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Résumé / Abstract

Nous décrivons une méthode d'estimation pour les paramètres des modèles
ARFIMA stationnaires ou non-stationnaires, basée sur l'approximation auto-
régressive. Nous démontrons que la procédure est consistante pour -½ < d < 1, et
dans le cas stationnaire nous donnons une approximation Normale utilisable pour
inférence statistique. La méthode fonctionne bien en échantillon fini, et donne des
résultats comparables pour la plupart des valeurs du paramètre d, stationnaires ou
non. Il y a aussi des indications de robustesse à la mauvaise spécification du
modèle ARFIMA à estimer, et le calcul des estimations est simple.

This paper describes a parameter estimation method for both stationary
and non-stationary ARFIMA (p,d,q) models, based on autoregressive
approximation. We demonstrate consistency of the estimator for -½ < d < 1, and
in the stationary case we provide a Normal approximation to the finite-sample
distribution which can be used for inference. The method provides good finite-
sample performance, comparable with that of ML, and stable performance across
a range of stationary and non-stationary values of the fractional differencing
parameter. In addition, it appears to be relatively robust to mis-specification of
the ARFIMA model to be estimated, and is computationally straightforward.
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1. Introduction

Long memory processes, and in particular models based on fractional integration

as in Granger and Joyeux (1980) and Hosking (1981), have come to play an increasing

role in time series analysis as longer time series have become available; �nancial time

series have yielded an especially large number of applications. There is a correspondingly

substantial literature on the estimation of such models, both in the frequency domain and

the time domain; these contributions can be further sub-divided into those which estimate

a fractional integration (FI) parameter jointly with the standard ARMA parameters of an

ARFIMA model, and those which estimate the FI parameter alone, leaving any ARMA or

other parameters for possible estimation in a second stage.

Important contributions to frequency-domain estimation of the FI parameter include

those of Geweke and Porter-Hudak (1983) and Robinson (1995). In the time domain,

Hosking (1981), Li and MacLeod (1986) and Haslett and Ra�erty (1989) suggested esti-

mation strategies based on �rst-stage estimation of the long-memory parameter alone. A

potential �nite-sample problem arises in processes that have a short-memory component,

which can lead to bias as the short-memory components project onto the long-memory

parameter in the �rst stage; see Agiakloglou et al. (1992) for a discussion of this bias in

the context of the Geweke and Porter-Hudak (hereafter GPH) estimator.

Sowell (1992a) and Tieslau et al. (1996) treat joint estimation of fractional inte-

gration and ARMA parameters, in the former case via Maximum Likelihood, and in the

latter via a minimum-distance estimator based on estimated autocorrelations and the the-

oretical autocorrelations for a given ARFIMA(p; d; q) process. Because they are based on
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autocorrelations, these methods require that the process be stationary, or (assuming prior

knowledge of the non-stationarity) be transformed to stationarity. Martin and Wilkins

(1999) use the indirect inference estimator, which uses simulation to obtain the function

to which distance is minimized.

The present paper o�ers an alternative estimation method for joint estimation of a

set of ARFIMA parameters which is applicable to both stationary and non-stationary pro-

cesses. The method is based on autoregressive approximation, as considered by Galbraith

and Zinde-Walsh (1994, 1997), and has several advantages in addition to ease of com-

putation. First, it o�ers stable performance across a range of stationary (including `anti-

persistent') and non-stationary values of the long-memory parameter d; that is�1

2
< d < 1;

and therefore does not require prior knowledge of the non-stationarity or transformation to

the stationarity region. In general, the autoregressive method performs well in the �nite-

sample cases that we examine, yielding root mean squared errors comparable with those of

exact time-domain ML in the cases for which that estimator is applicable. Perhaps most

importantly, this method appears to be relatively robust to mis-speci�cation, being based

on AR approximations which can represent quite general processes. We o�er simulation

evidence on each of these points.

In Section 2 we briey review estimation of ARFIMA models in the time domain and

autoregressive approximation of ARFIMA processes, and present estimators based on this

approximation. Section 3 considers both asymptotic and �nite-sample properties of this

estimation strategy, and Section 4 concludes.
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2. ARFIMA process representation and time-domain estimation

2.1 Assumptions and the autoregressive representation

Consider an ARFIMA(p; d; q) process, de�ned as

P (L)(1� L)dyt = Q(L)"t; (2:1:1)

where fytgTt=1 is a set of observations on the process of interest and f"tg
T
t=1 forms a station-

ary innovation sequence such that for the �� algebra Ft�1 generated by f"� ; � � t�1 g;

E("tjFt�1) = 0 a.s., E("2t jFt�1) = �2 > 0 a.s., and E("4t ) <1: Let P (L); Q(L) be polyno-

mials of degrees p and q; such that P (L) = 1��1L�: : : �pL
p; Q(L) = 1+�1L+: : :+�qL

q:

Assume that Q(L) has all roots outside the unit circle, so that the moving average part of

the process is invertible; we can then write

[Q(L)]�1P (L)(1� L)dyt = "t: (2:1:2)

We will assume also that Q(L) and P (L) have no common factors, and that the roots

of P (L) are outside the unit circle. However, we will consider non-stationarity arising

through values of d greater than 1

2
, and provide both analytic and simulation results for

those cases. We treat the process as having zero mean, although we will note below the

e�ect of using an estimated mean, and will use an estimated mean in simulation evaluation

of the estimator.

The term (1�L)d may be expanded as

(1� L)d =
1X
k=0

�
d

k

�
(�L)k =

1X
k=0

bkL
k; (2:1:3)
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with b0 = 1; b1 = �d; b2 = 1

2
d(1 � d); bj = 1

j
bj�1(j � 1 � d); j � 3: If jdj < 1

2
;

then
P1

k=0

�
d

k

�2
< 1; and (2.1.3) de�nes a stationary process. For d > �1

2
; (1 � L)d is

invertible, and expression (2.1.2) can therefore be used to obtain the coe�cients of the

in�nite autoregressive representation of the ARFIMA process y :

(1�
1X
i=1

�iL
i)yt = "t; (2:1:4)

with �i = bi �
Pq

j=1 �j�i�j +
Pp

j=1 �jbi�j and
P

�2i <1 where jdj < 1

2
:

2.2 Time-domain estimation

Time-domain estimators have been proposed by, among others, Hosking (1981), Li

and MacLeod (1986), Sowell (1992a) and Tieslau et al. (1996). The latter two allow joint

estimation of all ARFIMA parameters.

Sowell (1992a) gives an exact Maximum Likelihood algorithm for stationary ARFIMA

models with distinct roots in the AR polynomial. As Baillie (1996) notes, ML is computa-

tionally burdensome here, since substantial calculation (including T �T matrix inversion)

is required at each iteration of the numerical optimization. Below we compare the proper-

ties of exact ML with those of an estimator based on the coe�cients of an autoregressive

approximation, analogous to the ARMA estimation methods of Saikkonen (1986) and Gal-

braith and Zinde-Walsh (1997). To obtain the estimator we will use estimators of the coef-

�cients of a long autoregression, and the autoregressive expansion of the ARFIMA(p; d; q)

model, to obtain the estimates of the long memory parameter d together with parameters

which characterize the \short memory" parts of the model. Below we will give a rule of

thumb, based on ln(T ); for lag length selection.

