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Conditional Quantiles of Volatility in Equity Index and
Foreign Exchange Data*

John W. Galbraith†, Serguei Zernov‡ and Victoria Zinde-Walsh§

Résumé / Abstract

Nous utilisons des techniques d'estimation de modèle reliées à ceux de Galbraith et Zinde-Walsh
(2000) pour les modèles ARCH et GARCH, basées sur la realized volatility (Andersen et Bollerslev 1998,
et autres), afin d'obtenir les quantiles conditionnels de volatilité quotidienne dans les données provenant
des marchés boursiers et des marchés de devises étrangères. Ces méthodes nous permettent en principe de
caractériser la distribution entière de volatilité en utilisant la volatilité réalisée et les retours carrés. Nous
prenons des échantillons de rendements quotidiens et intrajournaliers de l'indice 35 du TSE, et des taux de
change DM/$ US et Yen/$ US. Nos résultats montrent également que les percentiles inférieurs de la
distribution conditionnelle augmentent proportionnellement moins en périodes de volatilité extrême que
les percentiles supérieurs.

This paper uses estimation techniques related to those of Galbraith and Zinde-Walsh (2000) for
ARCH and GARCH models, based on realized volatility (Andersen and Bollerslev 1998, and others), to
estimate the conditional quantiles of daily volatility in samples of equity index and foreign exchange data.
These techniques in principle allow us to characterize the entire conditional distribution of volatility,
conditioning on past realized volatility and past squared returns. We take samples of daily and intra-day
returns on the Toronto Stock Exchange 35 index, the DM/$ US exchange rate and the Yen/$ US exchange
rate. In addition to information about the conditional extremes of volatility, we find some evidence that
lower percentiles of the conditional distribution rise proportionately less in high-volatility periods than do
the higher percentiles.
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1. Introduction

Since the observation of Andersen and Bollerslev (1998) that the forecasts of con-

ditional volatility models can be better evaluated by comparison with an estimated

volatility based on intra-day quadratic variation than by comparison with squared

returns, this concept of integrated volatility or realized volatility has proven to have

numerous applications. Using high-frequency intra-day data to allow computation

of these estimates at the daily frequency, a number of authors (in particular Ander-

sen et al. 2001, Andersen et al. 2001 a) have characterized the realized volatility

patterns observed in financial time series. Others (Andersen et al. 2001b, Maheu

and McCurdy 2000, Galbraith and Zinde-Walsh 2000) have used the integrated

volatility in time series estimates of models of volatility, attempting to increase the

information available relative to standard GARCH-class models which treat the

volatility as a latent variable.

The present paper uses this realized volatility information to produce condi-

tional quantile estimates of models of realized volatility. Quantile regression models,

introduced by Koenker and Bassett (1978), allow the investigator to characterize

any part of the distribution (given a sufficient sample) of a variable conditional

on observable regressors. The technique has enjoyed increasing use, particularly

in cross-sectional studies, as computational methods have developed; see for ex-

ample Buchinsky (1998) for a survey. In the present context, quantile regression

allows us to examine (e.g.) the 80th percentile of volatility at time t, conditional on

information available up to time t− 1 on squared returns and integrated volatility.

To do so we use the estimator of Galbraith and Zinde-Walsh (2000) for time

series models of volatility using integrated volatility information. This estimator,

because it is based on LAD estimation of a representation of the volatility process–

that is, on estimation of the conditional median, or 50th percentile–lends itself to

estimation of other conditional quantiles. Conditional quantile estimates may be

based on any of various models of the conditional volatility; we discuss ARCH and

GARCH representations. It is important that the consistency of the estimator does

not depend on the high-frequency sampling interval converging on zero in order to

provide an arbitrarily accurate estimate of realized volatility; instead the estimation

technique used here is robust to measurement error in the daily volatility estimates.

This robustness of the technique to imperfect measurement is an important practical

advantage because of the well-known imperfections in diffusion approximations to
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asset prices at very high frequencies, induced by phenomena such as bid-ask bounce.

We are able to characterize the conditional quantiles of an equity price index

from the Toronto Stock Exchange, and of the DM/US$ and Yen/US$ exchange

rates, and examine the relative impacts of volatile periods on different parts of the

distribution. Section 2 describes the techniques that we will use, and section 3

describes the data, filtering and resulting sequences of integrated volatility mea-

sures. Section 4 describes the conditional quantiles of volatility, and suggests some

differential impacts of high volatility across different parts of the distribution. Con-

sistency and asymptotic normality of the conditional quantile estimator proposed

here are examined in the Appendix.

2. Conditional quantile methods

2.1 Models and estimation

In this section we introduce notation and state the assumptions on the data-

generating process (DGP) that justify the use of the methods developed in this

paper.

Let {Xt} , Xt ∈ Rn, be a special martingale process as defined in Andersen et

al. (2001). This means that {Xt} is a stochastic process adapted to an increasing,

right-continuous filtration of σ- fields Ft, t ∈ [0, T ] ,complete with respect to the

corresponding probability measure. The return of the process {Xt} over the horizon

t, denoted r (t) , allows for the unique decomposition:

r (t) ≡ Xt −X0 = M (t) +A (t) (2.1.1)

where M (0) = A (0) = 0, M (t) is a local martingale and A (t) is locally integrable,

of finite variation, and predictable with respect to a filtration Ft. Each component

of {Xt} is assumed to be a cadlag process. This formulation is very general and

includes Itô, jump and jump-diffusion processes.

