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Résumé / Abstract 
 

Dans ce papier, on jauge l’utilité de plusieurs estimations (univariées autant que multivariées) de 
l’écart de production pour prévoir le taux d’inflation. Une analyse ex post suggère que plusieurs 
de ces estimations aident à prédire l’inflation. Néanmoins, les erreurs de prédictions hors de 
l’enchantillon qui se sont construites avec les écarts de production estimés en temps réel 
indiquent que cette amélioration de prédiction est illusoire. On trouve que l’utilité des écarts de 
production pour prédire l’inflation a été exagérée et que les prédictions faites avec l’écart de 
production sont souvent moins précises que celles qui ignorent le concept d’un écart de 
production. 

 
A stable predictive relationship between inflation and the output gap, often referred to as a 
Phillips curve, provides the basis for empirical formulations of countercyclical monetary policy 
in many models. In this paper, we provide an empirical evaluation of the usefulness of 
alternative univariate and multivariate estimates of the output gap for predicting inflation. In-
sample analysis based on ex post output gap measures suggests that many of the alternative 
estimates we examine appear to be quite useful for predicting inflation. However, examination of 
out-of-sample forecasts using real-time estimates of the same measures suggests that this 
predictive ability is mostly illusory. We find that the usefulness of output gaps as predictors of 
inflation has been severely overstated and that real-time forecasts using the output gap are often 
less accurate than forecasts that abstract from the output gap concept altogether. 
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1 Introduction

A stable predictive relationship between inflation and a measure of deviations of aggregate

demand from the economy’s potential supply—the “output gap”—provides the basis for

many formulations of activist countercyclical stabilization policy. Such a relationship, re-

ferred to as a Phillips curve, is often seen as a helpful guide for policymakers aiming to

maintain low inflation and stable economic growth.1 According to this paradigm, when ag-

gregate demand exceeds potential output, the economy is subject to inflationary pressures

and inflation should be expected to rise. Under these circumstances, policymakers might

wish to adopt policies restricting aggregate demand aiming to contain the acceleration in

prices. Similarly, when aggregate demand falls short of potential supply, inflation should

be expected to fall, prompting policymakers to consider adoption of expansionary policies

to restore stability.

Regardless of the analytical usefulness or the theoretical validity of a presumed predictive

relationship between a concept of the output gap and inflation, however, the practical

usefulness of such a relationship is largely an empirical matter. Even under the presumption

that a stable predictive relationship is present in the data, a number of issues may complicate

its use in practice. The appropriate empirical definition of “potential output”—and the

accompanying “output gap”—that might be useful in practice is far from clear. For any

given empirical definition of the gap, the exact form of its empirical relationship with

inflation cannot be known a priori and would need to be determined from the data. Further,

even if we were to assume that the proper concept and empirical relationship are identified,

the operational usefulness of this predictive relationship would be subject to the availability

of reliable estimates of the relevant gap concept in real time, when the desired inflation

forecasts are required. But as is well known, real-time estimates of the output gap are

generally subject to significant revisions. The subsequent evolution of the economy provides
1The appeal of this paradigm is evidenced by the fact that many estimated models employed for monetary

policy analysis, including at numerous central banks, feature estimated “Phillips curves”of various forms.
See Bryant, Hooper and Mann (1993) and Taylor (1999) for collections of monetary policy evaluation studies
that feature such estimated models.
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useful information for determining which part of the business cycle the economy was in at

a particular point in time—information which leads to improved estimates of the gap. As

a result, considerable uncertainty regarding the value of the gap remains even long after

it would be needed for forecasting inflation, which renders real-time estimates unreliable.2

This, in turn, raises questions regarding the empirical usefulness of the output gap for

forecasting inflation in real time.

In this paper we assess the usefulness of alternative univariate and multivariate methods

for estimation of the output gap for predicting inflation, paying particular attention to

the distinction between suggested usefulness—based on in-sample historical analysis— and

operational usefulness—based on simulated real-time out-of-sample analysis. First, using in-

sample analysis based on ex post estimates of the output gap, we confirm that some appear

to be useful for predicting inflation. This is as would be expected since the implicit Phillips

curve relationships recovered in this manner are similar to the relationships commonly

found in empirical macroeconometric models. However, the ability to explain inflation ex

post does not imply an operational ability to forecast inflation. To assess the latter, we

generate out-of-sample forecasts based on real-time output gap measures; those constructed

using only data (and parameter estimates) available at the time forecasts are generated.