4



Before de�ning the ARFIMA parameter estimators, we therefore begin by considering

three estimators for the coe�cients of an autoregressive approximation, on which ARFIMA

estimates can later be based. Each of the three has the same asymptotic limit in the sta-

tionarity region.1 One of the three, the OLS estimator, can be used in the non-stationarity

region as well; for that reason OLS would be used in applications, where stationarity is not

normally known a priori to apply. However other estimators, in particular the Yule-Walker,

are convenient for obtaining theoretical properties in the stationarity region.

The OLS estimator ~aOLS solves

~aOLS = argmin

�
1

T

�� TX
t=k+1

(yt � �1yt�1 � � � � � �kyt�k)
2

�
: (2:2:1)

The second estimator is the spectral estimator, asymptotic properties of which were

examined by Yajima (1992) for Gaussian errors. We denote it ~asp; it follows from Yajima

(1992) that, in the present notation,

~asp = argmin

�
1

T

��
y21 + (y2 � �1y1)

2 + � � �+ (yk � �1yk�1 � � � � � �k�1y1)
2

+
TX

t=k+1

(yt � �1yt�1 � � � � � �kyt�k)
2

�
:

(2:2:2)

The third is the Yule-Walker estimator. De�ne j = E(ytyt�j) and ̂j =

1

T�k

PT

t=k+1 ytyt�j ; �(k) as the k � k matrix with f�(k)gij = ji�jj; and �̂(k) as the

matrix with elements f�̂(k)gij = ̂ji�jj: The Yule-Walker estimator is then ~aYW ; which

1Each of course depends on the AR order parameter, k; but to simplify notation this

dependence will not be indicated explicitly.
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solves

�̂(k)~aYW = ̂(k); (2:2:3)

where ̂(k) = (̂1; ̂2; : : : ̂k): Consider also the population analogue of (2.2.3),

�(k)a(k) = (k); (2:2:4)

where a(k) is the solution to the system.

The terms in the �rst-order conditions that ~aOLS and ~asp solve di�er from (2.2.3), for

~aY W ; by terms of order in probability at most Op(kT
�1); it follows that all of the estimators

above di�er by at most Op(k2T�1):2 Therefore each one has the same asymptotic limit

a(k); and the choice of k as O(lnT ) implies that all of the estimators have the same

asymptotic distributions. We will therefore use the notation ~a to denote any one of these

estimators; no distinction among them need be made in considering asymptotic properties

of ARFIMA parameter estimators based on such autoregressive estimates, for � 1
2 < d < 1

2 .

Below we use the Yule-Walker estimator in derivations for the stationary case; we use OLS

for derivations in non-stationary cases and in the Monte Carlo experiments reported in

subsection 3.3.

The values a(k) of (2.2.4) are related to the coe�cients of the in�nite autoregressive

representation of the stationary ARFIMA process. If we denote by �[1;1) the vector of

coe�cients of the in�nite autoregression (2.1.4), then that vector solves

�(1)�[1;1) = (1): (2:2:5)

2The only non-standard case here is that of �1
2 < d < 0; where the eigenvalues of ��1

could grow at a rate as high as k�2d; as shown in Appendix A.
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Partition �0[1;1) as (�
0
[1;k] : �

0
[k+1;1)); and denote the top-right sub-matrix of �1; parti-

tioned conformably, by �[k+1;1): Then

�(k)�[1;k] +�[k+1;1)�[k+1;1) = (k);

and therefore

a(k) � �[1;k] = (�(k))�1�[k+1;1)�[k+1;1): (2:2:6)

Thus an autoregressive estimator of �[1;k] will include a deterministic bias represented

by (2.2.6). We demonstrate below that this bias goes to zero as k; T !1:

2.3 ARFIMA parameter estimation

Now that we have introduced estimators of autoregressive coe�cients for the ARFIMA

process, we can proceed to de�ne estimators for the full set of ARFIMA parameters based

on any of the above estimators. We de�ne the vector of all the parameters of ARFIMA

to be estimated by ! = (d; �0; �0); where �0 = (�1; : : : ; �p); �
0 = (�1; : : : ; �q): Let ~� be

any of the autoregressive coe�cient estimators introduced above, and let �(!) denote the

vector containing the coe�cients of the in�nite autoregressive representation of the process,

viewed as functions of !.

We will examine a minimum-distance estimator of the form

~!� = argmin (~a � �(!))0
(~a� �(!)); (2:2:7)

constructed using any of the estimators ~a of (2.2.1-2.2.3), where �(!) is given explicitly in

(2.1.4); 
 represents a k � k weighting matrix. In all simulations below, 
 is chosen as

the inverse of the estimated covariance matrix of ~a: The use of such a weighting matrix
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implies giving greater emphasis to the relatively precisely-estimated coe�cients on lower

lags, which contributes to the e�ciency of the estimator.3

It is the fact that this estimator uses autoregressive parameters, instead of autocorre-

lations, that allows its use for non-stationary processes.4 Note �nally that estimates can

be obtained for multiple speci�cations of an ARFIMA model from a single autoregressive

�t to the data, which is convenient in model selection (information criteria, for example,

can be computed based on the residuals from each of several models).

3. Properties and performance of the estimators

In this section we consider asymptotic and �nite-sample properties of ARFIMA pa-

rameter estimates based on (2.2.7), obtained using any of the various preliminary autore-

gressive estimators (OLS, spectral, Yule-Walker) discussed in Section 2. We will also note

the corresponding properties of some of the existing ML, MDE and spectral estimators.

Maximum likelihood produces asymptotically Normal estimates of ARFIMA param-

eters which converge at the usual T
1

2 rate for stationary Gaussian processes (Dahlhaus

1989). The Quasi-MLE has this property as well for a range of assumptions on the error

3If 
 = I, the k � k identity matrix, we have an unweighted form of the estimator. In
simulations we found substantial contributions to �nite-sample e�ciency from the use of


 = cov(~a)�1; and this form alone is used in the results presented below.
4It is noteworthy that for the pure ARFIMA(0,d,0) case, an estimator can be based on
the �rst coe�cient of the approximating AR model, since that �rst coe�cient converges
to �d in this case, which corresponds to (2.1.3). This point has a parallel in the use of

the same estimator by Galbraith and Zinde-Walsh (1994) for the pure MA(1) model (and
also in the fact, noted by Tieslau et al., that a consistent estimator of d can be based on

the �rst autocorrelation; that is, d̂ = �̂1
(1+�̂1)

). The fact that the same estimate can serve

for either of two di�erent models underlines, of course, the importance of model selection

in determining the character of the estimated representation.
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process; see Giraitis and Surgailis (1990). The MDE of Tieslau et al. converges at the

standard rate to an asymptotic normal distribution for d 2 (�1
2 ;

1
4 ); at d =

1
4 , convergence

is to the normal distribution at rate ( T
log(T ))

1

2 ; and for d 2 (14 ;
1
2 ) convergence is at rate

T ( 1
2
�d) and the limiting distribution is non-normal. For the Geweke and Porter-Hudak

estimator based on least squares estimates of a regression with dependent variable given

by the harmonic ordinates of the periodogram, and for a generalized version which discards

a number of lower frequencies, the asymptotic properties are obtained by Robinson (1995).

Asymptotic properties of the indirect inference estimator for long memory models (Martin

and Wilkins 1999) have not been established.