The process X is sampled at an interval 1
h
, and we will denote the index at

this high frequency as τ. We are interested in studying the properties of volatility

at a lower frequency with a sampling interval that we define to be equal to one.

Throughout this paper, this will correspond to the daily frequency, while the higher

frequency will correspond to a number of intra-day observations which varies with

the data set. The low- frequency index will be denoted by t = 1, . . . , T ; that is,

there are h high-frequency observations per low-frequency interval. We define the

high-frequency returns rh(τ) ≡ X (τ)−X
(
τ − 1

h

)
.
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Two questions have to be considered. First, we need to know what requirements

the DGP must meet in order for the sums of squared returns and cross-products of

returns, or the (empirical) realized covariance matrix σ̂2
t , t ∈ T, σ̂2

t ∈ Rn×n, defined

by

σ̂2
h (t) =

th∑
τ=(t−1)h+1

rh (τ) r′h (τ) (2.1.2)

to be a valid measure of some latent covariation process. Second, what is the class

of DGP’s for which the quantile regression models that we will suggest produce

consistent estimates of the actual conditional quantiles of volatility of processes in

this class?

The answer to the first question was given in a quite general form in Andersen

(2001). The corollary of their results relevant to the present study is that for any

two scalar semi-martingale processes {Yt} and {Zt} , the quadratic variation and

covariation processes, defined as

[Y, Y ] = Y Y − 2
∫
Y−dY

[Y,Z] = Y Z −
∫
Y−dZ −

∫
Z−dY

(2.1.3)

can be represented as

[Y, Y ]t = [Y c, Y c]t +
∑

0≤s≤t

(∆Y (s)) (∆Y (s))

[Y,Z]t = [Y c, Zc]t +
∑

0≤s≤t

(∆Y (s)) (∆Z (s)) ,
(2.1.4)

where {Y } and {Z} have been decomposed into a continuous term with infinite

variation path and a term representing the compensated jump part of the process1.

If we denote by [X,X]t the matrix of quadratic variation and covariation processes

of the components of {Xt} , then the following result holds:

σ2 (t) ≡ p lim
h→∞

σ̂2
h (t) = [X,X]t . (2.1.5)

1The semi-martingale formulation encompasses all processes conformable with the
arbitrage-free assumption. However, it rules out the fractional Brownian motion
(BM), Bd (t) , 0 < d < 1

2
. The fractional BM is not a semi-martingale and allows

for arbitrage.
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It is important to recognize that σ2
h (t) is generally not measurable with respect

to the filtration at the moment t −∆t. An Itô process with constant volatility, as

in the Black-Scholes model, is an exception to this rule. However, the realized

volatility measures provide unbiased estimates of the ex-ante conditional variances,

in general. The error terms incorporate both the errors of measurement of the

realized volatility and innovations orthogonal to the conditioning set.

If it is assumed that the return process r (t) is an Itô process, i.e. that it

satisfies the stochastic differential equation

r (t) =
∫ t

0

µ (s) ds+
∫ t

0

Ω(s) dW (s) , (2.1.6)

where W (t) ∈ Rn denotes a vector of independent Wiener processes, then the

integrated covariance process, (in the scalar case, the integrated volatility process

central to Hull-White option pricing) is defined as

[X,X]t =
∫ t

0

Ω′ (s)Ω (s) ds. (2.1.7)

The sums of squared high frequency returns and cross-products of high-frequency

returns can therefore be used as a measure of this integrated covariance process.

Andersen et al. also describe the specification of the jump and mixed jump-diffusion

varieties of the special semi-martingale process.

Maheu and McCurdy (2001) suggested that a sum of squared returns and

cross-products of returns at high frequency could be used as a measure of realized

covariance over the low-frequency period, the realized covariance being defined as

the sum of covariances of high-frequency innovations over the period. Consider a

discrete return process defined as

r(h) (t) = σ2
(h) (t) z (t) , z ∼ iid(0, I), t =

k

h
, k ∈ N . (2.1.8)

The sum of squared returns will provide an unbiased estimate of the realized co-

variance over the corresponding time interval.2

If the DGP is the semi-martingale process described in Andersen et al. (2001),

and if it were possible to increase the sampling frequency without bound (h→∞) ,

2It may be possible to unify the discrete time and continuous time notation here by
considering cadlag functions that change only on some discrete index.
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then the realized volatility would provide an error-free ex-post measure of latent

volatility. In practice, the sampling frequency cannot be increased indefinitely; it is

typically impractical to increase sampling frequency beyond a certain point because

of errors induced by market microstructure (for example, bid/ask bounce). These

considerations lead to the recognition that the realized volatility is estimated by the

sum of squared returns with an error, that is,

σ2 (t) = σ̂2
h (t) + εt. (2.1.9)

Of course, in the case of the discrete DGP error-free measurement of the realized

volatility is an impossibility even in theory.