For this exercise, we rely on the real-time dataset for macroeconomists which was created

and is maintained by the Federal Reserve Bank of Philadelphia.3

Our findings based on this real-time analysis suggest that the predictive ability of output

gap measures is mostly illusory. Ex post estimates of the relationship between inflation and

the output gap severely overstate the gap’s usefulness for predicting inflation. Further, real-

time forecasts using the output gap are often less accurate than forecasts that abstract from

the output gap concept altogether. These pessimistic findings mirror earlier investigations

regarding the predictive power for forecasting inflation of “unemployment gaps,” that is the

difference between the rate of unemployment and estimates of the NAIRU. As demonstrated
2Orphanides and van Norden (2002) document the extent of this unreliability.
3See Croushore and Stark (2001) for background information regarding this database.
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by Staiger, Stock and Watson (1997a,b) and Stock and Watson (1999), estimates of the

NAIRU are inherently unreliable, and using information about unemployment does not lead

to a robust improvement in inflation forecasts. There are at least two possible explanations

for these results. One is simply that the existing underlying theoretical framework of the

“Phillips curve” relationships that motivate the use of output and unemployment gaps

for forecasting inflation may be seriously incomplete. Another, suggested by the findings

of pervasive instability in macroeconomic relationships documented by Stock and Watson

(1996), is that such relationships are simply not sufficiently stable over time to be useful in

practice. Regardless, of the explanation, the questionable practical usefulness of output gaps

for forecasting inflation brings into question their reliability for real-time policy analysis.

2 Trends and Cycles Ex Post and in Real Time

One way to define the output gap is as the difference between actual output and an underly-

ing unobserved trend towards which output would tend to revert in the absence of business

cycle fluctuations. Let qt denote the (natural logarithm of) actual output during quarter t,

and µt its trend. Then, the output gap, yt can be defined as the cycle component resulting

from the decomposition of output into a trend and cycle component:

qt = µt + yt

Since the underlying trend is unobserved, its measurement, and the resulting measurement

of the output gap, very much depends on the choice of estimation method, underlying

assumptions and available data that are brought to bear on the measurement problem. For

any given method, simple changes in historical data and the availability of additional data

can change, sometimes drastically, the resulting estimates of the cycle for a given quarter.

As a result, examination and interpretation of statistical relationships between the “output

gap” and other variables, such as inflation, requires additional specificity regarding the

temporal perspective from which the relationship is examined.

To illustrate this issue figures 1 and 2 provide some comparisons of output gap measures
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obtained using the Hodrick-Prescott (HP) filter using alternative information sets.4 The

solid line in the top panel of figure 1 denotes the output gap obtained with our “final” dataset

with data ending in 1999Q4 as published in 2000Q1. The dotted line, instead, shows real-

time estimates of the gap, as could be estimated with the historical data available at the

time data first became available for that quarter. Thus, the real-time estimate for 1969Q1

was obtained by applying the Hodrick-Prescott filter to the data available in 1969Q2, when

output figures for 1969Q1 were first released. Similarly, the real-time estimate for 1995Q4

was obtained by applying the Hodrick-Prescott filter to the data available in 1996Q1. The

bottom panel provides a similar comparison of the four-quarter moving average of the output

gap, as estimated over history and in real-time. Comparison of the series in either panel

indicates that the resulting real-time and final series for the output gap exhibit significant

differences. The series roughly agree on the timing of periods when output was significantly

above or below its trend—as defined by the filter. But, as is also apparent from the figure,

the real-time and final series frequently do not even agree on whether the output gap is

positive or negative.

Figure 2 illustrates this difficulty in greater detail for two specific episodes. The top panel

compares the historical estimates of the output gap as could be constructed in 1969Q1 with

the final estimates. As can be seen, the real-time estimates as could have been constructed

at the beginning of 1969 based on this method would have suggested that the economy

was operating below its trend for the previous two years. But based on the ex post es-

timates, the output gap during the previous year was positive. The implications of this

difference for a forecasting exercise are quite clear. Presuming the presence of a positive

predictive relationship between the output gap and inflation, the ex post estimates would

have suggested inflationary pressures. But the real-time estimates would have suggested

the opposite, instead. The bottom panel provides a similar comparison where the oppo-
4We selected the HP filter (Hodrick and Prescott, 1997) for this illustration because of its popularity and

simplicity which have made it a focus of extensive analysis and a benchmark for comparisons with alternative
detrending techniques, both univariate and multivariate. See, for example, Harvey and Jaeger (1993), King
and Rebelo (1993), Cogley and Nason (1995), Kozicki (1999), and Christiano and Fitzgerald (1999).