Before considering properties of ARFIMA parameter estimates based on autoregres-

sion, we examine the estimates ~a of the autoregressive parameters themselves. In subsection

3.1 we show consistency of ~� in both stationary and non-stationary cases, and show that

a Normal approximation to the asymptotic distribution can be used. Consistency and

distributional results for the estimates ~!� of the ARFIMA parameters are given in 3.2.

Simulation results describing Finite sample performance appear in 3.3.

3.1 Asymptotic properties of estimators ~a

The �rst set of results concerns consistency of the autoregressive parameter estimates,

from which parametric model parameter estimates are later deduced, in both stationary

and non-stationary cases. As noted above we use the Yule-Walker estimator for ~a in the

stationary case; the same properties then hold for OLS and spectral estimates. Theorem 1

establishes that ~� is a consistent estimator of �[1;k] as T !1; k!1 in the stationarity

region; the cases 0 < d < 1
2 and �1

2 < d < 0 (antipersistence) require somewhat di�erent
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treatment. Theorem 2 establishes the result, using OLS, in the non-stationary case 1
2 <

d < 1: For d = 1; the process contains a unit root; see for example Phillips (1987) for

asymptotic results. For brevity we omit the case where d = 1
2 : A proof of consistency can

be constructed similarly to that of Theorem 2, using the rates appropriate to the d = 1
2

case.

Theorem 1. For d 2 (�1
2 ;

1
2) and a(k) as de�ned in (2.2.4), ka(k) � �[1;k]k = O(kjdj�

1

2 )

as k!1: Under the assumptions in Section 2.1, for any �; " there exist k; ~T such that

Pr(ka(k)� �[1;k]k > ") < � 8T > ~T :

Proof: See Appendix A.

Next consider the nonstationary case 1
2 < d < 1: Shimotsu and Phillips (1999) discuss

two possible characterizations of non-stationary I(d) processes for 1
2 < d < 3

2 : one de�nes

yt as a partial sum of a stationary fractionally integrated process zt; so that yt = y0 +

Pt

i=1 zi; while the other de�nes yt via the expansion of the function of the lag operator,

(yt�y0) =
Pt�1

i=0

�
1
i!

� �(d+i)
�(d) "t�i: Each leads to an expression of the form (1�L)d(yt�y0) =

"t; Shimotsu and Phillips show that the essential di�erence lies in the fact that the �rst

de�nition involves the presence of pre-sample values. Here we treat yt as a partial sum

and assume that y0 and all pre-sample values are zeroes; the same results would hold if we

assumed that max fyt : t � 0g = Op(1): Note that while Theorems 2 and 4 use the partial

sum representation, this estimator does not rely on di�erenced data in the non-stationary

case, so that a priori knowledge of the range in which d lies is not necessary.

Theorem 2. For d 2 (12 ; 1); let the di�erenced process zt = yt � yt�1; t = 2; : : : ; T; be a

10



stationary ARFIMA process satisfying the assumptions of Section 2.1, with d0 = 1�d < 0;

and let y�i = 0 8i � 0: Then as T !1; k!1; T
1

2 k! 0; we have

k~� � �[1;k]k =

�
Op(k

�3d+3

2 ) if � 1
2 < d < 3

4 ;

Op(k
�d) if d � 3

4 :

Proof: See Appendix B.

Next we characterize the asymptotic distributions of the estimators ~�(k) of �; in the

stationarity region, as T; k!1:

For �xed k and�1
2 < d < 1

4 ; the estimator ~a(k) has an asymptotic Normal distribution

with the usual convergence rate of T
1

2 and asymptotic mean of a(k) (Yajima 1992). For the

coe�cients � of the in�nite autoregression, the di�erence ~a(k) � �[1;k] can be represented

as the sum of (~a(k) � a(k)) and (a(k) � �[1;k]); the �rst of these terms has an asymptotic

Normal distribution, and the second goes to zero, by Theorem 1, as k!1: The Normal

distribution can therefore be used for inference in large samples, for �1
2 < d < 1

4 :

For 1
4 < d < 1

2 ; the asymptotic distribution of ~�(k) is not Normal, but is related to

the Rosenblatt distribution; the convergence rate is non-standard (Yajima 1992), and if

an estimated mean is subtracted the asymptotic distribution changes. Nonetheless, we

can again represent ~a(k) � �[1;k] as a sum of two terms, one of which has an asymptotic

Normal distribution, and the second of which is a `correction' term which can be made

arbitrarily small in probability as T; k!1: This representation applies to all � 1
2
< d < 1

2
;

and is based on Hosking (1996), where asymptotic normality is established for di�erences

of sample covariances, for all stationary ARFIMA processes, under the conditions given in

Section 2.1. Hosking's results apply to cases where the mean is estimated. Our method
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of proof uses sequential asymptotics, and thus does not provide an asymptotic Normal

distribution, but rather a Normal approximation to the �nite-sample distribution for which

the covariance and closeness to the true distribution are governed by the choice of k for

su�ciently large T: The result is therefore not in conict with Yajima's asymptotic result,

but nonetheless indicates that it is possible to conduct approximate inference using the

Normal distribution, for d in this range.

Theorem 3. Under the conditions of Theorem 1, the di�erence ~a(k)� �[1;k] can be repre-

sented as the sum �(k) + �(k); where for any positive "; � there exists k su�ciently large

that Pr(k�(k)k < ") > 1 � �; and T
1

2 �(k) has a limiting Normal distribution of the form

N(0;W (k)):

Proof: See Appendix C. The asymptotic covariance matrix W (k) is given in the proof of

Theorem C in Appendix C.

As noted earlier, we suggest choosing k = O(ln T ); a particular rule is given below.

Figure 1(a{d) illustrates the approximation provided by the Normal by depicting the

simulated densities of the �rst and second autoregressive coe�cients in estimated AR

representations of ARFIMA(0; d; 0) models, d = f0:4; 0:5; 0:7; 0:9g; T = 100 (k = 8):

In each case the Normal approximation is very close to the true distribution of the AR

coe�cients; small but clearly discernible departures from the Normal are visible for larger

values of d; particularly near the means of the distributions. Note that these simulations

include values of d � 0:5; to which Theorem 3 does not apply; nonetheless the Normal

provides a reasonable �nite-sample approximation.
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3.2 Asymptotic properties of estimators of ARFIMA parameters !

In order to discuss consistency of the ARFIMA parameter estimates ~!� given in (2.2.7)

above, we need an additional condition.

Condition 3.2. There exists a non-stochastic in�nite-dimensional matrix � corresponding

to a bounded norm operator on the space L2 such that k
 � �kk ! 0; where �k is the

k � k principal sub-matrix of � (convergence is in probability if 
 is stochastic).

If the estimator is used in unweighted form (
 = I); then all of the matrices involved

are identity matrices and this condition is trivially satis�ed. If the weighting matrix is

an inverse covariance matrix (known or estimated) of a stationary and invertible process,

then � corresponds to the Toeplitz form of the inverse process.