Consider now the question of the class of DGP’s for which we can obtain

conditional quantile estimates using the realized volatility.3 We will use an estimator

which projects the realized volatilities onto past squared returns, an analogue of the

AR-approximation estimator used for ARMA processes by Galbraith and Zinde-

Walsh (1997) and, more directly, of the GARCH model estimator of Galbraith and

Zinde-Walsh (2000). The estimates are shown in the Appendix to be consistent and

asymptotically normal in spite of the presence of measurement noise in the estimates

of daily volatility, which as we have noted is an important feature given the well-

known imperfection of the diffusion approximation at extremely high frequencies.

We now suppress the explicit dependence of realized volatility measures on h,

and use a subscript t to denote the lower-frequency (daily) index. The GARCH(p, q)

model σ2
t = ω+

∑q
i=1 αiε

2
t−i +

∑p
i=1 βiσ

2
t−i, together with (2.1.9), yields the model

with realized volatilities:

σ̂2
t = ω +

q∑
i=1

αiε
2
t−i +

p∑
i=1

βiσ̂
2
t−i −

p∑
i=1

βiet−i + et. (2.1.10)

Following Galbraith and Zinde-Walsh (2000), we avoid the difficulty arising from

the MA(p) error in (2.1.10) by considering the representation

σ2
t = κ+

∞∑
`=1

ν`ε
2
t−`, (2.1.11)

3Because the additional information in realized volatility is used, these estimates
are distinct from the class of ARCH conditional quantile estimates considered by
Koenker and Zhao (1996).
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which is based on the ARCH(∞) representation of the GARCH model. The class

of processes for which such an ARCH(∞) representation exists is quite broad; see

Giraitis et al. (2000), who give general conditions for its validity for the strong

GARCH(p, q) case. Only the existence of the first moment and summability of the

coefficients ν` are required for existence of a strictly stationary ARCH(∞) solution.

Galbraith and Zinde-Walsh (2000) show that we can deduce parameter esti-

mates for a general GARCH(p, q) model (2.1.10) using a truncated version of this

ARCH(∞) representation (2.1.11), that is,

σ̂2
t = κ+

k∑
`=1

v`ε
2
t−` + et. (2.1.12)

The truncation parameter k must be such that k→∞, k/T → 0 for consistent

estimation of the GARCH model. These parameter estimates avoid the problem

of measurement error in the realized volatility which would arise in estimating the

GARCH model (2.1.10) directly using the realized volatility terms as regressors.

Given estimates {v̂i}k
i=1 of the parameters of (2.1.12), GARCH parameter estimates

may be deduced from the deterministic relations between the GARCH parameters

and the parameters of the ARCH(∞) representation; see Galbraith and Zinde-

Walsh (2000) for the expressions.

From the point of view of the present study, the method of estimation of the

ARCH(k) model is crucial. While LS estimates are admissible for some processes,

Galbraith and Zinde-Walsh (2000) show that estimation of the initial representation

(2.1.11) by LAD is robust to a wider variety of processes {εt}, including some for

which moments may be unbounded.

This LAD estimator, or conditional median, is easily extended to estimation of

other conditional quantiles. The LAD criterion function is

min
β
T−1

T∑
i=1

|yi − x′iβ|; (2.1.13)

the criterion function for the conditional θ−th quantile is (see, e.g., Koenker and

Bassett 1978)

min
β
T−1




∑
yi≥x′

i
β

θ|yi − x′iβ|+
∑

yi<x′
i
β

(1− θ)|yi − x′iβ|

 , (2.1.14)
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which returns the LAD minimand (× 1
2
) for θ = 0.5, the conditional median.

Numerical minimization of this expression can be performed in approximately

the time required for computation of LS estimates, for large model orders. The

quantile estimates are obtained using the same numerical methods as LAD esti-

mates.

Below we apply (2.1.14) to obtain estimates of the ARCH(k) representation

for the conditional quantiles θ = {0.1, 0.2, . . . , 0.9}. From these, estimated histori-

cal conditional quantiles and parameters of estimated GARCH representations are

obtained for each data set.

2.2 Asymptotic inference

We now obtain the asymptotic distributions of the estimated parameters of the

conditional quantile models.

Consider an infinite-dimensional data generation process:

yt = Xt (∞) γ (∞) + et (2.2.1)

with a summable sequence of parameters γ (∞) . We assume also that x0t = 1

for t = 1, 2, ..., with x0t being the first element of Xt (∞) . Let F (x) denote the

distribution function of et and let χq = F−1 (q) , that is, the value corresponding

to the q−th quantile of this distribution. Note that F (0) = 0.5 so that F−1(0.5) =

χ0.5 = 0.

Condition A1

(a) The marginal distribution of et has density φ (χq) at quantile q, and φ (χq) > 0

and is continuous in some neighbourhood of χq.

(b) The sequence {et} is independently and identically distributed.

For a k × ` matrix A, we denote by max |A| the largest element, that is

maxi,j |{A}ij |.

Condition A2

For an increasing sequence {Ft} of sigma fields and a sequence of possibly random

matrices {VT (k)} , assume that for every k that Xt (k) is measurable with respect

to Ft and for some monotonically increasing function ω, such that k = ω (T ) as

T →∞,

(a) sup1≤t≤T max |VT (k)−1
Xt (k)′ | = op (1) ;

(b) max
∣∣∣∑t VT (k)−1

Xt (k)′Xt (k)VT (k)−1 − Ik+1

∣∣∣ = op (1) ;
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(c) sup1≤t≤T |Xt ([k + 1,∞)) γ∞ ([k + 1,∞))| = op (1) ;

(d) et is independent w.r.t. Ft.

