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Let’s Get "Real" about Using Economic Data*

Peter Christoffersen†, Eric Ghysels‡, Norman R. Swanson§

Résumé / Abstract

Nous démontrons que l'utilisation de données qui sont disponibles en
temps réel pour établir la sensibilité des prix d'actifs aux nouvelles économiques
mène à des résultats empiriques différents de ceux obtenus lorsque la disponibilité
des données et les considérations temporelles ne sont pas prises en compte. Pour
ce faire, nous nous concentrons sur un exemple en particulier, c'est-à-dire Chen,
Roll et Ross (1986), et nous regardons si les innovations aux variables
économiques peuvent être perçues comme étant des risques qui sont récompensés
dans les marchés des actifs. Nos résultats entérinent la présomption que
l'incertitude des données est suffisamment prévalente pour assurer une utilisation
prudente des données en temps réel lors de l'établissement de mesures de
nouvelles en temps réel, et en général lorsqu'on entreprend des enquêtes
financières empiriques impliquant des données macroéconomiques.

We show that using data which are properly available in real time when
assessing the sensitivity of asset prices to economic news leads to different
empirical findings that when data availability and timing issues are ignored. We
do this by focusing on a particular example, namely Chen, Roll and Ross (1986),
and examine whether innovations to economic variables can be viewed as risks
that are rewarded in asset markets. Our findings support the view that data
uncertainty is sufficiently prevalent to warrant careful use of real-time data when
forming real-time news measures, and in general when undertaking empirical
financial investigations involving macroeconomic data.
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Introduction

There is a long tradition in ¯nance of studying the reaction of markets to macroeconomic news

announcements. In principle, asset prices react to news announcements that result in changes in

expectations regarding future payo®s and/or discount rates. In practice, it is not surprising to

observe ¯nancial markets responding to releases of news about industrial production, in°ation,

labor income, employment, and many other key indicators of the overall health of the economy.

Along these lines, many authors have used economic variables as fundamentals in examinations of

asset return dynamics (see for instance Chen, Roll and Ross (1986), Fama (1990), Schwert (1990)

and Campbell (1996)). Unfortunately, the empirical results to date have been rather disappointing,

as the response of stock prices to macroeconomic news has broadly been found to be rather weak.

For example, Schwert (1981) ¯nds that the daily response of stock prices to news about in°ation

is weak and slow. These ¯ndings are con¯rmed by Pearce and Roley (1985) using survey data.

In addition, Chen, Roll and Ross (1986) ¯nd that covariances between stock returns, industrial

production, and other measures of real economic activity are weak.1 One argument which is often

made when explaining these sorts of ¯ndings is that realized variables are too noisy to be used

as measures of changes in expectations. In addition, it is not easy to measure \news". One

contributing factor to the noise certainly is data revisions. Most macroeconomic data are typically

preliminary when they are ¯rst released and are subject to many subsequent revisions. In many

cases these revisions are substantial and signi¯cant, both from a statistical and from an economic

point of view.2 In addition, extracting news from variables which have been revised many times

may not be reasonable, as agents generally extract most news from preliminary or ¯rst available

data.3 Nevertheless, the common approach used in the literature is to use ¯nal data. Hence,

important informational timing issues which must be dealt with when constructing news variables

have largely been ignored.
1On the other hand, Fama and French (1989) ¯nd that the term premium is related to the NBER business cycle,

while McQueen and Roley (1993) ¯nd evidence of asymmetric market responses to news across business cycles. Taking

an interesting tracking portfolio approach, Lamont (1998) ¯nds some signi¯cant relationships as well.
2In the next section, we review the evidence regarding the magnitude and relevance of revisions of some key

macroeconomic conditions variables.
3However, it should perhaps be noted that agents also extract news from (early) revisions to economic variables,

as has been evidenced in recent years by substantial television coverage of expected and actual updates to various

measures of economic activity including GDP and industrial production, for example.
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In this paper we address the timing and availability of economic information used in the forma-

tion of economic news measures, thereby underscoring the importance of using real-time economic

data in ¯nancial studies in general. In order to facilitate our introduction of the use of real-time

data in the formation of economic news, we follow the approach used by Chen, Roll and Ross

(1986), and examine whether innovations to economic variables can be viewed as risks that are

rewarded in asset markets.

Chen, Roll and Ross (1986), henceforth CRR, use a regression framework to test whether

macroeconomic news measures such as monthly growth in industrial production, annual growth

in industrial production, expected in°ation and unexpected in°ation, and an interest rate spread

variable have a systematic in°uence on stock market returns. Their ¯ndings suggest that these

\risks" are incorporated in asset prices. As mentioned above, however, other authors have uncov-

ered only weak support for this ¯nding. However, CRR, as well as many related studies which

examine the market impact of macroeconomic news, use currently available macroeconomic data.