The next theorem shows that ~!� is a consistent estimator of the true vector of parame-

ters !0; and Theorem 5 shows that the di�erence between the two can again be represented

as a sum of two terms, one with an asymptotically Normal distribution, and one which goes

to zero in probability as k; T!1: We denote the quadratic form (~a � �(!))0
(~a � �(!))

by QT;k(~�;!):

Theorem 4. Under the conditions of Theorems 1 and 2 and condition 3.2, and where

T !1; k!1 and T
1

2 k ! 0; the minimum-distance estimator ~!� is consistent for !0;

the true parameter vector of a correctly-speci�ed ARFIMA model. The corresponding

distance function min QT;k(~�;!) goes to zero in probability.

Proof: See Appendix C.
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Again it is possible to conduct inference using an approximate Normal distribution,

as Theorem 5 indicates.

Theorem 5. Under the conditions of Theorem 1, the di�erence ~!��!0 can be represented

as the sum �(k) + b(k) where for each k the correction term is

b(k) =

�
@�0(!0)

@!


@�(!0)

@!0

�
�1

@�0(!0)

@!

�(k);

with �(k) as given in Theorem 3, and T�
1

2 �(k) is asymptotically distributed as N (0; V (k))

as T !1; for each k:

Proof: See Appendix C. The asymptotic covariance matrix V (k) is given in the proof.

3.3 Performance in �nite samples

To investigate the performance of these estimators in small samples, we generate

simulated samples from a selection of ARFIMA(0; d; 0); (1; d; 0) and (1; d; 1) processes, and

compare the results by parameter root mean squared error (RMSE). ML and autoregressive

estimators, along with GPH in the (0; d; 0) cases, are compared. In order to examine the

impact of mis-speci�cation we consider several cases of (0; d; 0) models of (1; d; 0) processes;

in these cases performance is evaluated by the out-of-sample RMSE of 1-step forecasts.

In all of the following simulations, the mean is treated as unknown and the sam-

ple mean is removed from the process prior to ARFIMA parameter estimation. In the

frequency domain, removal of an estimated mean is not required; the zero frequency is

excluded. However, Cheung and Diebold (1994) show that feasible (i.e., with estimated
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mean) time-domain ML and frequency domain ML nonetheless perform similarly in mod-

erately large samples, and in fact that time-domain ML shows lower MSE in small samples.

Simulated fractional noise is obtained by transformation of (Gaussian) white noise using

the Cholesky decomposition of the exact covariance of the ARFIMA process, obtained

using the results of Chung (1994); see also Diebold and Rudebusch (1989). In each case

estimators are compared using the same sets of starting values (zero in (0; d; 0) cases; the

better of two alternatives is chosen in multiple-parameter cases). Optimization is per-

formed using the Powell algorithm. Throughout, we use the rule of thumb that AR lag

length can be chosen as 8 + 3ln( T
100 ); T � 100; rounded to the nearest integer. This rule

is approximately equivalent to 3ln(T ) � 6; we express it in the former way to emphasize

T = 100 as the `base' sample size.

At least 1000 replications are used in each case, more in the (0; d; 0) cases. For

multiple-parameter models we use a sample size of 100, in common with much of the

literature containing results on exact and approximate ML; the computational cost of the

repeated inversion of T�T covariance matrices associated with ML becomes prohibitive for

simulation at large sample sizes. In the (0; d; 0) cases we report results for T = f100; 400g:

(i) ARFIMA(0; d; 0)

We begin by comparing estimators in the pure fractionally-integrated case, which has

been the most thoroughly examined in the literature to date. Figure 2a/b plots the RMSE's

from ML, GPH and the AR estimator, on the grid of values from d = �0:4 to d = 0:9 at an

interval of 0.1.5 Both ML and AR show lower RMSE than GPH throughout the stationarity

5ML is computed only in the stationarity region where it can be obtained without prior
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and invertibility region and, for the AR estimator, this holds for the non-stationary values

considered as well. The AR estimator has lower RMSE than ML at moderate absolute

values of d; slightly higher RMSE at d = 0:3; 0:4; and substantially higher at d = �0:4:

However, ML is constrained by the optimization algorithm to lie in d 2 (�0:5; 0:5); whereas

AR is not constrained in this way, being usable outside this interval; ML therefore bene�ts

near -0.5 and 0.5 from being constrained to lie in a region around the true value which is

fairly tightly bounded on one side.

Qualitative results do not di�er greatly between the two sample sizes of Figures 2a

and 2b. At T = 400, the RMSE of the AR estimator is almost completely insensitive to

the value of d; except at -0.4 where it rises to almost the value produced by GPH.

(ii) ARFIMA(1; d; 0) and ARFIMA(1; d; 1)

The �rst multiple-parameter cases that we consider are ARFIMA(1; d; 0); a simple

model which allows short-run and long-run components. In these cases, one element of

the estimation error arises through the di�culty in discriminating these two components

at small sample sizes, since AR and fractional integration parameters can imply similar

patterns of autocorrelation for the �rst few lags. Table 1 gives results for a few cases

similar to the ARFIMA(1; d; 1) processes that we will address below: d = f�0:3; 0:3g and

� = f0:7;�0:2g:

knowledge of the need for di�erencing. The maximum number of periodogram ordinates
is included for GPH, which is optimal for this case in which there is no short memory

component.
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Table 1

RMSE's of ARFIMA(1,d,0) parameter estimates

T = 100; 2000 replications (ML), 10000 replications (AR)

d � d̂AR d̂ML �̂AR �̂ML

-0.3 0.7 0.266 0.186 0.287 0.195
-0.3 -0.2 0.110 0.120 0.137 0.139
0.3 0.7 0.179 0.237 0.150 0.116
0.3 -0.2 0.209 0.233 0.217 0.241

Neither estimator dominates in these examples; ML is markedly better at (-0.3, 0.7),

AR is better at (0.3, -0.2). The two are very similar at (-0.3, 0.2). For the case (0.3,

0.7), possibly the most interesting in combining positive d with positive short-memory

autocorrelation, d is better estimated by the AR estimator, and � by ML.

The ARFIMA(1; d; 1) parameterizations examined in Table 2 are those used by Chung

and Baillie (1993). Note that in each case the short-memory parameters � and � have the

same sign, so that the corresponding terms (1��L) and (1+�L) in the lag polynomials do

not approach cancellation; at � = 0:5; � = �0:5; for example, cancellation would take place

and the apparent ARFIMA(1; d; 1) process would in fact be ARFIMA(0; d; 0). In cases of

near-cancellation, the process may be well approximated by a process with substantially

di�erent parameter values, but similar roots of the short-memory polynomials, leading to

di�culty in evaluating the estimates. Such cases are ruled out by parameter values such

as these.
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Table 2

RMSE's of ARFIMA(1,d,1) parameter estimates

T = 100; 1000 replications (ML), 5000 replications (AR)

(d; �; �) d̂AR d̂ML �̂AR �̂ML �̂AR �̂ML

(-0.3, 0.5, 0.2) 0.251 0.163 0.350 0.220 0.213 0.163

(-0.3, 0.2, 0.5) 0.207 0.151 0.295 0.237 0.152 0.154

(-0.3,-0.5,-0.2) 0.339 0.162 0.136 0.139 0.391 0.254

(-0.3,-0.2,-0.5) 0.333 0.179 0.183 0.173 0.291 0.250

( 0, 0.5, 0.2) 0.285 0.298 0.307 0.235 0.198 0.154

( 0, 0.2, 0.5) 0.291 0.285 0.332 0.313 0.144 0.139

( 0,-0.5,-0.2) 0.228 0.187 0.154 0.142 0.328 0.265

( 0,-0.2,-0.5) 0.243 0.263 0.220 0.202 0.384 0.381

( 0.3, 0.5, 0.2) 0.375 0.408 0.285 0.271 0.178 0.152

( 0.3, 0.2, 0.5) 0.375 0.390 0.378 0.381 0.132 0.124

( 0.3,-0.5,-0.2) 0.231 0.209 0.156 0.149 0.324 0.285

( 0.3,-0.2,-0.5) 0.286 0.314 0.238 0.207 0.434 0.430

The RMSE's of ML estimates are generally somewhat better than those reported by

Chung and Baillie for the approximate CSS estimator. The pattern of relative RMSE's

for the AR and ML estimators is broadly similar to that observed in lower-order cases.

