating
a recursive utility model with option prices. Not only do we show that preferences
matter for option pricing but also that option prices help distinguish between the
expected and the non-expected utility models. The informativeness of option price
data about preference parameters is con…rmed in a simulation experiment. The
estimates we obtain for the preference parameters are quite reasonable. This is in
contrast with recent results of Jackwerth (2000) who infers risk aversion functions
that are at odds with usual theoretical assumptions. It should be emphasized that
in our method preference parameters enter consistently in the equilibrium pricing
of all assets.

Of course, given the simplicity of the practitioners’ Black-Scholes approach and
its good predictive performance, our structural model faces a tough challenge as a
competitor. However, we consider that both our simulation experiments and the
estimation performed with S&P 500 option price data strongly support the claim
that preference parameters are important in option pricing. To better understand
the structure of index option prices, one can think of several possible extensions
in terms of preference speci…cations or distributions for the state variables. One
potential weakness of our model for fundamentals is the modeling of volatility. Our
speci…cation captures only sudden changes in volatility in dividends. The model
will gain by adding some GARCH e¤ects to the switching regimes governing the
dividend process.

27This is in line with usual empirical evidence. It is hard to say what explains the changes

in parameters estimates with respect to the unintuitive results obtained in section 3.3.1 where

options of all maturities and moneyness were considered all together.
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Appendix

The proof of the option pricing formula is based on the following lemma.

Lemma: If

0
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Z1

Z2

1
CCA is a bivariate Gaussian vector with

E

0
BB@
Z1

Z2

1
CCA =

0
BB@
m1

m2

1
CCA ; V ar

0
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Z1

Z2

1
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0
BB@

!21 ½!1!2

½!1!2 !22

1
CCA ;

then E[exp(Z1)1[Z2¸0]] = exp(m1 +
!21
2 )©(

m2
!2

+ ½!1), where © is the cumulative
normal distribution function.

Proof of Lemma:
Let us by Q the probability measure corresponding to the above-speci…ed

Gaussian distribution of (Z1; Z2) and de…ne the probability eQ by:

d eQ
dQ

(Z) = exp[(Z ¡m1) ¡ !
2
1

2
]:

Then, with obvious notation:

E[(expZ1)(1[Z2¸0])] = exp(m1+ !21
2 ) eQ[Z2 ¸ 0]

But by Girsanov theorem, we know that under eQ, Z2 is a Gaussian variable
with mean m2 + ½!1!2 and variance !22: Therefore:

eQ[Z2 ¸ 0] = 1 ¡ ©[
¡m2 ¡ ½!1!2

!2
] = ©[

m2

!2
+ ½!1]

Proof of option pricing formula:
>From the Euler equation, we have that the price of an option on the dividend-

paying stock is:
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In order to arrive at the generalized Black-Scholes formula, we will prove that

Gt
St

= Et [QXY (t; T)©(d1)]

and
Ht
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"
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#
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First, given that:
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and:
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= log '(U
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Gt and Ht can be rewritten as:
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)

By the law of iterated expectations:

Et(:) = Et[Et(:jUT1 )];

we are led to compute some expectations of the form E [exp(Z1)1[Z2¸0]]; where
(Z1; Z2)0 is a bivariate Gaussian vector.

(a) Proof of …rst part of the formula GtSt = Et [QXY (t; T)©(d1)].

We apply the above lemma with:
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We know that, given UT1 ; (Z1; Z2)0 is a bivariate Gaussian vector with the
following moments:
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It is worth noticing at this stage that:
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The last two terms cancel when one takes out the intermediate dividends (all
except T) which do not accrue to the option holder. Therefore:
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Therefore, the above application of the lemma proves that:
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In other words, again by realizing that without intermediate dividends bTt =
'(UT1 )+1
'(Ut1)

;we have proven that:

Gt
St

= Et [QXY (t; T)©(d1)]

which is the required result.
(b) Proof of second part of the formula Ht = KEt[ eB(t; T)©(d2)]:
We apply the lemma with:
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By the same argument as above, we then obtain:
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This provides the required result:

Ht =KEt[eB(t; T)©(d2)]:
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Tables 1, 2 and 3: Descriptive statistics for the method-of-moments estimator of pref-

erence parameters based on simulated asset prices.