Since revisions to macroeconomic series accrue over time and may be substantial in aggregate,

there is potential for serious mismeasurement of macroeconomic news. Moreover, by ignoring the

real-time aspects of macroeconomic data, one ignores many interesting issues which hitherto have

not been carefully examined in the literature. For example, the potential impact of revisions in

economic variables on ¯nancial markets is ignored, so that questions of the following sort cannot

be answered. Is news constructed using initial releases of economic variables more important than

news constructed based on subsequent revisions of initial releases? Does the market care about

revised economic activity announcements at all, or do only preliminary announcements matter?

We provide at least partial answers to all of these questions by considering both real-time and

currently available data in our re-examination of the Chen, Roll and Ross ¯ndings. In particular,

our approach is to use newly constructed real-time macroeconomic data sets which contain all

releases of numerous key monthly and quarterly macroeconomic variables. Thus, we are able to

construct data sets which were available in real time. By using real-time data, we are able to shed

light on the true real-time impact of macroeconomic news on ¯nancial markets. This is done by

constructing measures of news that are truly real-time rather than proxies for real-time news that

are available only ex-post via the use of subsequently revised economic data. Our main ¯nding is

that the incorrect use of ¯nal releases of data biases empirical ¯ndings concerning the signi¯cance

of economic news. This in turn suggests that all empirical ¯nancial research that involves modeling
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real-time activity should use real-time data. Of course, as ¯nancial data such as interest rates and

asset prices are not revised, and are hence already real-time, our argument applies only in those

cases where macroeconomic measures such as output, in°ation, and money growth are used.

The rest of the paper is organized as follows. In the ¯rst section we describe the real-time data

sets used in our analysis. In addition, we discuss alternative measures of macroeconomic news, and

outline the importance of using real-time data when constructing such measures. In Section 2, we

outline our implementation of the CRR analysis. Section 3 summarizes our empirical ¯ndings, and

the ¯nal section contains concluding remarks.

1 Real-Time Economic Data andMeasures of Macroeconomic News

There are several articles and monographs which investigate the size, persistence, predictability

and importance of macroeconomic data revisions. For example, an early monograph on the subject

of errors in economic data was written by Morgenstern (1963). A number of recent articles in this

area (from which many other important references can be obtained) are: Pierce (1981), Ghysels

(1982), Mankiw et al. (1984), Maravall and Pierce (1986), Fair and Shiller (1990), Keane and Runkle

(1990), Diebold and Rudebusch (1991), Harvey et al. (1993), Kavajecz and Collins (1995), Swanson

(1996), and Swanson and White (1997), Swanson, Ghysels and Callan (1999), and Ghysels, Swanson

and Callan (2000). Rather than directly dealing with data revision, some papers circumvent the

problem by using dummy variables for news announcement dates without actually quantifying

the informational content of the news releases (see e.g. Jones, Lamont and Lumsdaine (1998)).

Obviously, such an analysis, which focuses only on the announcement event instead of its content,

is limited in several ways. A number of other studies which have adopted a variety of related

strategies for measuring the impact of news are also not prone to the issues addressed in our

paper, but again su®er from similar important limitations. For instance, Mitchell and Mulherin

(1994) construct a news index based on the widths of headlines appearing on the front page of the

New York Times. While this approach quanti¯es news coverage, it does not directly measure its

reliability and informational content. Note also that revisions to past macroeconomic news releases

rarely hit the news wire unless they are substantial.

At this point, it is useful to introduce some notation before proceeding further with our dis-

cussion of real-time data. We denote a real-time observation as yt+i(t); which is de¯ned to be the
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(t + i)th release date of data pertaining to calendar date t, where i > 0: In addition, we classify

economic data into three categories: (1) Preliminary, First Released, or Unrevised Data: These

types of data consist of the ¯rst reported datum for each variable at each calendar date, t. The

¯rst release of a series is de¯ned as yt+1(t), corresponding to the typical one quarter delay in the

release of macroeconomic news (i.e. announcements are of activity in the previous quarter), which

is common for quarterly series. (2) Partially Revised or Real ¡ Time Data: These types of data

are di±cult to collect, as they are made up of vectors of observations, yt+i(t); i = 1; : : : ; for each

calendar date, t: (3) Fully Revised or Final Data: These data are denoted as yf (t). It is quite

possible that true ¯nal data will never be available for many economic series. This is because

benchmark and de¯nitional changes are ongoing and may continue into the inde¯nite future, for

instance. However, in practice we de¯ne ¯nal data as those revised ¯gures available at some future

point in time for calendar date t, which are no longer subject to revision. (Of course, and as

mentioned above, most ¯nancial data are equivalently unrevised and ¯nal, as they are not subject

to revision.).4

In our subsequent analysis, we use two quarterly real-time data sets which were constructed

at the Federal Reserve Bank of Philadelphia (see Croushore and Stark (1999)). In particular, we

examine real output (GDP) and the implicit price de°ator for real output, both for the period

1965:3-1995:3. Data beyond 1995:3 were not used due to a substantial change in the de¯nition of

GDP. A detailed discussion of these data sets is given in Croushore and Stark (1999).

