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Résumé / Abstract 
 

 Cette note développe des méthodes d’ajustement, sans spécifier le modèle, qui corrigent le 
biais induit par les erreurs de mesures de la volatilité dans la mesure de performance des 
méthodes de prévision de la volatilité. Les procédures, qui utilisent la récente théorie 
asymptotique de Barndorff-Nielsen et Shephard (2002a), sont faciles à mettre en œuvre et très 
performantes dans les situations empiriques usuelles. En particulier, la prise en compte des 
erreurs de mesures dans les procédures de prévision de Andersen, Bollerslev, Diebold et Labys 
(2003), amène à des performances de prévision de la volatilité très élevées. 
 

 
 This note develops general model-free adjustment procedures for the calculation of 
unbiased volatility loss functions based on practically feasible realized volatility benchmarks. 
The procedures, which exploit the recent asymptotic distributional results in Barndorff-Nielsen 
and Shephard (2002a), are both easy-to-implement and highly accurate in empirically realistic 
situations. On properly accounting for the measurement errors in the volatility forecast 
evaluations reported in Andersen, Bollerslev, Diebold and Labys (2003), the adjustments result 
in markedly higher estimates for the true degree of return-volatility predictability. 
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1 Introduction

The burgeoning literature on time-varying financial market volatility is abound with

empirical studies in which competing models are evaluated and compared on the basis of

their forecast performance. Contrary to the typical setting for economic forecast evaluation,

the variable of interest in that context - the volatility - is not directly observable but rather

inherently latent. Consequently, any ex-post assessment of forecast precision must contend

with a fundamental errors-in-variable problem associated with the measurement of the

realization of the forecasted variable. Growing recognition of the importance of this issue has

led a number of recent studies to advocate the use of so-called realized volatilities, constructed

from the summation of finely sampled squared high-frequency returns, as a practical method

for improving the ex-post volatility measures. The recent paper by Andersen, Bollerslev,

Diebold and Labys (2003) (henceforth ABDL) provides a leading example.

The use of realized volatility as the practical benchmark may be justified by standard

continuous-time arguments. Assuming that the sampling frequency of the squared returns

utilized in the realized volatility computations approaches zero, the realized volatility

consistently estimates the true (latent) integrated volatility. Importantly, the latter concept

corresponds to the realization of the (cumulative) instantaneous variance process over

the horizon of interest (see, e.g., ABDL, 2001; Barndorff-Nielsen and Shephard, 2001,

2002a,b; and Comte and Renault, 1998, for detailed discussions). Unfortunately, market

microstructure frictions distort the measurement of returns at the highest frequencies so

that, e.g., tick-by-tick return processes blatantly violate the theoretical semi-martingale

restrictions implied by the no-arbitrage assumptions in continuous-time asset pricing models.

These same features also bias empirical realized volatility measures constructed directly from

the ultra high-frequency returns, so in practice the measures are instead typically constructed

from intraday returns sampled at an intermediate frequency.1 As such, the integrated

volatility is invariably measured with error (see, e.g., the numerical calculations in Andreou

and Ghysels, 2002, and Bai, Russell, and Tiao, 2000). The exact form of the measurement

error will, of course, depend on the assumed model structure (see, e.g., Meddahi, 2002, for

analytical calculations within the eigenfunction stochastic volatility class of models), but it

will generally result in a downward bias in the estimated degree of predictability obtained

1The daily realized volatilities in ABDL (2003) are based on the summation of squared half-hourly foreign
exchange rate returns, but either 5-minute or 15-minute returns are other common choices in the literature.
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through any forecast evaluation criterion that simply uses the realized volatility in place

of the true (latent) integrated volatility. Although this bias may be large (Andersen and

Bollerslev, 1998), it is almost always ignored in empirical applications.

This note addresses that issue by developing general model-free adjustment procedures

that allow for the calculation of simple unbiased loss functions in realistic forecast situations.