Next define ~χq (∞) = (χq,0, 0, ...) ∈ <∞ and ~χq (k) = (χq, 0, ..., 0) ∈ <k+1.

Theorem 1. Under the conditions A1 and A2 as T →∞, k = ω (T ) , the asymptotic

distribution of any finite k̃+ 1 - subvector of the quantile q estimator, (γ̂q (k))[0,k̃] ,

is given by

VT (k) (γ̂q (k)− γ∞ (k)− ~χq (k)) D→N

(
0,

(
q (1− q)
φ2 (χq)

)
I

)
, (2.2.2)

where I is an identity matrix and convergence is defined for all finite-dimensional

distributions.

To apply the results of the theorem in the context of ARCH(∞) and GARCH

quantile estimation, the following additional conditions are sufficient:

Condition A3

(a) The squared returns
{
ε2

}
form a strictly stationary ergodic sequence;

(b) The conditional variance is in the class of stationary, invertible semi-strong

GARCH models that have the ARCH(∞) representation;

(c) The measurement error et is independent of past values of the squared

returns.

Condition A4

E
[(
ε2

)4
]

is finite.

The problem of estimating the conditional quantiles of volatility can be rewrit-

ten using the notation of the theorem as follows:

σ̂2
t = Xt (k) γ (k) +Xt[k + 1,∞)γ[k + 1,∞) + et,

where Xt (k) ≡ (
1, ε2t−1, ..., ε

2
t−k

)
and γ (k) ≡ (κ, ν1, ..., νk)′ . We truncate the model

at lag k :

σ̂2
t = Xt (k) γ (k) + ut (2.2.3)

and compute the quantile estimates of (2.2.3).

The matrix VT is not needed for computing the estimates γ̂q (k) themselves,

but we need to define this matrix constructively to perform asymptotic statistical

inference on the estimates. Define the symmetric matrix

Ω̂T (k) = (T − k)−1
T∑

t=k+1

X ′
t (k)X ′

t (k) .

8



By the ergodic theorem, Ω̂ (k) →p Ω(k) = E [X ′
t (k)Xt (k)] for any k. We can now

define VT (k) as

VT (k) = (T − k)
1
2 Ω

1
2 (k) ; (2.2.4)

V̂T (k) is defined analogously, using Ω̂T (k) .

Another necessary element for the purposes of inference is the density of the

innovation et at the quantile q, φ (χq). To estimate this, compute the residuals that

correspond to the vector of coefficients γ̂q (k) estimated at the quantile q :

êqt = σ̂2
t −Xt (k) γ̂q (k) .

Let ψ̂q (·) denote the kernel estimator of the density of {êqt} . We use the quantity

ψ̂q (0) as the estimator of φ (χq) (note that if the model is correctly specified, then

E
[
ψ̂q (x− χq)

]
= φ (x) for x in the support of φ and for any quantile q such that

φ (χq) 6= 0). With this estimate of φ(χq) and with V̂T (k) substituted for VT (k), the

estimate of the variance of γ̂(k) is obtained from (2.2.2).4

3. Data and estimates

3.1 Data

As we have noted, two types of data are used in this study: an equity-price index

and a set of foreign exchange prices. The former is a short (one-year) span of very

high-frequency data, spaced fifteen seconds apart, on the Toronto Stock Exchange

index of thirty-five large-capitalization stocks (TSE 35), for calendar year 1998.5

The latter is a fourteen-year sequence of observations spaced at five minutes, and

pertain to the Deutschmark / $US and Yen /$US exchange rates.

The fifteen-second intra-day data on the TSE 35 index value (as well as bid

and ask) are available through the 9:30 a.m. to 4:00 p.m. trading day, for a total of

approximately 1560 observations per day. The data must be filtered to recognize the

facts that trading does not take place throughout the 24-hour day, and that there

are occasional anomalies near the beginning of the trading day. First, we treat the

change in the index value between the 4:30 close and 9:30 open on the following day

4The covariance matrix of estimated GARCH parameters can be obtained from the
Jacobian of the transformation from ARCH to GARCH parameters, as J ′(var ˆγ(k))J,
where J is the Jacobian.
5This index has since been superseded by the S & P/TSE 60 Index of large-
capitalization stocks.
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as a contribution to volatility (which if ignored would lead to underestimation of

σ̂2
t ). Second, the first few minutes of the trading day typically show the index value

outside the bid/ask range; within the first two minutes of trading, the index value

is usually again within the range. We therefore use the midpoint between bid and

ask for the first two minutes of the trading day, by which point the two measures

are almost invariably compatible.

Finally, of course, we must decide on a level of time aggregation, or h in the no-

tation of section 2. Since the raw data are provided at 15-second intervals, summing

four squared returns to obtain a single intra-day observation, that is aggregating to

one-minute returns, implies h = 1560/4 = 390 observations per day; aggregation to

the five-minute interval, corresponds to h = 1560/20 = 78; we present results for

both of these aggregations. Each of the filtering operations applied to these TSE

35 data are described more fully in Galbraith and Kisinbay (2000).