Neither estimator dominates; ML gives lower RMSE for d in seven of the twelve cases, AR

in �ve. Four of the cases in which ML is superior are the four cases with negative d; where

ML's performance is markedly better. For non-negative values, performance of the two

for d is similar. In estimation of the short-memory parameters, ML shows an advantage

throughout the parameter space, although the di�erences in RMSE between the techniques

are usually quite small.
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(iii) mis-speci�ed cases

In the �nal set of simulations we consider ML and AR estimates of d in processes that

are ARFIMA(1; d; 1); but where the model used is ARFIMA(0; d; 0). These results serve

to illustrate the point that the ARFIMA models estimators need not be seen as purely

`parametric' estimators, in the sense of depending crucially on a correct parameterization

of the process; this is true in particular of the AR estimator, where the autoregressive

structure which extracts statistical information from the data is capable of �tting a very

general class of processes, and for some purposes useful estimates can also be obtained from

mis-speci�ed models. In this sense this estimator may be thought of as semi-parametric:

the long-memory component is captured via the parametric fractionally-integrated model

with parameter d; and the short-memory component via a variable number of AR (or

ARMA) terms, which may be increased with sample size to detect increasingly subtle

short-memory features as sample information accumulates.

In mis-speci�ed cases the obvious criterion of evaluation, accuracy of parameter es-

timates, is not applicable; some parameters are missing, and in such cases it will typi-

cally be optimal to deviate from the `true' values of parameters for some purposes. For

this exercise, we therefore evaluate the mis-speci�ed models by the accuracy (RMSE)

of 1-step out-of-sample forecasts of the true process. We consider d = f�0:3; 0:; 0:3g and

(�; �) = f(0:7; 0:5); (0:; 0:); (0:2; 0:2)g; for a total of nine cases (cases in which (�; �) = f(0; 0)

are of course correctly speci�ed, and are included for comparison). We again use T = 100

in each case, and noise variance is unity. Results are presented in Table 3. This small

set of results is of course not intended to be de�nitive, but to indicate the possibility that
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the exible AR form may have advantages, for some purposes such as forecasting, where

model form is unknown.

Table 3

RMS Forecast Errors in ARFIMA(0,d,0) models

of ARFIMA(1,d,1) processes
T = 100; 5000 replications

d � � AR ML

-0.3 0. 0. 1.0026 1.0016
0. 0. 0. 1.0028 1.0036
0.3 0. 0. 1.0103 1.0103
-0.3 0.2 0.2 1.0263 1.0262
0. 0.2 0.2 1.0265 1.0256
0.3 0.2 0.2 1.0280 1.0351
-0.3 0.7 0.5 1.1378 1.1566
0. 0.7 0.5 1.1382 1.2728
0.3 0.7 0.5 1.1381 1.5823

In the correctly-speci�ed comparison cases, these RMS forecast error results mirror

the parameter RMSE results of Figure 2a; ML is superior at d =-0.3, AR at d =0, and

the two are very close at d = 0.3. Where (�; �) = (0:2; 0:2); ML produces slightly better

results at d = �0:3 and 0. However, the AR forecasts are substantially better at d = 0:3; a

phenomenon which appears more strongly at (�; �) = (0:7; 0:5): In all of the latter cases, AR

estimates produce markedly better 1-step forecasts. Note that in cases such as these where

there is substantial autocorrelation from the short-memory parameters, the AR estimator

is able to compensate for the lack of short-memory components in the estimated model

by raising the estimate of d beyond what is possible for ML because of the stationarity
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requirement. Of course, time-domain ML forecasts with non-stationary values of d can

also be produced by imposing a di�erenced representation; however, to do so it is again

necessary to make a determination of an optimal degree of di�erencing, either a priori or

based on features of the data, which the AR estimator does not require.

4. Concluding remarks

Estimation of long-memory models by autoregressive approximation is feasible even

in quite small samples, and is consistent across a range of stationary and non-stationary

values of the long-memory parameter, so that estimation does not require knowledge of an

appropriate transformation to apply.

Autoregressive estimation, and model selection based on these estimates, is often

convenient in choosing starting values for techniques such as ML; estimation based on this

principle has been used for ARMA models as far back as Durbin (1960). While this is one

potential use of autoregressive estimates, such estimates seem to have desirable features

beyond their ability to produce good starting values quickly. Their relative insensitivity

to the stationarity of the process, and ability for a wide class of processes to provide an

arbitrarily good statistical approximation as sample size and order increase, make them

well suited to the treatment of processes of unknown form. This may be especially valuable

in economic data for which the ARFIMA class itself will typically be only an approximate

representation.
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old stu�
We also consider estimators that allow us to use Hosking's (1996) results on asymp-

totic normality of the di�erences between sample covariances. An estimator with these
properties that is similar in form to ~aYW can be constructed in the following way. We
de�ne the vector (k;�) = (1�2; 2�3; : : : k�k+1) and its sample analogue ̂(k;�);

and the matrix �(k;�) with typical element f�(k;�)gij = ji�jj�ji�j+1j; and its sample

analogue �̂(k;�): De�ne the estimator â(k;�) as the solution to

�̂(k;�)â(k;�) = ̂(k;�); (2:2:5)

and let a(k;�) be the solution to

�(k;�)a(k;�) = (k;�): (2:2:6)

As plim(~a) is denoted by a(k); here a(k;�) = plim(â(k;�)).
An estimator with a simpler form was proposed by Hosking, who suggested that

ratios of di�erences of autocorrelations can be used. Indeed, consider the vector âH with
components

âH(i) =
1� �̂i

1� �̂k+1
;

for i = 1; : : : ; k. This vector converges at rate T� 1

2 to its population analogue aH and has

an asymptotically normal distribution for all d 2 (�1
2
; 1
2
):
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Appendix A.
Proof of Theorem 1.

Consider the expression in (2.2.6).
For the norm of the left-hand-side vector we can writea(k)� �[1;k]

 � �(k)�1
 �[k+1;1)�[k+1;1)

 :
We begin by evaluating the norm of �[k+1;1)�[k+1;1): Denote the j-th com-
ponent of this vector by sj where

sj =
1X
i=1

jk+i�jj�k+i; j = 1; 2; :::k:

Recall that we can bound jlj and j�lj as follows:

jlj < c l
2d�1 and j�lj < c�l

�d�1 for some c; c� > 0:

Then for �1
2
< d < 0 we have

sj � cc�

1X
i=1

(k � j + i)2d�1(k + i)�d�1 � ~ck�d�1(k � j)2d;

where ~c > 0 is some constant. The last inequality is obtained by noting thatP1
i=1(k � j + i)2d�1 is O((k � j)2d):

For 0 < d < 1
2
;

sj � cc�

1X
i=1

(k � j + i)2d�1(k + i)�d�1 � ~ck�d(k � j)2d;

where ~c > 0 is some constant. Here the last inequality similarly follows fromP1
i=1(k + i)�d�1 = O(k�d).