Moreover, the adjustments are simple to implement in practice. The derivation exploits the

recent asymptotic (for increasing sampling frequency) distributional results in Barndorff-

Nielsen and Shephard (2002a). Following Andersen and Bollerslev (1998) and ABDL (2003),

we focus our forecast comparisons on the value of the coefficient of multiple correlation,

or R2, in the Mincer-Zarnowitz style regressions of the ex-post realized volatility on the

corresponding model forecasts,2 but our procedures are general and could be applied in the

adjustment of other loss functions used in the evaluation of any arbitrary set of volatility

forecasts. On applying the procedures in the context of ABDL (2003), we obtain markedly

higher estimates for the true degree of return-volatility predictability, with the adjusted R2’s

exceeding their unadjusted counterparts by up to forty-percent.

We proceed as follows. The first subsection below introduces the notions of integrated

and realized volatility within the general class of continuous-time stochastic volatility models,

along with the (feasible) asymptotic distribution theory due to Barndorff-Nielsen and

Shephard (2002a). The development of the practical and easy-to-implement adjustment

procedures is then presented in the next subsection, followed by our reassessment of the

empirical evidence in ABDL (2003) related to the fit of the Mincer-Zarnowitz style volatility

regressions. The Appendix presents the results from a small scale Monte Carlo simulation

experiment that confirms the accuracy of the asymptotic approximations - which form the

basis for our approach - for models calibrated to reflect empirically relevant and challenging

specifications.

2 Theory

We focus on a single asset traded in a liquid financial market. Assuming that the sample-path

of the logarithmic price process, {pt, 0 ≤ t}, is continuous, the class of continuous-time

stochastic volatility models employed in the finance literature is then conveniently expressed

2This particular loss function is directly inspired by the work of Mincer and Zarnowitz (1969), and we
will refer to the corresponding regressions as such; see also the discussion in Chong and Hendry (1986).
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in terms of the following generic stochastic differential equation (sde),

dpt = µtdt + σtdWt , (1)

where Wt denotes a standard Brownian motion, and the drift term µt is (locally) predictable

and of finite variation. To facilitate the discussion we will assume that the point-in-time,

or spot, volatility process and the Brownian motion driving the price are (instantaneously)

uncorrelated, or Corr(dσt, dWt) = 0. However, the same (approximate) arguments carry

over to the case of a non-zero correlation, as documented by, e.g., the simulation evidence

in Barndorff-Nielsen and Shephard (2003), and the theoretical calculations for the class

of eigenfunction stochastic volatility models in Meddahi (2002). We further support

this contention for the measures utilized in the adjustments developed here by explicitly

incorporating a realistic degree of leverage (negative contemporaneous return-volatility

correlation) for one of the models analyzed within the Monte Carlo study reported on in the

Appendix.

2.1 Integrated and Realized Volatility

Although the sde in equation (1) is very convenient from a theoretical arbitrage-based pricing

perspective, as emphasized by Andersen, Bollerslev and Diebold (2002), practical return

calculations and volatility measurements are invariably restricted to discrete time intervals.

In particular, focusing on the unit time interval, the one-period continuously compounded

return for the price process in equation (1) is formally given by,3

rt ≡ pt − pt−1 =

∫ t

t−1

µudu +

∫ t

t−1

σudWu. (2)

Hence, conditional on the sample-path realizations of the drift and instantaneous volatility

processes, {µu, t−1 ≤ u ≤ t} and {σu, t−1 ≤ u ≤ t}, respectively, the one-period returns are

Gaussian with conditional mean equal to the first integral on the right-hand-side of equation

(2), and conditional variance equal to the integrated volatility,

IVt ≡
∫ t

t−1

σ2
udu. (3)