The foreign exchange data used in this study are taken from the HFDF 2000

data set compiled and distributed by Olsen Group, Switzerland. Foreign exchange

returns recorded every five minutes span the period from January 2, 1986, 00:00:00

GMT to January 1, 1999, 23:35:00 The returns are computed as the mid-quote

price difference, expressed in basis points (i.e. multiplied by 10,000). The mid-

quote price at the regular time point is estimated through a linear interpolation

between the previous and following mid-price of the irregularly spaced tick-by-tick

data. The average bid-ask spread over the last 5-minute interval is expressed in

basis points. If there is no quote during this interval, the mean bid-ask spread is

zero. Currencies are traded continuously throughout the day, seven days a week;

thus the data set contains 1,262,016 5-minute returns, expressed in USD terms.

In order to compute integrated volatilities, it is necessary to perform some

filtering. We have followed Bollerslev and Domowitz (1993) and other researchers,

in defining the trading day t as the interval from 21:05GMT of the previous calendar

day to 21:00GMT on the calendar day t. The estimate of daily realized volatility,

that is, the daily integrated volatility, is computed by summing squares of currency’s

five-minutes returns over the day.

Although currencies are traded continuously, there are periods such as week-

ends and holidays, during which trading activity is very low. Following Andersen,

Bollerslev, Diebold and Labys (1999) and other authors, we have filtered such low-

trading-volume days out of the data.6 The filters that we applied to the data also

6An alternative to eliminating weekends would be to apply a corresponding seasonal
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eliminated weekends, fixed holidays (December 24-26, 31, January 1-2) as well as

moving holidays (Good Friday, Easter Monday, Memorial Day, the Fourth of July,

Labour Day, Thanksgiving (US) and the day after Thanksgiving. In addition, we

have eliminated from the data the days for which the indicator variable (the bid-ask

spread) had 144 or more zeroes, thus corresponding with the technical “holes” in the

recorded data. Application of all these filters reduced the data sets to 876,096 data

points, or 3042 days, for the DM/$US, and 877,248 or 3046 days for the Yen/$US.

3.2 ARCH(k) conditional quantile estimates

Before considering estimates of parameters of GARCH (or other, such as FI-

GARCH) representations of conditional volatility, we use the ARCH(k) represen-

tations directly to characterize the historical conditional quantiles of volatility of

our data series, and to consider the relative impacts of high-volatility episodes on

different parts of the volatility distribution.

Each of Figures 1(a–d), 2(a–d) and 3(a–d) pertains to one of the sets of high-

frequency returns, respectively the TSE 35 index returns (252 daily observations),

the DM/$US returns and Yen/$US returns (3042 and 3046 daily observations re-

spectively). The results plotted in the figures correspond to a number of intra-day

observations h of 78 (TSE 35) and 288 (each set of foreign exchange returns). Fig-

ure ia, i = 1, 2, 3, plots the realized volatility sequence over each of the sample

periods. These sequences are much smoother that the corresponding sequences of

daily squared returns (not shown).

Figure ib depicts the sequence of conditional 20th, 50th and 80th percentiles

of volatility, conditioning on the set of past squared returns used by the ARCH(k)

representation; k = 8 on the first data set and k = 12 on the larger sets of foreign

exchange data. In the rest of this sub-section, we consider a few noteworthy results

emerging from these estimated conditional quantiles. In later sections we consider

the parameters of GARCH-type (linear) conditional quantile models.

First, consider Figure ib and the conditional 80th and 20th percentiles of

volatility relative to the conditional median. Since the volatility is skewed to the

right, the distance between 80th and 50th percentiles of conditional volatility al-

most invariably exceed the distance between 50th and 20th. The ratio of 80th to

50th percentiles typically exceeds the ratio of 50th to 20th as well.7

filter to the data.
7These features are not necessarily clear from graphical display of the results, but
are clear in numerical displays of these quantities.
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Next consider the impact of high-volatility periods on these conditional quan-

tiles, and ask whether either the upper or lower quantiles tend to experience greater

proportionate change in such periods. Figures ic and id plot the ratios of 80th to

20th and 90th to 10th conditional percentiles of conditional volatility . We ask

whether this ratio tends to be systematically higher, or lower, in relatively high-

volatility periods.

Visual inspection of ic and id suggests some positive association, particularly

in the foreign exchange data (where the larger sample size allows more precise es-

timation of the relatively distant quantiles). Such an association–that is, upper

percentiles of volatility show a proportionately greater movement in high-volatility

periods–would suggest that using the change in conditional median (similarly, condi-

tional mean) volatility as an indicator of changes in the upper percentiles of volatility

would lead to underestimation of the probability of extremely high realizations of

daily volatility.

Table 1 quantifies the evidence on this association by recording the correlations

between sequences of realized volatilities (Figures ia) and the ratios of upper- to

lower- quantiles (Figures ic and id).