4



site conflict is apparent. Historical estimates of the output gap as could be constructed in

1996Q1 would have indicated an overheated economy during the previous year, whereas the

final estimates suggest output was below its trend, instead. Although these examples are

merely illustrative, the suggested errors and their likely influence on the policy process are

not merely hypothetical. Indeed, the historical evidence presented in Orphanides (2003a,b)

suggests that incorrect estimates of the output gap and associated incorrect inflation fore-

casts, were important factors in the monetary policy mistakes that led to the Great Inflation

in the United States.

Further evidence of the difference between historical and real-time estimates of output

gaps has been presented by Orphanides and van Norden (1999, 2002). In Table 1, we present

some of the summary reliability indicators they examine for twelve alternative measures of

the output gap, which we employ in our analysis. (These are described in greater detail

below.) These results show that revisions in real-time estimates are often of the same

magnitude as the historical estimates themselves and confirm that historical and real-time

estimates frequently have opposite signs for many of the alternative methods.

As these examples illustrate, the presence of a predictive relationship between the output

gap and inflation based on ex post estimated output gap measures might not be sufficient

to assess whether the output gap could provide useful information for forecasting inflation

in real time. Importantly, this is a difficulty that would apply even if such a predictive

relationship were precisely estimated and known to be quite useful in-sample. Of course,

if this relationship were not known exactly, its estimation—which would also need to be

performed in real time—would present additional some difficulties. Econometric estimates

would obviously also change with the evolving renditions of historical output gaps, even for

a relationship estimated over a fixed sample.

3 A Forecasting Experiment

The results above suggest that ex post estimates of output gaps at a point in time may

differ substantially from estimates which could be made without the benefit of hindsight.
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This in turn could affect their ability to forecast inflation. The remainder of this section

discusses the methodology used to investigate this question. We begin by describing the

data sources used, and we then discuss the measurement of the output gap in more detail.

Thereafter, we detail how the forecasting power of these output gap estimates is gauged.

3.1 Data Sources and Vintages

We use the term vintage to describe the values for data series as published at a partic-

ular point in time. Most of our data is taken from the real-time data set compiled by

Croushore and Stark (2001); we use the quarterly vintages from 1965Q1 to 1999Q4 for real

output. Construction of the output series and its revision over time is further described in

Orphanides and van Norden (1999, 2002). We use 2000Q1 data as “final data” recognizing,

of course, that “final” is very much an ephemeral concept in the measurement of output.

To measure inflation, we use the quarterly rate of inflation in the consumer price index

(CPI). We use this both for our forecasting experiments and also to estimate measures of the

output gap based on multivariate models that include inflation. For all of our analysis, we

rely on the consumer price index (CPI) as available in 2000Q1. CPI data do not generally

undergo a similar revision process as the output data. The major source of revision is

changes in seasonal factors most noticeable at a monthly frequency. We therefore use the

2000Q1 vintage of CPI data for all the analysis which allows us to focus our attention on

the effects of revisions in the output data and the estimation of the output gap in our

analysis. One of our models (Structural VAR) also uses data on interest rates which are

never revised.

3.2 Measuring Output Gaps

We construct ensembles of output gaps estimates of varying vintages. Each output gap

vintage uses precisely one vintage of the output data. An estimated output gap is called a

final estimate if it uses the final data vintage.

These ensembles of varying vintages of output gap estimates were constructed for each

of a number of different output gap estimation techniques The alternative methods are
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detailed in the Appendix. Some, such as the linear or the quadratic trend, are based on

purely deterministic detrending methods. Some, such as the Hodrick-Prescott filter, do

not directly rely on statistical model-fitting. Five are estimated unobserved components,

of which three (Watson, Harvey-Clark and Harvey-Jaeger) are univariate models and two

(Kuttner and Gerlach-Smets) are bivariate models, using data on both output and prices.