3For notational simplicity, we focus our discussion on one-period return and volatility measures, but the
general results and associated measurement error adjustment extend in a straightforward manner to the
multi-period case.
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The integrated volatility therefore affords a natural measure of the (ex-post) return

variability.4

Of course, integrated volatility is not directly observable. However, by the theory of

quadratic variation, the corresponding realized volatility defined by the summation of the

1/h intra-period squared returns, r
(h)
t ≡ pt − pt−h,

RVt(h) ≡
1/h∑
i=1

r
(h)2
t−1+ih, (4)

where 1/h is assumed to be an integer, converges uniformly in probability to IVt as h →

0. Moreover, under additional mild regularity conditions on the process in (1), Barndorff-

Nielsen and Shephard (2002a) have recently established that for h → 0, and conditional on

{σu, t− 1 ≤ u ≤ t}, the realized volatility error is approximately distributed as,

RVt(h)− IVt ∼ h1/2IQt(h)1/2zt , (5)

where zt is N (0, 1), and the integrated quarticity,

IQt ≡ 2

∫ t

t−1

σ4
udu , (6)

is consistently estimated by the (standardized) realized quarticity

RQt(h) ≡ 1

h

2

3

1/h∑
i=1

r
(h)4
t−1+ih . (7)

This remarkable set of asymptotic results allow for general model-free approximations to the

distribution of the realized volatility error.

Importantly, from the present perspective, equation (5) implies that the time t+1 realized

volatility error is (approximately) serially uncorrelated and orthogonal to any variables

(volatility forecasts) in the time t information set. This justifies the common use of realized

volatility as a convenient simple and unbiased, albeit potentially noisy, benchmark in ex-post

volatility forecast evaluations. Building on these general results, we next develop a set of

easy-to-implement procedures that may be used to properly account for the corresponding

measurement errors in practical forecast situations.

4The integrated volatility also plays a crucial role in the pricing of options; see, e.g., Garcia, Ghysels, and
Renault (2002).
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2.2 Practical Measurement Error Adjustments

The consistency and asymptotic normality results discussed in the previous section rely on

the (conceptual) idea of an ever increasing number of finer sampled high-frequency returns,

or h → 0. However, as previously noted, the requisite semi-martingale property of returns

invariably breaks down at ultra-high frequencies, so that in actual applications market

microstructure frictions in effect put a limit on the number of return observations per unit

time interval ∆ that may be used productively in the computation of the realized volatility

measures; i.e., h ≥ 1/∆ > 0. As such, the realized volatility will necessarily be subject to a

finite-sample (non-zero h) measurement error vis-a-vis the true (latent) integrated volatility.

Assuming that the underlying continuous time process satisfies a weak uniform

integrability condition so that the consistency of RQt(h) for IQt also guarantees convergence

in mean (see, e.g., Billingsley, 1994, and Hoffmann-Jørgensen, 1994), it follows directly from

equation (5) that for small values of h,

V ar[IVt] ≈ V ar[RVt(h)] − hE[RQt(h)]. (8)

Thus, any MSE type forecast evaluation criteria based on a comparison of the volatility

forecasts with the ex-post RVt(h) in place of IVt(h) will on average over-estimate the

true variability of the forecast errors by hE[RQt(h)]. In particular, consider the Mincer-

Zarnowitz regression of the ex-post realized volatility on a set of predetermined regressors

(volatility forecasts) commonly used as guide in evaluating and comparing the performance

of competing volatility models. It follows that the (feasible) R2 from this regression

will under-estimate the true predictability as measured by the (infeasible) R2 from the

regression of the future (latent) integrated volatility on the same set of predetermined

regressors (volatility forecasts) by the multiplicative factor: V ar[RVt(h)]/V ar[IVt] ≈

V ar[RVt(h)]/{V ar[RVt(h)]− hE[RQt(h)]}.5

Meanwhile, the predictive regressions and related loss functions reported in the extant

volatility literature are often formulated in terms of the realized standard deviation,

RVt(h)1/2, or the logarithmic standard deviation, log RVt(h)1/2. To properly gauge the true

predictability in those situations the sample variances of the transformed realized volatilities