Table 1
Correlation of realized volatility with ratios

of upper- to lower conditional quantiles8

Data set T corr(rv, 80th
20th

) corr(rv, 90th
10th

)

TSE 35 252 0.199 0.028
(0.063) (0.064)
(0.122) (0.043)

DM/$US 3042 0.288 0.326
(0.017) (0.017)
(0.030) (0.031)

Yen/$US 3046 0.106 0.286
(0.018) (0.017)
(0.065) (0.083)

8The first bracketed quantity below each measured correlation is the conventional
standard error; the second is the Newey-West HAC standard error with lag length
of 12; these standard errors are little affected by small changes in p.
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These correlations suggest a substantial positive association of the type just de-

scribed; the associated standard errors (conventional and heteroskedasticity & auto-

correlation consistent) are comparatively small in the two larger data sets, implying

correlations which are significantly greater than zero at conventional test levels in

three of the four cases (the exception being the 28/20 correlation in Yen/$US data,

which is within two standard errors of zero); in the much smaller TSE data set, the

correlations are not significant by the Newey-West standard errors. Such a relation

implies that characterizing changes in conditional volatility by the conditional mean

or median alone will not provide an undistorted indicator of changes in the condi-

tional upper quantiles. The positive associations which we appear to observe here

imply that the probabilities of extremely high realizations of volatility are higher in

high-volatility periods than would be the case if all conditional quantiles increased

proportionately in such periods.

In the next section, we examine the parameter estimates of models of the

conditional quantiles of volatility.

4. Estimated models of conditional quantiles of volatility

We now consider parameter estimates of GARCH models of the conditional

quantiles, estimated using the methods given in section 2. We begin with the

standard GARCH(1,1) model, and then consider alternative GARCH models which

may provide better fits for some quantiles.9

Table 2 provides estimates of the parameters in the foreign exchange return

series over the quantiles 0.1 to 0.9.

9Throughout this section the number of approximating ARCH terms used in the
GARCH model estimation is k = 14 for the foreign exchange data and k = 8 for
the smaller equity index data set. These orders are approximately those implied by
the rule of thumb k = 8 + int(2 ln(T/100)) stated in Galbraith and Zinde-Walsh
(1997) in an autoregressive context.

13



Table 2

GARCH(1,1) models of conditional quantiles
Foreign exchange returns

DM/$US Yen/$US
Quantile ω β α ω β α

0.1 1.0×10−5 0.607 0.059 0.064 0.594 0.065
(9.0×10−7) (0.028) (0.003) (0.007) (0.032) (0.003)

0.2 1.2×10−5 0.595 0.079 0.072 0.632 0.084
(1.1×10−6) (0.025) (0.003) (0.007) (0.024) (0.003)

0.3 1.2×10−5 0.640 0.087 0.091 0.596 0.108
(1.1×10−6) (0.023) (0.003) (0.007) (0.020) (0.004)

0.4 1.5×10−5 0.634 0.100 0.102 0.609 0.122
(1.3×10−6) (0.024) (0.004) (0.008) (0.019) (0.004)

0.5 1.5×10−5 0.655 0.112 0.120 0.590 0.141
(1.3×10−6) (0.023) (0.004) (0.008) (0.017) (0.004)

0.6 1.6×10−5 0.689 0.118 0.130 0.613 0.154
(1.5×10−6) (0.023) (0.004) (0.008) (0.016) (0.004)

0.7 1.7×10−5 0.695 0.134 0.170 0.579 0.183
(1.8×10−6) (0.024) (0.005) (0.010) (0.017) (0.004)

0.8 2.0×10−5 0.686 0.171 0.251 0.480 0.253
(2.3×10−6) (0.027) (0.007) (0.016) (0.019) (0.006)

0.9 2.5×10−5 0.698 0.194 0.360 0.423 0.403
(4.1×10−6) (0.038) (0.013) (0.032) (0.026) (0.012)

As an example of the interpretation of these numbers, consider the DM/$US

exchange rate. Conditional on a previous-period realized volatility of 0.0004 and

squared return of 0.00015, the 10th and 90th percentiles of the conditional distri-

bution of realized volatility lie at 0.00026 and 0.00033. That is, 10% of realized

values of volatility would be below the first number and above the second, given the

conditions mentioned. This calculation therefore allows daily computation of the

quantiles of the conditional distribution of the next day’s volatility, given conditions

just observed.

As we consider higher quantiles, we might expect to see higher values of each of

the parameters. However, we in fact observe monotonic increases in ω and α only;
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β does not display a regular pattern of increase. That is, the higher fitted values

of conditional volatility implied by a higher quantile project onto the intercept and

the coefficient on the lagged squared return, but do not appear typically to imply

a higher weight on the lagged realized volatility. This pattern continues to hold in

the higher-order models estimated in Table 4 below.

On the smaller data set of equity returns, we do not estimate the 10th and

90th percentiles, but give in Table 3 the conditional quantiles 0.2, 0.5 and 0.8.

Table 3

GARCH(1,1) models of conditional quantiles10

TSE 35 equity index returns

Quantile ω β α

0.2 5×10−6 0.70 0.05
(4×10−6) (0.14) (0.02)

0.5 6×10−6 0.76 0.10
(4×10−6) (0.07) (0.02)

0.8 2×10−5 0.55 0.16
(8×10−6) (0.08) (0.02)

We see in the equity index data the same pattern: higher quantiles of the

conditional volatility distribution are reflected in larger values of ω and α.