The remaining models are all univariate with the exception of the Structural VAR method,

which uses a trivariate VAR with long-run restrictions as proposed by Blanchard and Quah

(1989).

Note that all the output gap estimation techniques (aside from the Hodrick-Prescott

filter) require that one or more parameters be estimated to fit the data. Such estimation

was repeated for every combination of technique and vintage. This means, for example,

that in constructing output gap vintages from an unobserved components model spanning

the thirty year period 1969Q1-1998Q4 (120 quarters), we reestimate the model’s parameters

120 times, and then store 120 series of filtered estimates.

3.3 Forecasting Specification

We restrict attention to linear specifications. Let πh
t = (400/h)(log(Pt)− log(Pt−h)) denote

inflation over h quarters ending in quarter t, at an annual rate. (The quarterly rate of

inflation is simply πt ≡ π1
t = (400)(log(Pt)− log(Pt−1)).) We examine forecasts of inflation

at various horizons but are mainly interested in forecasts over a one year horizon and use that

horizon as our baseline. Thus, given data for quarter t and earlier periods, our objective

is to forecast π4
t+4 = (πt+4 + πt+3 + πt+2 + πt+1)/4. We note that because of reporting

lags, information for quarter t is not available before quarter t + 1. Thus, a four-quarter

ahead forecast is a forecast five quarters ahead of the last quarter for which actual data are

available. The forecasting relationship we examine is thus:

π4
t+4 = α +

n∑

i=0

βiπt−i +
m∑

i=0

γiyt−i + et+4 (1)

where n and m denote the number of lags of inflation and the output gap in the equation.
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Given a concept of the output gap, two issues complicate the interpretation of how we

could obtain inflation forecasts using equation (1). First, since the most suitable number of

lags of inflation and the output gap n and m, and the parameters of the equation are not

known a priori, these need to be estimated with available data. As our sample increases and

additional data become available we would expect, of course, that these estimates would

change.5 Second, the estimates of the historical output gap available up to some specific

period are revised and also change over time. This in turn, has two possible effects. First,

this alone can influence the determination of the most suitable number of lags and the

estimated parameters of equation (1)—for any fixed estimation sample. Second, given some

fixed values of the parameters of the equation, the implied forecasts corresponding to the

revised estimates of the output gap would be different as well.

In examining the usefulness of the output gap for predicting inflation using equation

(1), we thus perform two different experiments for every output gap estimation technique

we examine. First, we examine the in-sample fit of the the data, using final estimates of

the output gap to both estimate (1) and compute its fitted values. Second, we simulate

a real-time out-of-sample forecasting exercise. In this case, in each quarter, t we use the

tth vintage of the output gap series to estimate (1) over the full sample (which includes

determining its lag lengths m and n) and to generate its implied forecast.

To provide a benchmark for comparison, we estimate a univariate forecasting model of

inflation based on equation (1) but omitting the output gaps. Again, we do this twice, first

in-sample and second in simulated real-time, re-estimating the model with each additional

observation. Figure 3 shows the resulting in-sample and out-of-sample forecasts, and corre-

sponding forecast errors generated from our univariate and, for comparison, Figure 4 shows

the corresponding forecasts using output gaps generated with the Hodrick-Prescott filter.

This experiment is designed to mimic in a simple way the problem facing a policymaker

who wishes to forecast inflation in real time. Of course, the forecasting problem faced
5The baseline results we report in subsequent sections use the Ng-Perron approach of determining lag

length within a general-to-specific testing framework and using t-ratio tests to determine the last significant
lag. We also report results using the AIC and BIC model selection criteria.
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by policymakers in practice is more complex than the one we consider. One obvious and

important difference is that the information set available to policymakers is much richer.

It is therefore possible that output gaps might improve on simple univariate forecasts of

inflation but not on forecasts using a broader range of inputs. For this reason, we feel

that the experiment we perform may actually overstate the utility of empirical output gap

models.

In addition, we examine two sets of forecasts obtained using equation (1) but replacing

the output gaps with either real or nominal output growth not subjected to any prior filtering

and/or smoothing. As van Norden (1995) explains, using output growth in this way can

be interpreted as implicitly defining an estimated output gap as a one-sided filter of output

growth with weights based on the estimated coefficients of equation (1).6 On the other hand,

this approach does not rely nor require prior estimation of an output gap measure per se and

is therefore simpler. The resulting forecasts should give the best linear unbiased predictors

of future inflation. Since our output gap measures use the same information set (past prices

and the current vintage of output) as these unrestricted forecasting equations, comparing

their forecast performance aids in isolating the usefulness of the economic structure (or

other restrictions) embedded in our output gap measures.