5As previously noticed by Meddahi (2002), the approximation in (8) also allows for the construction of
more efficient (in the sense of MSE) model-free integrated volatility estimates, by downweighting the realized
volatility by the multiplicative factor {V ar[RVt(h)] − hE[RQt(h)]}/V ar[RVt(h)] and adding the constant
{E[RVt(h)]hE[RQt(h)]}/V ar[RVt(h)].
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may be similarly replaced by (feasible) expressions for the true (latent) variances, V ar[IV
1/2
t ]

and V ar[log IV
1/2
t ], respectively.6 To this end, it follows from equation (5) and a second-order

Taylor series expansion of the square-root function of RVt(h) around IVt that, conditional

on the sample-path realization of the (latent) point-in-time volatility process,

RVt(h)1/2 ≈ IV
1/2
t +

1

2
h1/2IV

−1/2
t IQ

1/2
t zt −

1

8
hIV

−3/2
t IQtz

2
t ,

for small values of h. Subject to the necessary uniform integrability conditions on the

underlying continuous-time process ensuring convergence in mean of the relevant quantities,

it therefore follows that

V ar[IV
1/2
t ] ≈ E[RVt(h)]− {E[RVt(h)1/2] +

h

8
E[RVt(h)−3/2RQt(h)]}2. (9)

The variance of the square-root of the realized volatility, as used in a number of previous

empirical studies, obviously exceeds the expression in (9) by the absence of the second

(positive) term in the last squared bracket. This in turn will result in a downward bias in

the R2’s from the (feasible) predictive regressions formulated in terms of RVt(h)1/2 in place

of IV
1/2
t .

By similar arguments,

log RVt(h) ≈ log IVt + h1/2IV −1
t IQ

1/2
t zt −

1

2
hIV −2

t IQtz
2
t ,

and,

[log RVt(h)]2 ≈ [log IVt]
2 + 2h1/2IV −1

t [log IVt]IQ
1/2
t zt + hIV −2

t (1− log IVt)IQtz
2
t .

Thus, subject to the necessary integrability conditions, it follows that,

V ar[log IVt] ≈ E[[log RVt(h)]2] − hE[RVt(h)−2(1− log RVt(h))RQt(h)]

− {E[log RVt(h)] +
1

2
hE[RVt(h)−2RQt(h)]}2.

(10)

The transformation of the asymptotic distribution in equation (5) to a logarithmic

scale discussed in Barndorff-Nielsen and Shephard (2002b, 2003) provides an alternative

approximation to the distribution of the logarithmic realized volatility.

6Any transformed unbiased forecast for IVt+1 will generally not be unbiased for IVt+1 or log IV
1/2
t+1 .

However, allowing for a non-zero intercept and a slope coefficient different from unity in the Mincer-Zarnowitz
regression of the future transformed realized volatility on the transformed forecast explicitly corrects this
bias; see also the discussion in Andersen, Bollerslev and Meddahi (2002).
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The accuracy of the distributional assumption and second-order Taylor series expansions

underlying the (feasible) expressions for the latent variances in equations (8)-(10) are

underscored by the simulation results reported in the Appendix. Similar arguments could,

of course, be applied for any other twice continuously differentiable function of integrated

volatility in order to obtain an approximate value for V ar[f(IVt)], in turn allowing for

simple model-free approximations to the true (infeasible) R2’s that would obtain in the

hypothetical regressions of f(IVt) on any forecasts by scaling the (feasible) R2’s from

the corresponding regressions based on f(RVt(h)) by the multiplicative adjustment factor,

V ar[f(RVt(h))]/{V ar[f(IVt(h))]}. We next apply these ideas in re-interpreting the empirical

evidence related to the Mincer-Zarnowitz volatility regressions reported in ABDL (2003).