The norm of the vector with components sj is thus ksk =
�Pk

j=1 s
2
j

� 1
2

and

ksk �
�
~ck�2d�2

Pk
j=1 j

4d
� 1

2

= O(k
2d�1
2 ); if � 1

2
< d < 0;

ksk �
�
~ck�2d

Pk
j=1 j

4d�2
� 1

2

= O(k
2d�1
2 ); if 0 � d < 1

2
:

(A.1)
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Next consider k�(k)�1k : It is well known that if all the eigenvalues of
�(k) are greater than some �(k) > 0 then k�(k)�1k < (�(k))�1 :

Consider the spectral density function associated with �; denote by f(x)
the spectral density multiplied by 2�: Here

f(x) = [P (eix)P (e�ix)]�1(2� 2 cosx)�dQ(eix)Q(e�ix):

The polynomials P;Q with none of the roots on the unit circle are bounded
there from above and below, providing bounds on f(x);

BL(2� 2 cos x)�d < f(x) < BU(2� 2 cosx)�d:

By Grenander and Szego (p.64) this implies that the eigenvalues associated
with �(k) are bounded from below by the eigenvalues associated with the
function fL(x) = BL(2� 2 cos x)�d:

In the case 0 < d < 1
2
the lower bound of fL(x) is BL4

�d; it follows that

ka(k)� �k = O(kd�1=2):

When d < 0 the lower bound of fL(x) is zero. We use a di�erent approach
to obtain a tighter bound for the eigenvalues of �(k) from below and evaluate
the rate at which this lower bound goes to zero. To do this we use properties
of eigenvalues of symmetric matrices and of circulant matrices.

Property 1 (Separation Theorem; Wilkinson (1965), pp.103-104). If Sn is
a symmetric matrix and is partitioned as

Sn =

�
Sn�1 s
s0 1

�
;

then the eigenvalues �i(Sn�1) of Sn�1 numbered in order of magnitude sepa-
rate the eigenvalues �i(Sn) of Sn:

�1 (Sn) � �1 (Sn�1) � �2(Sn) � ::: � �n(Sn):

Property 2 (Priestley(1981), p.261). If Ck is a circulant matrix (and also
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a Hermitian Toeplitz matrix) of the form

Ck =

2
666666666664

o 1 � � � k�1 k k � � � 1
1 0 1 � � � k�1 k � � �
...

. . . . . . . . . � � �
. . . . . .

...
. . . . . . . . . . . . � � �

. . .
...

. . . . . . . . . . . . . . . � � �
...

. . . . . . . . . . . . 0 1
1 � � � � � � � � � � � � 1 0

3
777777777775
;

then its eigenvalues (here not subscipted by order of magnitude) are given
by

�l(Ck) =
kX

r=�k

rexp(�i!lr); where !l =
2�l

2k + 1
: (A.2)

We shall evaluate the eigenvalues of �(k) by embedding this matrix in
a circulant Ck: By Property 1 the smallest eigenvalue of �(k) is bounded
from below by the smallest eigenvalue of Ck; which will be given by �l(Ck) in
(A.2) for an appropriate !l, moreover, by applying the separation theorem
repeatedly we can see that the smallest eigenvalue of �(k) is bounded from
below by any of k smallest eigenvalues of Ck:

The �l(Ck) for large k is approximated by f(!l) =
P1

r=�1 rexp(�i!lr);
which without loss of generality we can assume to equal (1�cos 2�

k
)�d; more-

over for l = 1 we have that

�1(Ck)� f(!1) = �2
1X

r=k+1

r cos(!1r) > 0

by comparing magnitudes of groups of positive and negative terms in the
sum, thus

�1(Ck) � f(!1) = (1� cos
2�

k
)�d � O(k2d);

where � indicates that �1(Ck) declines at exactly the rate O(k2d): Next we
show that �1(Ck) is among the k smallest eigenvalues. Indeed, for any l

j�l(Ck)� f(!l)j =

�����2
1X

r=k+1

r cos(!lr)

����� = O(k2d):
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On the other hand, if k
2
> l > k� with � < 1

f(!l) = (1� cos
2�l

k
)�d � O(k2d(1��));

thus for large enough k the corresponding �l(Ck) > �1(Ck):
It follows that k�(k)�1k = O(k�2d): Combining this with (A.1) we get

that a(k)� �[1;k]
 = O(k�2d+d� 1

2 ) = O(k�d�
1
2 ):

Finally, for any �; " choose k such that
a(k)� �[1;k]

 < "
2
; then for that

value of k; by consistency of ~a for a(k) (Yajima, 1992), �nd ~T such that
Pr(k~a� a(k)k > "

2
) < � for samples of size T > ~T :

Appendix B.

We begin with a lemma which will be useful for the proof of Theorem 2.

Lemma B. Under the assumptions in Theorem 2

.

T�2d
TX
t=k

y2t = Op(1); but not op(1); (B.1)

Eziyj =

�
O(1) if i � j;
O(i� j)2d�2 if i > j;

(B.2)

E(ziyj)
2 = O(j); (B.3)

E(ziyi�lzjyj�l) = O(1) for i 6= j; (B.4)

E(T�1�zt�lyt)
2 = O(1); (B.5)

T�1�zt�lyt = Op(1): (B.6)

Proof.

For yt de�ned here as the partial sum of a stationary fractionally inte-
grated process yt =

Pt
i=1 zi it was shown by Shimotsu and Phillips (1999)

that the order of magnitude of yt is similar to that obtained when the process
is de�ned directly via the expansion of the operator (1� L)d : Thus similarly
by Lemma 2.13 in Shimotsu and Phillips we have that Ey2T = O(T 2d�1) and
from Tanaka (1999) T�2d

PT
t=k y

2
t�1 converges in law to a functional of an

4



integrated Brownian motion and is thus bounded in probability, which gives
(B.1):

Since yt is a partial sum of z where E(zizj) = i�j; we have that Eziyj =Pj
l=1 i�l: Recall that m for the process z is O(m2d�3); (B.2) follows.
Next we consider the MA representation zt = �1

0 �let�l and recall that
�l = O(ld�2); and that e has bounded fourth moments by the assumptions in
2.1. We can express

E(zi1zi2zi3zi4) = E(e4)
P1

l=0 �l�l+i1�i2�l+i1�i3�l+i1�i4+
(E(e2))2[i1�i2i3�i4 + i1�i3i2�i4 + i1�i4i2�i3]

= O(ji1 � i2j
d�2 ji1 � i3j

d�2 ji1 � i4j
d�2 + ji1 � i2j

2d�3 ji3 � i4j
2d�3

+ ji1 � i3j
2d�3 ji2 � i4j

2d�3 + ji1 � i4j
2d�3 ji2 � i3j

2d�3):

for all di�erent subscripts on z; and similarly

E(z2i z
2
l ) = O(1); E(z2j zlzm) = O(jj � lj3d�3 jj �mj2d�3):

Then (B.3) is obtained by expressing

E(ziyj)
2 =

jX
l=1

E(zizl)
2 + 2

jX
l=1

jX
m=l+1

E(zi
2zlzm)

substituting the expectation for each term from the relation above and eval-
uating the orders. Note that it is terms E(z2i z

2
j ) that provide the largest

contribution to the sum.
A similar substitution into the expression

E(ziyi�lzjyj�l) =
i�lX
n=1

j�lX
m=1

ziznzjzm

provides (B.4); note that this expression has no terms of the form E(z2i z
2
j ).