Table 1
Options Prices ½ ® ¯

(time series)
Mean -10.1585 -4.6162 0.9445

Median -10.2131 -4.7979 0.9445
Std Err 1.0524 1.8975 0.0093
RMSE 1.0638 1.9350 0.0108

Options Prices ½ ® ¯
(across moneyness)

Mean -10.1421 -4.6770 0.9504
Median -10.2171 -4.7927 0.9500
Std Err 1.0117 1.2921 0.0159
RMSE 1.0212 1.3312 0.0159

Table 2
Stock Returns ½ ® ¯

Mean -11.0711 -2.4557 0.9950
Median -10.9812 -1.8966 0.9955
Std Err 1.0457 1.6153 0.0035
RMSE 1.4965 3.0134 0.0451

Table 3

Price-dividend ratio ½ ® ¯

Mean -10.5537 -3.5051 0.9501

Median -10.0003 -4.9861 0.9497

Std Err 1.2742 2.1530 0.0017

RMSE 1.3887 2.6202 0.0017

Note: The moments used in the estimation are the mean, the variance and the

autocovariance of the respective series. For options, we also used the means of three

options with di¤erent moneyness. The true values are ½ = ¡10; ® = ¡5 and ¯ =

0:95 for the preferences and p11 = 0:9; p22 = 0:6; mX1 = 0:0015, mX2 = ¡0:0009,
¾X1 = ¾X2 = :003, mY 1 = mY 2 = 0; ¾Y 1 = 0:02, ¾Y 2 = 0:12 and ½XY = 0:6 for the

state variable and conusmption and dividend processes. The results are reported for

options with maturity of one period. The results are based on 1000 replications of the

experiment.
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Table 4: Descriptive statistics for the joint estimation of the structural parameters by

an exact method-of-moments based on simulated asset prices.

¯ ½ ® p11 p22 ½XY
Mean 0.9164 -10.0517 -4.9728 0.8983 0.5916 0.5954

Median 0.9504 -9.9903 -5.0177 0.9010 0.5983 0.5997
Std Err 0.1119 1.4381 1.3672 0.0507 0.0749 0.0980
RMSE 0.1168 1.4383 1.3667 0.0507 0.0753 0.0981

mX1 mX2 ¾X mY ¾Y 1 ¾Y 2
Mean 0.0520 0.0500 0.0068 -0.0780 0.0462 0.1849

Median 0.0013 -0.0052 0.0031 -0.0088 0.0193 0.1249
Std Err 1.0176 0.8822 0.0267 0.5529 0.3704 0.2028
RMSE 1.0183 0.8832 0.0269 0.5581 0.3711 0.2128

Note: The true values are ½ = ¡10; ® = ¡5 and ¯ = 0:95 for the preferences and

p11 = 0:9; p22 = 0:6; mX1 = 0:0015, mX2 = ¡0:0009, ¾X1 = ¾X2 = :003, mY 1 = mY 2 =

0; ¾Y 1 = 0:02, ¾Y 2 = 0:12 and ½XY = 0:6 for the state variable and consumption and

dividend processes. The results are based on 1000 replications of the experiment.
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Table 5: Yearly Means and Standard Errors of Daily Estimated Preference Parameters

from S&P 500 Option and Stock Price Data.

GBS Model
½ ° ¯ CRRA (1¡®) EIS

1991 -0.2048 (0.0904) -1.6637 (0.9144) 0.9397 (0.0372) 0.6885 (0.0987) 0.8342 (0.0564)
1992 -0.0936 (0.0400) -1.9975 (0.4171) 0.9783 (0.0180) 0.8201 (0.0646) 0.9156 (0.0321)
1993 -0.2007 (0.0737) -2.4294 (1.1218) 0.9413 (0.0380) 0.5509 (0.1269) 0.8358 (0.0494)
1994 -0.2110 (0.1211) -1.7369 (0.6011) 0.9142 (0.0437) 0.6706 (0.1366) 0.8334 (0.0778)
1995 -0.1963 (0.1504) -1.8744 (0.7700) 0.9029 (0.0377) 0.6884 (0.1559) 0.8466 (0.0870)

1991-1995 -0.1812 (0.1114) -1.9406 (0.8458) 0.9353 (0.0444) 0.6838 (0.1478) 0.8532 (0.0710)

Expected Utility Model
½ ¯ CRRA (1¡®)

1991 -8.7505 (1.7685) 0.9513 (0.0229) 9.7505 (1.7685)
1992 -6.2337 (3.7156) 0.8401 (0.1259) 7.2337 (3.7156)
1993 -4.9742 (1.8897) 0.9710 (0.0275) 5.9742 (1.8897)
1994 -5.1044 (7.0187) 0.8321 (0.1026) 6.1044 (7.0187)
1995 -5.7259 (6.1479) 0.8172 (0.1230) 6.7259 (6.1479)

1991-1995 -6.1590 (4.8260) 0.8824 (0.1130) 7.1590 (4.8260)

Note: The estimation is based on the same exact method of moments used in Table 4.