We de¯ne several processes which will be used in our empirical investigation. For illustrative

purposes, these processes are discussed for the case of a generic variables, say y. We focus on

k-step ahead predictions of our variables. When k = 4, the focus is on today's prediction of next

years' real output (this variable is called LRP below), while when k = 1, the focus is on today's

prediction of next quarters' real output (this variable is called SRP below). Unanticipated in°ation

is formed in the same way, except that the GDP de°ator is used instead of GDP.5 We try to keep
4Truly ¯nal data are clearly not easy to obtain, as data are generally subject to revision for inde¯nite lengths of

time, as mentioned above. The construction of seasonally adjusted data serves to illustrate this point, as seasonal

adjustment ¯lters are of in¯nite order, at least in principle. See for instance Ghysels and Osborn (2000, Chap. 3) for

further discussion.
5The formation of these news variables assumes that the conditional expectation of the variables is constant.

In addition, we alternatively assume that expectations follow a univariate autoregression (see below for further

discussion).
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the notation simple, at some cost of incompleteness.6 The ¯rst release of the (t + k)th growth rate

of real output (say y) is de¯ned to be:

y1t;t+k ´ yt+k+1(t + k) ¡ yt+k+1(t): (1)

This growth rate consists of the di®erence of the ¯rst (log) y ¯gure for quarter t + k released (with

one quarter delay) in period t + k + 1; hence yt+k+1(t + k), and the kth release of quarter t's (log)

y ¯gure (i.e. yt+k+1(t)): Analogously, any updates of this ¯rst released growth rate are denoted as:

yit;t+k ´ yt+k+i(t + k) ¡ yt+k+i(t); (2)

for i = 2; : : : . The ¯nal concurrently available ¯gure is denoted as:

yft;t+k ´ yf (t + k) ¡ yf (t): (3)

The following series pertaining to the revision process is useful in our analysis, and can be derived

directly from equations (1) through (3):

eit;t+k ´ yft;t+k ¡ yit;t+k: (4)

This series re°ects the (revision) error in the growth rate, relative to the ¯nal data sample point

which is concurrently available. When i = 1; this error represents the di®erence between the

preliminary announcement of the k-step growth rate, and its ¯nal revised value.7

Before turning to our discussion of the CRR model, it is perhaps worth discussing some of the

salient features of our real-time data sets. Summary statistic and graphs are given in Table 1 and

Figures 1 and 2. For ease of comparison, all reported data are annualized percentages. In Figure 1,

the top 2 panels contain plots of preliminary real GDP releases (the right panel is y1t;t+1 (annualized)

and the left panel is y1t;t+4). These data are representative of the magnitude of annualized quarter-

on-quarter and year-on-year output growth, as estimated by the reporting agencies immediately

after the close of the calendar quarter to which the data pertain. These data can be compared, for

example, with final ¯gures, which are plotted in the bottom 2 panels of Figure 1. Interestingly,
6See Swanson, Ghysels and Callan (1999) a detailed discussion of notation which is useful when characterizing

real-time series.
7Another error process which will be of interest is the revision error across di®erent vintages, namely: e1it;t+k ´

yit;t+k ¡ y1t;t+k:
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while annualized growth rates appear smoother after ¯nal revision, quarterly growth rates (see

the right lower panel) appear more variable. The extent revision to the data as we move from

preliminary to ¯nal ¯gures is portrayed in the center two plots in Figure 1, where e1t;t+1and e1t;t+4

are graphed for the period 1965:3-1995:3. Two important observations based on these plots of the

revision process are the following. First, the revision process for quarter-on-quarter growth is indeed

highly variable relative to that for year-on-year growth. Second, the magnitude of revisions is very

large relative to the magnitudes of either the raw preliminary or the raw ¯nal data. For example,

the revision to the annualized quarterly growth rate for 1975:1 is around 5%, while no single raw

output growth rate for any quarter is greater than 11% in absolute magnitude. However, casual

inspection of the revision process plots suggests that the mean revision is close to zero. Thus, while

revisions play an important role in the characterization of data, preliminary output ¯gures are not

necessarily biased estimates of ¯nal ¯gures. This characteristic of the data is explored further in

Table 1, which contains various summary measures of the output and de°ator data sets. The upper

panel of the table contains summary statistics for the raw series, which are included in order to

help the reader assess the extent of data revision relative to the absolute magnitude of the series.