2.3 ABDL (2003) Revisited

The forecast comparisons in ABDL (2003) are based on daily realized volatilities constructed

from high-frequency half-hourly, or h=1/48, spot exchange rates for the U.S. dollar, the

Deutschemark and the Japanese yen spanning twelve-and-a-half years.7 Separate forecast

evaluation regressions are reported for the “in-sample” period comprised of the 2,449

“regular” trading days from December 1, 1986 through December 1, 1996, and the shorter

“out-of-sample” forecast period consisting of the 596 days from December 2, 1996 through

June 30, 1999. Separate results are also reported for one-day-ahead and ten-days-ahead

forecasts. Interestingly, for all series and both sample periods and forecast horizons, a

simple AR(5) model estimated directly from the realized volatilities generally performs

as well or better than any of the many alternative models considered, including several

GARCH type models estimated directly to the high-frequency data (both with and without

corrections for the pronounced intradaily seasonal pattern in volatility). The representative

R2’s for the DM/$, Yen/$, and Yen/DM forecast regressions for RVt+1(1/48), RVt+1(1/48)1/2,

log RVt+1(1/48)1/2, RVt+10,10(1/48), RVt+10,10(1/48)1/2, and log RVt+10,10(1/48)1/2, where

RVt+10,10(1/48) ≡ RVt+1(1/48) + RVt+2(1/48) + ... + RVt+10(1/48), as reported in ABDL

(2003) and the accompanying appendix, are given in square brackets in Table 1.8

7The high-frequency data were generously provided by Olsen & Associates in Zürich, Switzerland; see
Dacorogna, Gencay, Müller, Olsen and Pictet (2001) for further discussion of the data capture, filtering, and
return construction.

8The out-of-sample period contains a “once-in-a-generation” move in the Japanese Yen on October 8,
1998. Somewhat higher R2’s, but qualitatively similar results, were obtained by excluding this and the
neighboring two days; see ABDL (2003) and the accompanying appendix for further discussion and sensitivity
analysis along these lines.
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By failing to account for the measurement errors in the future realized volatilities, these

R2’s understate the true degree of predictability in the (latent) integrated volatilities. This

problem is rectified by the main entries in Table 1, which report the adjusted R2’s obtained

by applying the (feasible) asymptotic approximations in equations (8)-(10) along with the

relevant multiplicative adjustment factors.9 The results are quite striking. For some of the

forecasts horizons and rates, the “true” R2’s exceed the standard predictive R2’s, as reported

in ABDL (2003), by up to forty percent. For instance, the in-sample, one-day-ahead R2 for

the DM/$ series given in the very first entry in the table equals 0.219, whereas the true

(albeit estimated) R2 is substantially higher at 0.314. As such, the results highlight the

importance of appropriately adjusting for measurement error when assessing the quality of

volatility forecasts in practical empirical applications.

Interestingly, the numerical values for the adjusted R2’s for the DM-dollar series in Table

1 are quite close to the exact theoretical R2’s implied by the specific two-factor affine diffusion

discussed in Andersen, Bollerslev and Meddahi (2002). This is especially noteworthy because

the parameter values for this model are based on the identical DM-dollar sample underlying

the results reported on in Table 1. This suggests that the simple AR(5) models for the

realized volatilities estimated in ABDL (2003) - when adjusted for the measurement error

problem - capture a degree of predictability that is consistent with that implied by a

conventional two-factor affine model. This type of benchmarking of the true predictive

power of such reduced-form forecast procedures relative to that of a specific continuous-time

volatility model would, of course, be impossible without the type of measurement error

correction developed here.