4 Baseline Results

4.1 In sample

To examine the in-sample performance of alternative measures of the gap, we estimated

equation (1) using observations from 1955:1 to 1998:3. To allow for direct comparison

with the simulated real-time forecasts, we examine its fit only over the period starting

in 1969:1—the first quarter for which we calculate a simulated real-time forecast. Table

2 presents the root-mean-square errors (RMSE) of the resulting in-sample forecasts (i.e.

the fitted values) of inflation. The first 12 rows in the table reflect alternative detrending

methods, and the last three show statistics for the autoregressive forecast benchmark and
6van Norden refers to these estimates as TOFU (Trivial Optimal Filter - Unrestricted).
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the forecasts based on real or nominal income growth instead of a pre-defined output gap

measure. For each method, the first column shows the resulting forecast RMSE for the whole

evaluation period, 1969-1998 and the remaining two columns show the same statistic for two

subsamples, 1969-1983 and 1984-1998. The break follows the one examined by Stock and

Watson (1999) in their study of inflation forecasts and splits the evaluation sample in two

parts with roughly equal observations. The two subsamples also correspond, respectively,

to a period of relatively high and relatively low variability in inflation. As can be seen, the

autoregressive forecast (AR) has a RMSE of about 1.9 percent for the whole period but

much higher (2.3 percent) during the first part of the sample and much lower (1.3 percent)

during the second half. A quick comparison of the RMSE of alternative methods with the

AR in column 1 indicates that (of course) all 12 of the alternative detrending techniques

have lower RMS errors for the complete sample and 10 of the 12 also suggest improvements

for both subsamples. Use of real or nominal growth also appears to improve the inflation

forecasts relative to the autoregression in both subsamples.

To assess whether these improvements are statistically significant, we computed a mod-

ified Diebold-Mariano statistic for the alternative forecasts. Table 3 shows the ratio of the

RMSEs shown in Table 2 to the RMSE of the AR forecasts, and notes when the modified

Diebold-Mariano statistic rejected the null hypothesis of no improvement in RMSE at the

5% percent level. As can be seen, over the whoel sample only the Harvey-Jaeger technique

failed to reject the null. An interesting aspect of the evaluation for the two sub-samples,

however, indicates that most of the improvement appears to be concentrated in the first

half of the sample, when inflation was more volatile. As judged by the modified Diebold-

Mariano statistic, the improvement in forecasts is statistically significant at the 5% level in

both subsamples for only three of the twelve methods.
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4.2 Real Time

Next, we ran the simulated out-of-sample forecasting experiment. In each quarter t starting

with 1969:1, we re-estimated equation (1) with data vintage t starting from 1955:1.7 We

then used equation (1) to obtain the inflation forecast corresponding to that method for

that quarter. We repeated the procedure for each quarter up to 1998:3 and for each method.

The results are presented in Tables 4 and 5. These are directly comparable to tables 2

and 3, respectively. Comparison of the entries in Table 4 with respective entries in Table

2 indicates that the forecast performance of all methods appears markedly worse in real-

time than in-sample. For the AR forecast benchmark, for example, the RMSE in real-time

for the 1969-1998 evaluation sample is 2.3 percent, compared to the in-sample value of

1.9 percent. The forecast deterioration when we compare in-sample and real-time results,

however, appears more severe for output gap based forecasts. Looking at the ratios of the

RMSE relative to the AR forecast shown in Table 5 for the 1969-1998 period, we note that

six of the twelve output gap methods indicate that the output-gap-based forecasts are worse,

on average, than the autoregressive forecasts. Of the six that indicate some improvement,

none indicates that this improvement is statistically significant at the 5% level, based on

the modified Diebold-Marianno statistic. Interestingly, forecasts based on real and nominal

output growth appear to deteriorate somewhat less than those based on output gaps and

only forecasts based on nominal output growth appear to significantly improve on the

autoregressive forecasts for the full sample. However, examining subsamples, we note that

this improvement is only evident in the first half of the sample and is not apparent in the

second.