The expression in (B.5) immediately follows and thus (B.6) follows by
Chebyshev's inequality.

Proof of Theorem 2.

Consider the AR(1) representation and write

yt � �1yt�1 � � � � � �kyt�k =
1X
i=1

�k+iyt�k�i + "t; t = k + 1; :::; T (B.7)

5



Recall that y with a non-positive subscipt is zero, thus on the right-hand
side we have

t�kX
i=1

�k+iyt�k�i + "t;

denote this quantity, which represents the error in the k-th order AR repre-
sentation, by ut:

Compare the OLS estimator â0 = (â1; :::âk) of the model

yt = �1yt�1 + � � �+ �kyt�k + ut (B.8)

with the OLS estimator �̂
0
= (�̂1; :::�̂k) of

yt = Xt� + ut (B.9)

with Xt = (Zt; yt�1) = (zt�1; :::zt�k+1; yt�1); �
0 = (�1; :::�k):

We note that the one-to-one relation �1 = �k+�1; �l = �l�1�� l for l = 2; :::; k

produces the same residuals in each model thus we get â1 = �̂k + �̂1; âl =
�̂l�1 � �̂l for k = l > 1: If we can establish that �̂ is a consistent estimator
of � consistency of â as an estimator of � will follow.

Consider (B.9); we can write

�̂ � � =

"
TX
t=k

X 0
tXt

#�1 " TX
t=k

X 0
tut

#
:

:
Partition

� =
TX
t=k

X 0
tXt =

�
A v
v0 w

�
with A =

TX
t=k

Z 0
tZt; v =

TX
t=k

Z 0
tyt�1;w =

TX
t=k

y2t�1:

De�ne a diagonal k�k normalizing matrix � = diag(T 1=2; :::; T 1=2; T d); then

���1� =

�
T�1A T�1=2�dv
T�1=2�dv0 T�2dw

��1

:

Since Zt is stationary and as was demonstrated for d0 = 1 � d < 0; the
covariance matrix for the process �(z) is such that k�(z)�1k = O(k�2d0); it
can be shown from Lemma 3 of Berk (1974) that as T !1 for k such that

6



k2T�1 ! 0; k(T�1A)�1 � �(z)�1k = op(k
�2d0): From (B.6) T� 1

2
�dv = op(1);

and from (B.1) T�2d! = Op(1) and is bounded in probability away from zero:
Thus the inverse of the partitioned matrix is

���1� =

�
�(z)�1 (1 + op(1)) op(1)
op(1) Op(1)

�
:

Finally evaluate the order of terms in suitably normalized vector
PT

t=kX
0
tut:

We can ignore the "t part in ut and need to concentrate on evaluating the
terms T�1

PT
t=k zt�l

Pt�k�1
i=1 �k+iyt�k�i for the subvector T

�1
PT

t=k Z
0
tut of the

�rst k�1 components and T�2d
PT

t=k yt�1

Pt�k�1
i=1 �k+iyt�k�i for the kth com-

ponent.
Consider �rst T�1

PT
t=k zt�l

Pt�k�1
i=1 �k+iyt�k�i for l = 1; :::; k � 1; denote

this by W (l): Then W (l) = T�1
PT�k

i=1 wi with wi = �k+i

PT
t=k+i zt�lyt�k�i:

From (B.2)

Ewi = �k+i

TX
t=k+i

O(k + i� l)2d�2 = O(k�d�1T 2d�1):

Using (B.3)
Ew2

i = O(k�2d�2T 2):

And from (B.4) for i 6= j

Ewiwj = O(k�2d�2T ):

Thus

E(T�1
T�kX
i=1

wi)
2 = O(k�2d�2)

and for each l

W (l) = T�1
T�kX
i=1

wi = Op(k
d�1):

Then T�1
TX
t=k

Z 0
tut

 = (�W (l)2)1=2 = Op(k
�d�1=2)

and ��1
 T�1

TX
t=k

Z 0
tut

 = Op(k
�3d+3=2):

7



Finally

T�2d
X

�k+i

TX
t=k+i

yt�1yt�k�i � T�2d
X

�k+i

TX
t=k+i

y2t�1 = Op(k
�d)

and the statement of the Theorem obtains since k�3d+3=2 < k�d if d � 3
4
and

is � k�d for 1
2
< d < 3

4
.

Appendix C.

Proof of Theorem 3.

De�ne for some 1 < n < T the matrix �̂(�; k) = �̂(k) � ̂n��
0 and the

vector ̂(�; k) = ̂(k)� ̂n�; where � is a vector of ones, and consider â(�; k)
that solves

�̂(�; k)â(�; k) = ̂(�; k):

Similarly de�ned matrices and vectors for the population quantities will
be denoted by the same symbols but without the �hats�. Also de�ne Dl =
T 1=2[̂0� 0� ̂l� l]: To prove Theorem 3 we prove the following Theorem
that provides an explicit description of the asymptotics for the terms �(k) =
â(�; k)� a(�; k) and a bound for

a(�; k)� �[1;k]
 :

Theorem C. Under the conditions of Theorem 3 as T !1 for any �xed

k; n the limiting distribution of T
1
2 (â(�; k)�a(�; k)) is multivariate normal

with mean 0 and covariance matrix W (k) = �(�; k)�1AMA0�(�; k)�1: The
k � (k + 1) matrix A has elements

fAgij =

8<
:

ai�j + ai+j for 1 � i; j � k; i 6= j;
a2i � 1 for i = j;
1� �ai for j = k + 1;

(C.1)

where al are the components of the vector a(�; k) for 1 � l � k and a0 = 1;
al = 0; if l < 0. The (k + 1) � (k + 1) matrix M is the limit covariance

matrix of the vector G with the lth component Gl = Dl for l = 1; 2:::k and

Gk+1 = Dn for l = k + 1; its elements are

fMgij = limcov(Dm; Dl)
= 1

2

P1
s=�1(s � s�m � s�l + s�m+l)

2 + �(0 � m)(0 � l)

8



with m =

�
n if i = k + 1
i otherwise

; l =

�
n if j = k + 1
j otherwise

; � the kurtosis of f"tg

of (2:1:1): In addition, as k !1; n!1

a(�; k)� �[1;k]
 =

�
O(n2d�1kd) if 0 � d < 1

2
;

O(n�1k�d) if � 1
2
� d < 0;

and thus
a(�; k)� �[1;k]

! 0 as k !1 for �1
2
� d < 0; and for 0 � d < 1

2

if n = O(k�) for any � > d
1�2d

:
Proof.