CRRA denotes the coe¢cient of relative risk aversion, EIS the elasticity of intertemporal

substitution.
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Table 6: Yearly Means and Standard Errors of Daily Estimated Parameters for the

State Variable and Consumption and Dividend Processes from S&P 500 Option Price

Data over the Period 1991-1995.

¸1 ¸2 '1 '2 p11 p22 ½XY
8.1182 10.6924 12.5700 18.8356 0.9758 0.8078 -0.3178
(0.6675) (0.8453) (0.7349) (1.5631) (0.0243) (0.1266) (0.5120)

mX1 mX2 ¾X mY ¾Y 1 ¾Y 2
-0.3216 0.0623 0.0202 -0.0688 0.0365 0.1139
(0.1654) (0.2270) (0.0427) (0.0076) (0.0176) (0.0802)

Note: The estimation is based on the same exact method of moments used in Table

4.
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Table 7: Yearly Means of Absolute and Relative Pricing Errors for Short, Medium and

Long-Term Call Options Averaged Over Moneyness.

Relative Errors
Short-Term GBS EU SV
1991 (3132) 0.8588 1.4995 1.5798
1992 (2928) 1.3303 1.8417 1.9287
1993 (2921) 1.7720 1.7636 1.7769
1994 (3365) 1.4821 1.9350 2.3282
1995 (4022) 1.4664 1.3508 2.1910

1991-1995 Average 1.3800 1.6800 1.9600
Absolute Errors

Short-Term GBS EU SV
1991 (3132) 3.1444 4.4779 4.8473
1992 (2928) 3.6726 4.2741 5.2431
1993 (2921) 4.2028 3.8674 4.2968
1994 (3365) 3.1141 3.8733 4.4483
1995 (4022) 4.0907 4.2658 5.6873

1991-1995 Average 3.6400 4.1500 4.9000

Relative Errors
Medium-Term GBS EU SV
1991 (2187) 0.3436 0.7731 0.7669
1992 (2379) 0.7215 1.1348 1.2831
1993 (2163) 1.2042 1.3287 1.3471
1994 (2897) 1.2097 1.5967 1.9032
1995 (2991) 0.8658 0.9799 1.4150

1991-1995 Average 0.8700 1.1600 1.3400

Absolute Errors
Medium-Term GBS EU SV
1991 (2187) 2.8921 3.9251 4.4258
1992 (2379) 3.3759 4.6117 5.4437
1993 (2163) 4.4210 4.4138 4.9754
1994 (2897) 3.6488 4.4388 4.9771
1995 (2991) 4.5432 5.2378 6.4743

1991-1995 Average 3.7800 4.5300 5.2600

Relative Errors
Long-Term GBS EU SV
1991 (694) 0.0036 0.1946 0.2374
1992 (538) -0.0170 0.2246 0.2128
1993 (492) 0.2138 0.2969 0.2278
1994 (910) -0.0006 0.0864 0.2543
1995 (1053) 0.1212 0.2417 0.5201

1991-1995 Average 0.0600 0.2100 0.2900

Absolute Errors
Long-Term GBS EU SV
1991 (694) 2.5882 3.0367 3.4266
1992 (538) 3.0306 3.9870 3.3401
1993 (492) 2.5911 2.9982 2.8856
1994 (910) 3.5838 4.4165 3.5591
1995 (1053) 3.3501 4.4264 4.4793

1991-1995 Average 3.0300 3.7700 3.5400

Note: GBS refers to the generalized Black-Scholes formula in (2.21); EU to the same

formula special case where the parameter ° is equal to 1; SV to the stochastic volatility

formula (special case of (2.21) with QXY (t; T) = 1): The numbers in parentheses

besides the years indicate the number of options considered.
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Table 8: Yearly Means of Absolute and Relative Errors for Short-Term Call Options

Averaged Over Moneyness with Conditional Pricing based on Implied Volatility.