9The adjustments are constructed separately for each series and for the in-sample and out-of-sample
periods using the corresponding realized volatility and quarticity series.
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Table 1

ABDL (2003) Adjusted Predictive R2’s

IV IV 1/2 log IV 1/2

In-Sample, One-Day-Ahead
DM/$ 0.314 [0.219] 0.399 [0.351] 0.482 [0.431]
Yen/$ 0.315 [0.229] 0.412 [0.374] 0.476 [0.433]
Yen/DM 0.450 [0.361] 0.559 [0.499] 0.630 [0.567]
Out-of-Sample, One-Day-Ahead
DM/$ 0.200 [0.158] 0.296 [0.246] 0.350 [0.285]
Yen/$ 0.230 [0.197] 0.366 [0.338] 0.419 [0.373]
Yen/DM 0.215 [0.189] 0.378 [0.344] 0.483 [0.424]
In-Sample, Ten-Days-Ahead
DM/$ 0.411 [0.374] 0.463 [0.436] 0.499 [0.473]
Yen/$ 0.386 [0.355] 0.414 [0.396] 0.424 [0.407]
Yen/DM 0.536 [0.513] 0.606 [0.589] 0.653 [0.637]
Out-of-Sample, Ten-Days-Ahead
DM/$ 0.182 [0.168] 0.209 [0.195] 0.228 [0.213]
Yen/$ 0.197 [0.187] 0.287 [0.279] 0.347 [0.336]
Yen/DM 0.186 [0.178] 0.301 [0.293] 0.401 [0.390]

3 Concluding Remarks

Building on the recent theoretical results of Barndorff-Nielsen and Shephard (2002a), this

note develops a set of simple and practically feasible expressions for calculating true measures

of return volatility predictability relative to that of the corresponding underlying (latent)

integrated volatility. The procedures are general and could be applied in the evaluation

of any volatility forecasts. On specifically applying the procedures to the ex-post forecast

evaluation regressions reported in ABDL (2003), we document sizeable downward biases in

terms of the previously reported predictive powers. More generally, the practical techniques

developed here hold the promise for further development of new and improved easy-to-

implement volatility forecasting procedures guided by proper benchmark comparisons. The

techniques should also prove useful in more effectively calibrating the type of continuous-time

models routinely employed in modern asset pricing theories.
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Appendix: Finite Sample Variance Approximations

To assess the accuracy of the distributional assumptions and second-order Taylor series

expansions underlying the asymptotic approximations for the variances of the latent

integrated volatilities in empirically relevant specifications and sample sizes compatible

with those of ABDL (2003), Table A.1 reports the simulated medians and ninety-percent

confidence intervals (in square brackets) across 100 replications, each consisting of 2,500

“days.” The table reports the results for four different continuous-time models along with

1/h = 288, 96, 48, and 1, corresponding to the use of “5-minute,” “15-minute,” “half-hourly,”

and “daily” returns. In the first three models we assume the mean to be zero, or

dpt = σtdWt . The numbers in the first panel refer to the GARCH(1,1) diffusion analyzed

in Andersen and Bollerslev (1998), dσ2
t = 0.035(0.636 − σ2

t )dt + 0.144dBt, where the Bt

denotes a standard Brownian motion. The second panel gives the results for the two-factor

affine diffusion estimated by Bollerslev and Zhou (2002), where σ2
t = σ2

1,t + σ2
2,t, dσ2

1,t =

0.571(0.326−σ2
1,t)dt+0.229σ1,tdB1,t, dσ2

2,t = 0.076(0.179−σ2
2,t)dt+0.110σ2,tdB2,t, and the two

Brownian motions are assumed to be independent. These parameter values were obtained

from estimation based on the identical DM-dollar sample used in ABDL (2003). The two final

sets of numbers refer to the log-normal diffusion reported in Andersen, Benzoni and Lund

(2002) with volatility dynamics governed by d log(σ2
t ) = −0.014[0.838+log(σ2

t )]dt+0.115dBt.

The results in the third panel imposes a zero mean return. The final panel is based

on the identical volatility specification, but the log-price dynamics are now given by

dpt = 0.031dt + σt[
√

1− 0.5762dBt − 0.576dWt]. This representation therefore includes a

positive mean return and, more importantly, a strong leverage effect through the negative

contemporaneous correlation between the return and volatility innovations.