Next consider the specification of alternative GARCH models for the con-

ditional quantiles. Where the diffusion approximation is imperfect, additional

terms in the model may capture useful conditioning information not present in

the GARCH(1,1) specification. In Table 4 we report the results of GARCH model

selection using the Bayesian Information Criterion (BIC) and the Final Prediction

Error (FPE), from the set of model orders (p, q), p = 1, . . . 4, q = 1, . . . 4. The chosen

optimal order is the same for the two criteria in each case.

10Standard errors of the estimates are given in parentheses.
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Table 4

GARCH model selection by quantile
Foreign exchange returns

DM/$US Yen/$US

Quantile (p∗, q∗)
∑
βi

∑
αi (p∗, q∗)

∑
βi

∑
αi

0.1 (4,1) 0.709 0.059 (4,1) 0.733 0.065
0.2 (4,2) 0.623 0.113 (3,4) 0.825 0.061
0.3 (3,2) 0.700 0.112 (2,2) 0.568 0.114
0.4 (4,1) 0.768 0.101 (2,2) 0.601 0.146
0.5 (4,1) 0.754 0.126 (2,2) 0.472 0.187
0.6 (3,2) 0.778 0.127 (2,2) 0.467 0.227
0.7 (4,3) 0.760 0.165 (2,2) 0.474 0.247
0.8 (3,4) 0.711 0.229 (3,2) 0.550 0.282
0.9 (2,2) 0.687 0.264 (4,1) 0.547 0.403

The information criteria favour models with at least four GARCH parameters

in addition to the intercept. In these higher-order models as well we see the larger

values associated with higher quantiles arising through larger values of the α’s, that

is, the terms in lagged squared returns. The intercept values (not recorded in the

Table 4) also increase monotonically with the quantile, as in the results of Table 2,

while there is no pattern of regular increase in the coefficients on lagged realized

volatility: that is, the higher quantiles do show similar persistence of volatility, and

the higher values are reflected in higher weight on recent squared returns.

6. Concluding remarks

We have developed an estimator for the conditional quantiles of volatility using

the realized volatility measure emphasized by Andersen and Bollerslev (1998). This

estimator retains the robustness to measurement noise of the LAD-based estimator

of Galbraith and Zinde-Walsh (2 000); consistency and asymptotic normality of

the estimator of the conditional quantiles is demonstrated without requiring that

the daily volatility estimate become arbitrarily accurate through a high frequency
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sampling interval converging on zero. This point is particularly important because

in practical application, despite the very high frequencies of sampling sometimes

available, market micro-structure effects such as bid-ask bounce invalidate the dif-

fusion approximation at very high frequencies. In practice, therefore, one must

place some limit on the frequency of sampling, implying that consistency cannot

be obtained via complete convergence of the daily volatility estimates to the true

values.

Application of the estimator to both foreign exchange and equity index data

suggests some regularities not detectable in conditional mean (or median) volatility

models. First, there is evidence in each data set that higher conditional quantiles

increase more than proportionately in high-volatility periods, underlining the value

of a more complete characterization of the conditional distribution of volatility in

understanding such periods. Second, also in each data set, we observe a common

pattern in the GARCH model coefficients of different conditional quantiles. The

pattern is such that the GARCH-type characterizations of higher quantiles tend to

show higher values of the intercept parameter and the coefficient on lagged squared

returns than for lower quantiles, while the lagged volatility does not show any

regular pattern of increase; that is, the higher fitted values of volatility associated

with higher quantiles project onto the intercept and lagged squared return in the

GARCH-type characterization . A further possibility, to be investigated in future

work, is that non-linear models of the conditional quantiles would show some regular

pattern of shape change that is not captured in the GARCH class of model.
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Appendix

Proof of Theorem 1. Define the check function (a generalization of the absolute
value function):

fq (x) =
[(
q − 1

2

)
+

1
2
sgn (x)

]
x.

Using this check function we can now define

ZT (γ, k; q) =∑
fq (et −Xt (k) (γ (k)− γ∞ (k)− ~χq) +Xt[k + 1,∞)γ∞[k + 1,∞))

−
∑

fq (et − χq +Xt[k + 1,∞)γ∞[k + 1)) .

Note that ZT (γ, k; q) is minimized by the quantile estimator. Following Phillips
(1995), who considered generalized functions for LAD asymptotics, we choose a
set of test functions Ψ such that ψ (x) ∈ Ψ. We assume that functions in Ψ are
twice continuously differentiable and have a compact support, and normalize these
functions such that

∫
ψ (x) dx = 1. Using this set of test functions, a sequence of

smoothed functions, defined by

fm
q (x) = m

∫
fq (x− v)ψ (mv) dv,

converges weakly to the check function, treated as a generalized function (similarly
to Phillips 1995, Galbraith and Zinde-Walsh 2000).

Now define g (k) = VT (γ (k)− γ∞ (k)− ~χq (k)) , and the smoothed process
Zm

T (γ, k; q) :

Zm
T (γ, k; q) =∑

fm
q

(
et − χq −Xt (k)V −1

T g (k) +Xt[k + 1,∞)γ∞[k + 1,∞)
)

−
∑

fm
q (et − χq +Xt[k + 1,∞)γ∞[k + 1)) .