Table 8A (one-day ahead forecast)

Relative Errors
Short-Term GBS EU SV PBS
1991 (3132) 0.0068 0.0078 0.0573 -0.0065
1992 (2928) 0.0212 0.0214 0.0728 0.0022
1993 (2921) 0.0221 0.0216 0.0775 -0.0034
1994 (3365) 0.0886 0.0888 0.1914 0.0473
1995 (4022) 0.0626 0.0611 0.1619 0.0092

1991-1995 Average 0.0400 0.2007 0.1100 0.0100
Absolute Errors

Short-Term GBS EU SV PBS
1991 (3132) 0.9223 0.9214 1.0630 0.8019
1992 (2928) 0.7828 0.7829 0.8834 0.6899
1993 (2921) 0.7441 0.7456 0.8540 0.6616
1994 (3365) 0.6991 0.6987 0.8763 0.5959
1995 (4022) 0.9637 0.9656 1.2545 0.6802

1991-1995 Average 0.8200 0.8200 0.9900 0.6900

Table 8B (…ve-day ahead forecast)

Relative Errors
Short-Term GBS PBS
1991 (3085) 0.032 0.015
1992 (2861) 0.017 0.002
1993 (2871) 0.017 0.009
1994 (3329) 0.087 0.044
1995 (3969) 0.068 0.0085

1991-1995 Average 0.040 0.020

Absolute Errors
Short-Term GBS PBS
1991 (3085) 1.0432 0.9335
1992 (2861) 0.8226 0.7438
1993 (2871) 0.8151 0.7259
1994 (3329) 0.8642 0.7370
1995 (3969) 1.1004 0.7635

1991-1995 Average 0.9300 0.7800

Note: GBS refers to the generalized Black-Scholes formula in (2.21); EU to the same

formula special case where the parameter ° is equal to 1; SV to the stochastic volatility
formula (special case of (2.21) with QXY (t; T ) = 1); PBS refers to the practitioners’

BS model. The numbers in parentheses besides the years indicate the number of options

considered.
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Table 9: Yearly Means and Standard Errors of Daily Estimated Preference Parameters

from S&P 500 Option Price Data.

GBS Model
½ ° ¯ CRRA (1-®) EIS

1991 -0 .9010 (0 .3821) -0 .8324 (0 .3887) 0 .9150 (0 .0135) 0 .3864 (0 .07534) 0 .5500 (0 .1207)

1992 -0 .9522 (0 .5600) -0 .4948 (0 .4557) 0 .8704 (0 .0512) 0 .7000 (0 .1617) 0 .5617 (0 .1736)

1993 -0 .3631 (0 .2426) -2 .9782 (1 .2942) 0 .9448 (0 .0082) 0 .1849 (0 .0312) 0 .7518 (0 .1043)

1994 -0 .6221 (0 .4469) -1 .8325 (0 .8712) 0 .9471 (1 .0620) 0 .2068 (0 .0088) 0 .6541 (0 .1393)

1995 -0 .3040 (0 .0941) -1 .2201 (0 .3075) 0 .9526 (0 .0086) 0 .6396 (0 .1101) 0 .7706 (0 .0512)

1991 -1995 -0 .6290 (0 .4656) -1 .4707 (1 .1597) 0 .9259 (0 .0395) 0 .4238 (0 .2340) 0 .6575 (0 .1549)

Expected Utility Model
½ ¯ CRRA (1-®)

1991 -1 .5242 (2 .5058) 0 .9804 (0.0198) 2 .5242 (2 .5107)

1992 0 .1664 (1.3060) 0 .9620 (1.5749) 0 .8336 (1 .3085)

1993 -1 .1387 (1 .1143) 0 .9458 (0.0140) 2 .1387 (1 .1166)

1994 -2 .0040 (1 .3927) 0 .9871 (0.0066) 3 .0040 (1 .3955)

1995 -2 .2802 (1 .7051) 0 .9681 (0.0008) 3 .2802 (1 .7085)

1991 -1995 -1 .3537 (1 .8847) 0 .9687 (0 .020) 2 .3537 (1 .8847)

Note: The parameters are estimated with an exact method-of-moments applied to
short-term S&P 500 call option prices and a dividend process incorporating implied

volatility information. CRRA denotes the coe¢cient of relative risk aversion, EIS the

elasticity of intertemporal substitution.
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