It is evident that the simulated medians and ninety-percent confidence intervals for

the asymptotic approximations to V ar[IVt], V ar[IV
1/2
t ] and V ar[log(IV

1/2
t )] are extremely

close to the simulated sampling distributions for the true variances (labelled h = 1/∞) as

long as the frequency of the returns used in the calculation of the realized volatility and

quarticity measures, RVt(h) and RQt(h), respectively, exceeds half-an-hour, or h ≤ 1/48.

These results are directly in line with the earlier simulation evidence related to the accuracy

of the underlying asymptotic approximation in equation (5) for other models reported in

Barndorff-Nielsen and Shephard (2002a,b, 2003) and Meddahi (2002). Most noteworthy

are the near identical results for the log-volatility diffusion model with and without the

leverage effect. The asymptotic approximations are clearly robust to this - for equity returns

important - feature of the data generating process.
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Table A.1: Asymptotic Variance Approximations

h V ar[IVt] V ar[IV
1/2
t ] V ar[log(IV

1/2
t )]

GARCH(1,1) Diffusion
1/∞ 0.169 0.0655 0.137

[0.106, 0.272] [0.0492, 0.0858] [0.110, 0.167]
1/288 0.169 0.0654 0.137

[0.106, 0.276] [0.0493, 0.0865] [0.110, 0.166]
1/96 0.170 0.0651 0.137

[0.106, 0.272] [0.0491, 0.0881] [0.109, 0.165]
1/48 0.170 0.0656 0.138

[0.109, 0.273] [0.0495, 0.0882] [0.110, 0.167]
1 0.170 0.208 1.175

[0.0913, 0.321] [0.166, 0.249] [1.059, 1.295]
Two-Factor Affine
1/∞ 0.0260 0.0125 0.0262

[0.0221, 0.0315] [0.0111, 0.0144] [0.0236, 0.0295]
1/288 0.0260 0.0126 0.0262

[0.0222, 0.0315] [0.0111, 0.0142] [0.0233, 0.0292]
1/96 0.0263 0.0127 0.0261

[0.0221, 0.0310] [0.0112, 0.0145] [0.0236, 0.0296]
1/48 0.0260 0.0128 0.0266

[0.0215, 0.0313] [0.0112, 0.0147] [0.0237, 0.0300]
1 0.0256 0.1368 1.0640

[0.0059, 0.0451] [0.1237, 0.1480] [0.9698, 1.1600]
Log-Normal Diffusion
1/∞ 0.147 0.0536 0.110

[0.068, 0.315] [0.0339, 0.0856] [0.076, 0.146]
1/288 0.148 0.0534 0.110

[0.068, 0.319] [0.0339, 0.0852] [0.076, 0.146]
1/96 0.147 0.0534 0.111

[0.068, 0.319] [0.0349, 0.0846] [0.077, 0.147]
1/48 0.148 0.0538 0.110

[0.0690, 0.321] [0.0348, 0.0858] [0.077, 0.148]
1 0.145 0.1759 1.149

[0.055, 0.364] [0.1325, 0.2409] [1.062, 1.246]
Log-Normal-Leverage Diffusion
1/∞ 0.147 0.0536 0.110

[0.068, 0.315] [ 0.0339, 0.0856] [ 0.076, 0.146]
1/288 0.146 0.0536 0.110

[0.068, 0.317] [0.0340, 0.0852] [ 0.076, 0.145]
1/96 0.146 0.0532 0.110

[0.068, 0.318] [ 0.0347, 0.0845] [0.077, 0.146]
1/48 0.146 0.0535 0.111

[0.071, 0.317] [ 0.0350, 0.0857] [ 0.077, 0.146]
1 0.147 0.1773 1.155

[0.049, 0.357] [0.1343, 0.2460] [ 1.033, 1.258]
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