The lower panel contains statistics calculated using various revision series. Notice that summary

statistics for e1t;t+1and e1t;t+4; corresponding to those revision processes plotted in the center panels

in Figure 2, are given in the ¯rst and fourth row of the second panel in Table 1 for output, for

example. Consider e1t;t+1: The mean revision of this series is 0.25, and the p-value associated with a

test of the null hypothesis that there is no preliminary release bias is 0.12, which implies rejection

of the null at an 88% level of con¯dence. Thus, although the evidence is moderate, we can say that

preliminary output growth rate estimates are biased. The sixth row of the second panel of Table

1 summarizes the revision process from ¯rst to second release for year-on-year output growth, and

in this case the mean revision error of 0.06 is signi¯cantly di®erent from zero at a 96% level of

con¯dence, suggesting that while the revision from ¯rst to second release is small in magnitude, it

varies little from its average value of 0.06%. Summary statistics for the de°ator are also given, and

it is clear that there is generally substantial and signi¯cant bias in preliminary and second release

data (i.e. see means in the rows with vintages denoted e1t;t+1, e2t;t+1, e1t;t+4, and e2t;t+4). This ¯nding

is not obvious if one looks only at the plots of the revision process in Figure 1. Another interesting

feature of the revision processes summarized in the table is that the Jarque-Bera test of normality

always suggests rejection of the null that the data are normally distributed. One of the reasons for
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this is that the raw series and the revision series are usually characterized by kurtosis in excess of 3,

which suggests that the distributions of the series are leptokurtotic (peaked relative to the normal).

Finally, note that the last column of the table contains p-values for Ljung-Box autocorrelation tests

with 1, 5, and 10 lags. Rejection of the null hypothesis in this case (which occurs frequently for our

revision series based on a 0.10 signi¯cance level) suggests that there is a stochastic component of the

revision series which is not white noise, and which can be modeled, thereby extracting information

about future revisions from current and past revisions. All of these ¯ndings suggest that ignoring

the timing and availability of macroeconomic data by using only currently available data may lead

to spurious conclusions when carrying out real-time analyses such as assessments of the impact of

news on the stock market and real-time decision making behavior. In the next section we turn to

a discussion of our empirical investigation of the signi¯cance of macroeconomic news.

2 The Risk Premia of Real-Time Macro Variables

We begin our discussion by proceeding along the lines of Chen, Roll and Ross (1986). As mentioned

above, CRR aim to test whether macro risks, measured by innovations to macroeconomic variables

are rewarded in the stock market. They use a framework which broadly follows that of Fama

and McBeth (1973). Along these lines, they view a stock price as the expectation of discounted

dividends, and form a set of variables which theory suggests should systematically a®ect stock

market returns. The variables include:

² unanticipated short (SRP) and long run (LRP) changes in output measured by next month's

growth rate, and next year's growth rate in industrial production (IP)

² the change in anticipated in°ation, constructed using the expected real rate of interest as in

Fama and Gibbons (1984)

² unanticipated in°ation (UI)

² unanticipated changes in the credit risk premium measured by the excess return of low grade

bonds over long government bonds (URP)
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² unanticipated changes in the term structure, measured by the excess return on long government

bonds over T-bills (UTS)8

In order to reduce the noise in individual equity returns, CRR use returns on 20 size-sorted,

equal-weighted equity portfolios as opposed to individual equity returns. We follow their example

and use the 25 size-sorted and book-to-market sorted portfolio returns from Kenneth French's data

library.9 In addition, our analysis is based on quarterly data because monthly IP data is known

to be very noisy, because quarterly GDP data is more comprehensive than IP data, and because

we have a high-quality real-time data set available at the quarterly frequency from Croushore and

Stark (1999). However, switching to quarterly GDP data renders CRR's assumption of output

growth rates being white noise less attractive. Thus, we estimate simple proxies for output and

in°ation expectations. Further, as anticipated changes in in°ation and anticipated changes in the

term structure are virtually never signi¯cant in CRR's analysis, we do not include them here.10

We follow the CRR procedure for estimating the risk premia on macro news by conducting a

multivariate version of the Fama and McBeth (1973) approach. First, for each year in the dataset,

we estimate time-series regressions of each stock return on the macro news variables to obtain the

(time-varying) risk factors (¯0s). CRR use 60 months of past data in each annual regression, we

use 60 quarters. Thus, for each stock return, i, we estimate:

Ri = ®i¿ + ¯i¿;LRPLRP + ¯i¿;SRPSRP + ¯i¿;UIUI + ¯i¿;UPRUPR + "i; (5)

where ¿ denotes the ¯nal year in each subsample, and where each variable is a vector of quarterly

time-series observations from year ¿ ¡14 through year ¿ . Second, at the end of each year in the data

set, we estimate quarterly cross-sectional regressions of stock returns on the betas for the next four

quarters, from which we obtain a time series of risk-premia (°0s). For each quarter, j = 1; 2; 3; 4,

in the year following year ¿; we estimate the °'s in:

R¿+j = ®¿+j + °¿+j;LRP¯¿;LRP + °¿+j;SRP¯¿;SRP + °¿+j;UI¯¿;UI + °¿+j;UPR¯¿;UPR + "¿+j (6)
8They also examine other market risks, including oil price risk. However, as they do not ¯nd these risks to be

signi¯cant, and given that we do not have real-time data available for these other risks, we focus our attention only

on those listed above.
9http://web.mit.edu/kfrench/www/data library.html

10However, we do use anticipated changes in order to calcuate unanticipated changes.
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where each variable is a vector of cross-sectional observations over the 25 equity portfolios. Third,

from the time-series of risk premia, we calculate the averages over time and standard errors and

t-statistics, using:

t(¹°y) =
p

T ¹°y=¾(°t;y); y = LRP;SRP;UI;UPR;

where ¹°y, and ¾(°t;y) are the time-series mean and standard deviation of °t;y, respectively, and

where T is the number of quarters in the entire sample after the initial estimation subsample.

While the UPR variable is a ¯nancial time series which is not subject to revision, the variables,

LRP; SRP; and UI are based on real output and the GDP de°ator, and are frequently and often

substantially revised, as we saw in Figures 1 and 2. It is therefore of interest to run two versions

of the CRR analysis: one based on the standard ¯nal release data; and one based on real-time

data. We also report a third version of the analysis where ¯nal-release growth rates are used to

measure raw innovations, but where the expectations of the raw innovations are calculated using

real-time data. In addition, we carry out two parallel analyses which di®er with respect to the

assumption about the expectations of the economic variables. In the ¯rst version, all economic

variables are assumed to have conditional expectations equal to their unconditional expectations.

This corresponds to CRR. In the second version, each variable is assumed to have expectations

that follow a univariate autoregression which takes into account reporting lags in the variables.

3 Empirical Findings

The results of the quarterly CRR analysis using the di®erent assumptions about expectations are

reported in Tables 2 and 3. In Table 2, we report the CRR regressions using raw innovations

in the economic variables. Thus, the conditional mean for each variable is simply assumed to be

constant over time. Table 3 contains results based on the assumption that expectations follows

a univariate autoregression. Panel A in Table 2 shows the average risk premia when the CRR

regressions are run on ¯nal-release data, which is of course the convention in the literature, while

Panels B report similar statistics, but based on the use of real-time data. In Table 3, there is an

additional panel, namely Panel C, in which real-time data are modelled using real-time expectations

(see the above discussion). Before turning to a detailed discussion of our empirical ¯ndings, it is

worth stressing that we consider three di®erent speci¯cations with respect to the output variable.

First, the four-quarter lead of the annual growth rate in real GDP is used. Second, the one-quarter
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ahead, quarterly growth rate in real GDP is used, and ¯nally, both output variables are included.

CRR initially use the latter speci¯cation in their analysis, but quickly drop the annual growth

variable, as it is insigni¯cant in their analysis.

Two clear ¯ndings emerge upon examination of Table 2. Notice ¯rst that regardless of output

speci¯cation, when using ¯nal-release data, real output risk is never signi¯cantly priced. Put

another way, note that while the sign of the output risk premium is everywhere positive, meaning

that output risk is rewarded, it is not statistically signi¯cant. On the other hand, the premium on

in°ation risk is signi¯cantly negative across output speci¯cations, which matches CRR's ¯nding,

and which can be interpreted as stocks being hedges against the in°ation risk of other (¯xed income)

assets. Further, and as expected, the credit premia are positive and signi¯cant across all output

speci¯cations. Second, with regard to reward signi¯cance based on the use of real-time data to

de¯ne risks (see Panel B), note that real output is now statistically signi¯cant in most cases. Thus,

real-time output risk is more robustly priced than ¯nal-release output risk. Thus, the rewards from

output risk are more precisely estimated when using real-time data than when using ¯nal-release

data. In°ation risk is still negative and signi¯cant across all speci¯cations.

As alluded to above, one assumption underlying Table 2 is that the conditional expectation

is constant through time for all variables, so that no instrumenting for expectations is necessary.