Consider

T
1
2 (â(�; k)� a(�; k)) = �̂(�; k)�1T

1
2 [̂(�; k)� �̂(�; k)a(�; k)]:

This equals

�(�; k)�1T
1
2 [̂(�; k)� �̂(�; k)a(�; k)] (C.2)

+[�̂(�; k)�1 � �(�; k)�1]T
1
2 [̂(�; k)� �̂(�; k)a(�; k)]:

Examine the following factor in the terms in (C.2)

T
1
2 [̂(�; k)� �̂(�; k)a(�; k)]

= T
1
2 [̂(�; k)� (�; k)]� T

1
2 [�̂(�; k)� �(�; k)]a(�; k):

First,

T
1
2 [̂(�; k)� (�; k)] = (D1 �Dn; D2 �Dn; :::Dk �Dn)

where Dl = T
1
2 [̂0 � 0 � ̂l � l]; as de�ned (in slightly di�erent notation)

by Hosking (1996). His Theorem 5 implies that as T ! 1 for any �xed m
the vector D0 = (D1; D2; :::; Dm) has as a limiting distribution a multivariate
normal with mean zero and covariances given by

limcov(Dm; Dl) =
1

2

1X
s=�1

(s� s�m� s�l + s�m+l)
2 + �(0� m)(0� l)

where � is the kurtosis of {"tg of (2:1:1): This result holds for any �
1
2
< d < 1

2

(Hosking, p.273) under the assumptions of Theorem C.

Next note that the element T
1
2f�̂(�; k)��(�; k)gij is Dn�Dji�jj: Con-

sider the vector �(�) with elements f�(�)gi = Dn �Di; the matrix Q(�)
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with fQ(�)gij = Dn �Dji�jj: Then the vector �(�) � Q(�)a(�; k) can be
rewritten as AG; where the elements of A are given in (C.1) and the vector G

is de�ned in the statement of Theorem C. Thus T
1
2 [̂(�; k)� �̂(�; k)a(�; k)]

has a multivariate normal limit distribution with mean 0 and covariance
matrix AV A0:

To deal with the second term in (C.2) examine
�̂(�; k)�1 � �(�; k)�1

 :
From Lemma 3 of Berk (1974)�̂(�; k)�1 � �(�; k)�1

 � Op(kT
� 1

2 )

and the second term goes to zero in probability.
Thus for �xed k; T

1
2 [â(�; k)� a(�; k)] has a limiting normal distribution

with mean zero and covariance �(�; k)�1AV A�(�; k)�1:
Next to evaluate the norm of the di�erence ka(�; k)� �k express

�(�; k)a(�; k) = (�(k)� n��
0)a(�; k) = (k)� n� = �(k)a(k)� n�:

We can write

a(�; k) = (�(k)� n��
0)�1�(k)a(k)� (�(k)� n��

0)�1n�:

From the proof of Theorem 1 recall that k�(k)�1k is bounded if d � 0 and
is O(k�2d) if d < 0; we also know that n = O(n2d�1): Thus k�(k)�1n��

0k is
O(n2d�1k1=2) for d � 0 and O(n�1k1=2) for d < 0: Set n to grow faster than

maxfk
1

2(1�2d) ; k1=2g; then k�(k)�1n��
0k = o(1) and we can expand

(I � �(k)�1n��
0)�1 = I + �(k)�1n��

0 +O(
�(k)�1n��

0
2):

It follows that

a(�; k)� a(k) = �(k)�1n��
0a(k)� �(k)�1n�+ o(

�(k)�1n��
0
);

ka(�; k)� a(k)k is thus O(k1=2n2d�1) orO(n�1k1=2): Using the results in The-
orem 1 we get that ka(�; k)� �k isO(kdn2d�1) orO(k�dn�1) correspondingly:
This proves Theorem C.

To conclude the proof of Theorem 3 we need to consider ~a(�; k)� ~a(k);
we have from the de�nitions of ~a(�; k); ~a(k)

~a(�; k)� ~a(k) = �̂(k)�1̂n (��
0~a(�; k)� �) : (C.3)
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Consider for ~T selecting k = O(ln ~T ); n = ~T v for some 1=2 > v > 0: (The
selection of n does not depend on d.) Then from e.g. Hosking (1996), Theo-
rem 4 it follows that ̂n = Op(n

2d�1) and thus for large enough ~T evalution
of the right-hand side of (C.3) provides

k~a(�; k)� ~a(k)k = Op( ~T
(2d�1)vln ~T );

also from Theorem C

ka(�; k)� �k = o( ~T (2d�1)v ln ~T );

thus k~a(�; k)� ~a(k)k + ka(�; k)� �k can be made smaller than " in prob-
ability by an appropriate choice of ~T ; for the corresponding k de�ne �(k) =
~a(k) � ~a(�; k) + a(�; k) � �; de�ne �(k) = ~a(�; k) � a(�; k): Theorem C
provides the limit normal distribution for �(k) and k�(k)k < " in probability.
This concludes the proof of Theorem 3.

Proof of Theorem 4.

Under the assumptions of Theorems 1 and 2 and the assumption on 
k

and for k; T ! 1 so that ~a(k) !p �(!0)[1;k]; QT satis�es the conditions
of Theorem 4.1.1 (Amemiya, 1985). Indeed, recall that the parameter vec-
tor ! is de�ned on a bounded set corresponding to the stationarity con-
straints under Theorem 1 and with 1=2 < d < 1 under Theorem 2; we can
consider the closure of this set. The function QT (~�; !) converges in prob-
ability uniformly over all ! to a nonstochastic function Q(�(!0); !) since
k~a� �(!0)k = op(k

��) with � > 0 de�ned for the di�erent processes in The-
orem 1 and Theorem 2: For an ARFIMA process with the coe�cients of the
in�nite autoregression given in 2.1 it is easy to see that minQ(�(!0); !) = 0
if ! = !0 and is positive otherwise. Since minQT (~�; !) !p minQ(�(!0); !)
the theorem follows.

Proof of Theorem 5.

Consider the �rst-order condition for the minimization of QT;k(~a; !) :

�2
@�(!)0

@!

k(~a� �(!)) = 0:

Note that this condition holds at ~a = �(!0); ! = !0: Suppose that some
~a; ~! solve the �rst-order condition. From Theorem 4 it follows that for
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any neighbourhood U(�(!0); !0) there exist large enough k; T such that
Pr((~a; ~w) 2 U(�(!0); !0)) is close to 1.

Then by the Implicit Function Theorem in the neighbourhood U(�(!0); !0)
of (�(!0); !0) we have

~!� � !0 =
@!(!0)

@~a
(~a� �(!0)) + op(~a� �(!0))

with

@!(!0)

@~a
=

�
�2

@2�0(!0)

@!@!0

(~a� �(!0)) + 2

@�0(!0)

@!


@�(!0)

@!0

��1 �
�2

@�0(!0)

@!



�
:

Substituting ~a(k)� �(!) = �(k) + �(k) from Theorem 3 we get that

~!� � !0 = �(k) + b(k);

where b =
h
@�0(!0)

@!
�k

@�(!0)
@!0

i�1 h
@�0(!0)

@!
�k

i
�(k) and �(k) has a limiting normal

distribution as T !1 with the asymptotic covariance matrix

V (k) =

�
@�0(!0)

@!


@�(!0)

@!0

��1
@�0(!0)

@!

W (k)


@�(!0)

@!0

�
@�0(!0)

@!


@�(!0)

@!0

��1

:

(C.4)
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