Consider the Taylor expansion of Zm
T (γ, k; q) around g = 0 :

Zm
T (γ, k; q) =

−
∑

fm
q
′ (et − χq +Xt[k + 1,∞)γ∞[k + 1,∞))Xt (k)V −1

T (k) g (k)

+
1
2

∑
fm

q
′′ (e∗t − χq +Xt[k + 1,∞)γ∞[k + 1,∞))

× g′ (k)V −1
T Xt (k)′Xt (k)V −1

T g (k) ,

(A1)
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where e∗t ∈
(
et, et −Xt (k)V −1

T (k) g (k)
)
.

Note that, as a generalized function, f ′q (x) = (q − 1
2 ) + 1

2sgn (x) and f ′′q (x) =
δ (x) , where δ (x) denotes the Dirac delta function.

We will establish asymptotic limits of the expansion (A1), and will show that

∑[
1
σm

(
fm′

q (et − χq +Xt[k + 1,∞)γ∞[k + 1,∞))− µm
q

)]
Xt (k)V −1

T (k)

D→N (0, I) ,

(A2)

where
µm

q = E
[
fm′

q (et)
]

= E
[
fm′

q (et) I
(|et| < m−1

)]
and (σq

m)2 = E
[(
fm′

q − µm
q

)2
]
.

As well,

sup
‖g(k)‖<Cg

∑{
B −E

[
fm′′

q (et)
]
Ik+1

} p→0, (A3)

where B =[
fm′′

q (e∗t − χq +Xt [k + 1,∞) γ∞ [k + 1,∞))× VT (k)−1Xt (k)′Xt (k)VT (k)−1
]
,

and where Ik is the k × k identity matrix, for any constant Cg > 0.
To prove (A2) note that from A1(c),

sup
∣∣fm′

q (et − χq +Xt[k + 1,∞)γ∞[k + 1,∞))− fm
q (et − χq)

∣∣ = op (1) , so that we
can ignore Xt[k + 1,∞)γ∞[k + 1,∞) in the argument of fm′

q in (A3). Define

ξT,t =
(

1
σq

m

)[
fm′

q (et − χq)− µm
q

]
Xt (k)V −1

T (k)λ

for some (k + 1) × 1 vector λ such that λ′λ = 1, and for an arbitrary small ε > 0,
define

ζT,t = ξT,tI

(
sup

1≤t≤T
max

∣∣∣VT (k)−1
Xt (k) < ε

∣∣∣
)
.

Since fm′
q is a bounded function and given A2, we have that |∑ ξT,t −

∑
ζT,t| p→0.

We now show that the martingale difference array {ζT,t} satisfies the conditions
of the central limit theorem of McLeish (see, e.g., Bierens 1994, Theorem 6.1.6).

Indeed, supT≥1 E [maxt (ζT,t)] < ε2E
[(
fm′

q − µm
q

)2
]
< ∞ and the condition (a) of

the McLeish theorem is satisfied. The condition (b) follows from (A2) (a) and the
fact that fm′

q is bounded and σ2
m > 0. For condition (c) of the theorem we need to

show that
∑T

t=1 ζ
2
T,t →p 1. Define

ηT,t = ζ2
T,t − λ′VT (k)−1

Xt (k)′Xt (k)VT (k)−1
λ

×I
(

sup
1≤t≤T

max
∣∣∣VT (k)−1

Xt (k) < ε
∣∣∣
)
.
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By the independence of {et} the ηt are uncorrelated, the LLN applies providing that∑
ηt

p→0, and so limT→∞
(∑

t ξ
2
t

)
= 1.Thus, by the CLT

∑
t ξT,t

D→N (0, 1) . We can
obtain (A3) similarly by using A2 (b) and continuity and boundedness of fm′′

q (x) .
The minimizer gm

T (k) of Zm
T (g, k; q) satisfies the first-order conditions:

0 = −
∑

fm
q
′ (et +Xt[k + 1,∞)γ∞[k + 1,∞))Xt (k)V −1

T (k)

+
1
2

∑
fm

q
′′ (e∗t +Xt[k + 1,∞)γ∞[k + 1,∞))V −1

T Xt (k)′Xt (k)V −1
T gm

T (k) .

Consider the limiting process Z (γ; q) to which the finite dimensional distributions
of Zm

T (γ, k; q) converge as T → ∞. By the convexity of Zm
T (γ, k; q) it follows (see

Phillips, 1995) that this limit process is uniquely minimized at the limit g of the
minimizers of Zm

T (γ, k; q) .

Direct computation shows that limm→∞ µm
q = 0, limm→∞

(
σm

q

)2 = q (1− q) ,

and limm→∞E
[
fm

q (et − χq)
]

= φ (χq) . Thus we can conclude that

g (k) ∼ N

(
0,
q (1− q)
φ2 (χq)

Ik+1

)
.

Following the argument of Phillips, the terms of the decomposition of
Zm

T (γ, k; q) , as m → ∞, represent generalized functions that are correspondent
terms in ZT (γ, k; q) , and the limits of those terms as T →∞ are ordinary functions
(see (A2) and (A3)). We may conclude that the limit process for ZT (γ, k; q) is also
Z (γ; q) and the minimizer of ZT (γ, k; q) has the same limit process as g (k) .
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