We now dispose of this assumption and assume that all variables follow simple autoregressive

processes. As the output variables are in one and four period leads, respectively, we don't regress

on the immediately preceding observation, but rather on the observation known at time t. We also

take into account the fact that quarterly NIPA data are reported with a one-quarter lag. Finally, we

run three di®erent versions of our three output models. First, we instrument for ¯nal release data

using ¯nal release instruments (Panel A). Notice that, while this is standard practice, it is NOT

a realistic experiment. Final release data are subject to many revisions after their initial release

and should therefore not be used in a proper time-t information set. We include this case simply

because it is standard practice, and because we want to illustrate that the standard approach can

be misleading. Second, we instrument for ¯nal release data using real-time instruments which are

available at time t. Finally, we instrument for real-time data using real-time instruments.

Turning now to the results in Table 3, note ¯rst (Panel A) that when the surprise in ¯nal

release data is calculated using ¯nal-release instruments, output is again insigni¯cant and much

smaller than before. In fact, as opposed to Panel A of Table 2, only the negative premium on

10



in°ation risk is still signi¯cant. Keeping in mind again, that instrumenting using ¯nal-release

data is not possible in real-time, in Panel B we redo the experiment in Panel A, but using real-

time instruments for the ¯nal release data. Notice now that essentially nothing is signi¯cant

anymore. This suggests that if we relax the constant conditional expectations assumption of CRR

and we additionally use only real-time data, then the rewards from in°ation and output risk are not

signi¯cant when using real-time data, as opposed to the case when ¯nal data are used and conditional

expectations are assumed ¯xed. Thus, we have evidence that not only are real-time data crucial,

but realistic expectations assumptions also play a role - both issues, when correctly dealt with, lead

to qualitatively and quantitatively di®erent ¯ndings relative to the case when incorrect data and/or

expectational assumptions are employed. Finally note that although we instrument for ¯nal data

using real-time data in Panel B, another valid real-time approach is to instrument for real-time

data using real-time data.11 Now, the result from Table 2 that two out of three in°ation risk premia

are negative and signi¯cant again holds. However, we remain with the new ¯nding that output

risk premia are positive, but are not signi¯cant. Although our real-time ¯ndings (in Panels B and

C) do change slightly depending on which data are instrumented for in Table 3, the above ¯nding

remains. In particular, we see that the signi¯cance of risk rewards is dependent upon which type

of data are used. In addition, it is worth stressing that one argument for viewing the results from

Panel B as being the \correct" real-time results is the following. Assuming that agents respond not

only to preliminary data announcements, but also to later data updates suggests that we should use

data available in real-time to instrument for ¯nal release data rather than preliminary data. In this

sense, the results in Panel C should be viewed with caution, and are only included for completeness.

Finally, all of the above experiments were also carried out using vector autoregressive instead of

univariate autoregressive processes to proxy for expectations. Results were qualitatively similar to

those found based on univariate expectations formation, however, and are not reported.

To summarize, Tables 2 and 3 illustrate several aspects of the importance of using real-time data

in ¯nancial economics. Using ¯nal-release data, when the use of real-time data is appropriate can
11The debate concerning whether to use ¯nal data or real-time data when forming news measures and comparing

predictions from alternative models remains open. For this reason, we include results from both of these valid real-

time approaches. In the current context, the choice between the two approaches ultimately boils down to which

assumption one is willing to make with regard to which variable (either preliminary or ¯nal) agents are trying to

predict.
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essentially mislead inference in one of two possible ways: First, results which are insigni¯cant using

¯nal-release data can easily be signi¯cant when using real-time data. Second, the opposite case

may arise. In particular, results which are signi¯cant using ¯nal-release data could be insigni¯cant

when using real-time data. Both problems are of course important. In the above analysis we found

examples of both. In Table 2, we found that when assuming expectations are constant over time,

output risk is more precisely estimated using real-time data than when using ¯nal-release data.

Thus, relying on ¯nal-release data alone would lead the researcher to conclude that output risk

is not signi¯cantly priced. However, when forming expectations using what is arguably a more

realistic approach (see Table 3), the premium on in°ation risk is signi¯cantly negative and large in

magnitude when expectations are instrumented for using ¯nal-release data (Panel A) which actually

were not available at time t, whereas when correctly instrumenting for ¯nal data in real time (Panel

B), the in°ation risk premium is small and insigni¯cant. Finally, note that the results in Panel B

of Table 3 represents what we view as our \most" realistic setup in terms of expectation formation.

In addition, these results use our preferred approach of instrumenting for ¯nal data using real-time

data (an approach which is valid from the perspective of data availability). This suggests that the

results reported in Panel B of Table 3 summarize our \ultimate" ¯ndings concerning the signi¯cance

of risk rewards. In particular, no macroeconomic risks are found to be signi¯cant, so that we have

evidence that macroeconomic risk is not rewarded in the stock market. Of course, it should be

understood that our ¯ndings are limited in the sense that many other macroeconomic risks could

and perhaps should be examined. We do not do this here, however, as we instead focus on the

importance of using valid, real-time data in empirical ¯nance applications.

4 Concluding Remarks

The idea of assessing whether macroeconomic variables can be viewed as risks that may be rewarded

in the stock market is an elegant one. Risk measures are designed to re°ect market expectations,

and therefore reveal the impact of news. However, the construction of these measures has largely

been based on the use of macroeconomic data which are not only subject to revision, but have been

revised many times. In this paper we have examined the impact, within the framework of Chen,

Roll and Ross (1986) of properly using real-time data sets that were truly available at the time

that economic expectations were formed. Our primary conclusion is that real-time data should

12



be used in the construction of news measures, and more generally that real-time macroeconomic

data should not be overlooked when carrying out a variety of empirical analyses for which the

timing and availability of macroeconomic information may matter. This conclusion is supported

by evidence suggesting that the signi¯cance of the rewards to macro risks are impacted when real-

time as opposed to ¯nal data are used in experiments using the framework of Chen, Roll and Ross

(1986).
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Figure 1: GDP Deflator

Figure 1. GDP Deflator. The top panels show the four-quarter and one-quarter growth rates 
in the first-release of the GDP deflator. The middle panels show the difference between the 
final release and the first release of the four-quarter and one-quarter growth rates. The bottom 
two panels show the final releases. All growth rates are constructed using the differences in 
the logs of the series. The one-quarter growth rates are annualized by multiplying by four. 
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Figure 2. Real Output. The top panels show the four-quarter and one-quarter growth rates in 
the first-release of real output. The middle panels show the difference between the final 
release and the first release of the four-quarter and one-quarter growth rates. The bottom two 
panels show the final releases. All growth rates are constructed using the differences in the 
logs of the series. The one-quarter growth rates are annualized by multiplying by four. 
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Series Vintage Growth Rate Mean Strd Err Skewness Kurtosis Jarq.-Bera Q Stats
1st Quarter 2.45 3.53 -1.11 5.55 0.00 --
2nd 2.64 3.79 -1.01 5.57 0.00 --
final 2.71 3.60 -0.51 4.68 0.00 --
1st Year 2.62 2.65 -0.72 3.92 0.00 --
2nd 2.69 2.67 -0.68 3.80 0.00 --
final 2.74 2.35 -0.42 2.89 0.17 --
1st Quarter 4.54 2.44 0.96 3.54 0.00 --
2nd 4.67 2.56 1.05 3.67 0.00 --
final 4.99 2.50 0.70 2.87 0.00 --
1st Year 4.64 2.27 0.97 2.95 0.00 --
2nd 4.66 2.29 1.00 3.00 0.00 --
final 5.01 2.24 0.63 2.38 0.00 --

e1
t,t+i Quarter 0.25(.12) 2.01 0.43 4.11 0.01 (.13,.08,.09)

e2
t,t+i 0.07(.63) 1.98 0.39 4.00 0.02 (.27,.07,.06)

e12
t,t+i 0.20(.00) 0.79 0.11 2.99 0.89 (.13,.70,.17)

e1
t,t+i Year 0.12(.38) 0.89 1.04 5.26 0.00 (.00,.00,.00)

e2
t,t+i 0.06(.63) 0.82 0.92 5.67 0.00 (.00,.00,.00)

e12
t,t+i 0.06(.04) 0.32 1.12 8.47 0.00 (.56,.99,.98)

e1
t,t+i Quarter 0.45(.00) 1.18 -0.03 4.94 0.00 (.93,.90,.34)

e2
t,t+i 0.35(.00) 1.19 -0.73 7.22 0.00 (.89,.76,.13)

e12
t,t+i 0.11(.05) 0.49 0.87 5.59 0.00 (.16,.01,.00)

e1
t,t+i Year 0.38(.00) 0.61 -0.11 4.84 0.00 (.00,.00,.00)

e2
t,t+i 0.35(.00) 0.61 -0.29 5.64 0.00 (.00,.00,.00)

e12
t,t+i 0.02(.14) 0.15 0.73 5.03 0.00 (.26,.42,.21)

GDP 
Deflator

Revision Series
Real Output

GDP 
Deflator

Table 1: Quarterly Real-Time Data Set Summary Statistics

Raw Series

Real Output

In the first panel of the table, we consider first, second and final vintages of quarterly and annual growth
rates of the Real Output and the GDP Deflator variables. The revision series, which are summarized in the
second panel of the table are: final revised minus first available (e1

t,t+i), final revised minus second
available (e2

t,t+i), and second available minus first available(e12
t,t+i). All growth rates summarized in the

table are expressed as annualized percentages. Bracketed values beside the means of the series are p-values
associated with a test of the null hypothesis that there is significant bias in the revision process. The p-
values are constructed using heteroskedasticity and autocorrelation consistent standard error estimates. In
addition, p-values associated with the Jarque-Bera normality test and Ljung-Box autocorrelation tests (p-
values given for lags 1,5 and 10) are reported in the 8th and 9th columns of the table. Ljung-Box p-values
are not reported for the raw series, as they are always 0.00. Data are for the period 1965:3 – 1995:3.



A: Final Release Data
Constant Annual Output Quarterly Output GDP Deflator Credit Premium

Average Risk Premium 1.954 1.818 -3.806 3.215
Standard Deviation 1.351 1.618 1.148 1.114
t-Statistic 1.446 1.124 -3.314 2.885

Average Risk Premium 0.994 1.844 -4.337 4.039
Standard Deviation 1.510 2.454 1.134 1.280
t-Statistic 0.658 0.751 -3.824 3.155

Average Risk Premium 2.376 2.022 2.961 -3.992 2.756
Standard Deviation 1.338 1.552 2.086 1.102 1.366
t-Statistic 1.776 1.303 1.419 -3.624 2.019

B: Real-Time Data
Constant Annual Output Quarterly Output GDP Deflator Credit Premium

Average Risk Premium 2.952 2.345 -2.776 2.187
Standard Deviation 1.291 1.336 0.977 1.027
t-Statistic 2.287 1.756 -2.841 2.129

Average Risk Premium 2.360 3.611 -3.178 2.925
Standard Deviation 1.249 2.108 1.107 1.004
t-Statistic 1.889 1.713 -2.872 2.914

Average Risk Premium 4.035 1.328 2.619 -1.990 1.052
Standard Deviation 1.161 1.323 1.574 0.870 1.004
t-Statistic 3.475 1.004 1.664 -2.287 1.048

Table 2: CRR Regressions Using Raw Innovations

First, for each year in the dataset, we estimate time-series regressions of each stock return 
on the macro news variables to obtain the (time-varying) risk factors. We use 60 quarters 
of past data in each annual regression. Second, at the end of each year in the data set, we 
estimate quarterly cross-sectional regressions of stock returns on the betas for the next 
four quarters, from which we obtain a time series of risk-premia. Third, from the time-
series of risk premia, we calculate the averages over time and standard errors and t-
statistics. Panel A uses final release macro data and Panel B uses real-time macro data. 
The expectations of the macroeconomic innovations are assumed to be constant. 



A: Final Release Data Using Final Release Expectations
Constant Annual Output Quarterly Output GDP Deflator Credit Premium

Average Risk Premium 4.157 -0.550 -2.031 0.212
Standard Deviation 1.194 1.680 0.742 1.096
t-Statistic 3.481 -0.328 -2.738 0.194

Average Risk Premium 2.843 -0.978 -2.930 1.957
Standard Deviation 1.409 2.303 0.807 1.212
t-Statistic 2.018 -0.425 -3.633 1.616

Average Risk Premium 3.676 0.321 0.070 -2.282 0.991
Standard Deviation 1.153 1.516 2.133 0.631 1.287
t-Statistic 3.188 0.212 0.033 -3.616 0.769

B: Final Release Data Using Real-Time Expectations
Constant Annual Output Quarterly Output GDP Deflator Credit Premium

Average Risk Premium 3.517 -0.435 -0.427 1.170
Standard Deviation 1.355 1.610 0.859 1.240
t-Statistic 2.596 -0.271 -0.498 0.944

Average Risk Premium 3.190 -0.108 0.486 2.001
Standard Deviation 1.214 2.092 0.871 1.093
t-Statistic 2.629 -0.052 0.558 1.830

Average Risk Premium 3.368 0.413 0.175 -0.559 1.670
Standard Deviation 1.202 1.673 1.978 0.700 1.250
t-Statistic 2.802 0.247 0.088 -0.798 1.337

C: Real-Time Data Using Real-Time Expectations
Constant Annual Output Quarterly Output GDP Deflator Credit Premium

Average Risk Premium 4.679 0.094 -1.132 -0.240
Standard Deviation 1.331 1.658 0.804 1.271
t-Statistic 3.516 0.057 -1.408 -0.188

Average Risk Premium 4.088 1.029 -1.975 0.654
Standard Deviation 1.187 2.154 0.886 1.032
t-Statistic 3.444 0.478 -2.228 0.633

Average Risk Premium 4.716 0.066 0.641 -0.902 -0.360
Standard Deviation 1.085 1.532 1.635 0.536 1.089
t-Statistic 4.346 0.043 0.392 -1.685 -0.331

Table 3: CRR Regressions Using Autoregressive Expecations

We form autoregressive expectations for the macro innovations as follows: In Panel A, 
final release data are regressed on final release data. In Panel B, final release data are 
regressed on real-time data, and in Panel C, real-time data are regressed on real-time data. 
Once the innovations are defined from these expectations then the analysis follows that in 
Table 2. 
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