The results in Table 5 give grounds for doubting the usefulness of output gaps, at the

margin, for improving real-time forecasts of inflation. None are consistently significantly

useful. None appear to improve the forecasts very much. This despite the fact that the

benchmark (AR) forecast is trivially simple and uses unrealistically little information.

It is also interesting to compare the forecasting performance of the output gaps to that
7Below, we consider sensitivity to the choice of starting date.
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of real or nominal output growth rates, as shown in Table 6. The first column is replicated

from the first column of table 5, using the AR forecast as a benchmark. The second and third

column use, instead, the real and nominal growth based forecasts as benchmarks. As can be

seen, using the real or nominal growth-based forecasts as benchmarks suggests even more

disappointing results regarding the usefulness of output gaps for predicting inflation. Only

one of the twelve output gap measures suggests any overall improvement in the forecasts

over those based on real growth and none suggests any improvement over forecasts based

on nominal growth.

5 Sensitivity to Forecasting Experimental Design

In designing our forecasting experiment, we have tried to mimic the way in which profes-

sional forecasters may use the output gap to forecast inflation. However, several features of

the experimental design require judgement; the horizon over which forecasts are evaluated,

the period over which the forecasting equation is estimated, the specification of the fore-

casting equation, etc. To determine the robustness of our baseline results, in this section

we examine the sensitivity of these results to several variations in the precise specification

of the forecasting experiment and as well as the techniques used for forecast evaluation. We

begin by considering whether the results differ if we are interested in inflation forecasts over

different horizons, if we vary our estimation sample, or if we estimate and employ restricted

versions of our forecasting equation for generating forecasts.

5.1 Forecasting Horizon

Our base case results (Table 5) use an effective forecast horizon of 5 quarters (i.e. forecasting

4 periods into the future plus a 1 quarter reporting lag.) Table 7 shows how these results

vary as we vary the forcast horizon from 3 to 5, 7, and 9 quarters. On the one hand, we

might expect the relationship between inflation and the output gap to become clearer as we

increase the forecast horizon and thereby reduce the effects of other transitory shocks on

inflation. On the other hand, we would expect the effects of monetary policy to become more
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apparent and weaken the empirical relationship as the horizon increases. In the extreme

case, where the central bank strictly and successfully targets inflation at an intermediate

horizon, the effect of policy should be to eliminate any role for output gaps in forecasting

inflation at that horizon (Goodhart’s Law). Because the Federal Reserve has been more

concerned with inflation control over the medium rather than the short term, we would

expect this effect to become more pronounced as we increase the forecast horizon.

Table 7 shows that there is a tendency for output gaps to become more informative in

forecasting inflation as we increase the forecast horizon. For example, over the full sample

the number of models which improve forecast accuracy relative to the AR rises from 9 of 14

at the 3 quarter horizon to 12 of 14 at the 9 quarter horizon. Similar improvements may be

found in the high and low inflation subsamples. However, on the whole these improvements

remain insignificant. We see from the table that evidence of a significant improvement

in forecast performance is never stronger than at the 5 quarter horizon, regardless of the

sample we examine. The only model to improve inflation forecasts significantly over the

full sample at any horizon is the nominal income growth model. In addition, none of the

models show a significant improvement in forecast performance at any horizon in the most

recent subsample. This confirms that our baseline results, presented in Table 5, are robust

to reasonable variations in the choice of forecast horizon.

5.2 Estimation Period

Another feature of our forecasting experiment which might reasonably be varied is the

sample period over which the forecasting equation is estimated. Since the end of period

is determined by data availability, this is question of when to start the estimation. The

results in Table 5 start the estimation in 1955Q1. Table 8 shows how the results change as

we consider three other possible starting dates; 1947Q1, 1960Q1 and 1965Q1.8

As can be seen, the 1955Q1 start date used in Table 5 provides the largest number of
8Although the real-time output series start in 1947Q1, some of the estimated output gaps (such as the

structural VAR) require several lags of output and so their estimated gap series start somewhat later. When
using the 1947Q1 start date, we simply used the first available estimate of the output gap in such cases.
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cases in which the output gap significantly improves inflation forecasts. No other start date

produces a significant improvement over the full sample. In only one other case, the Gerlach-

Smets model over the high-inflation subsample with the 1947 start, does there appear to

be a significant improvement over the univariate model. Improvements never appear to be

significant for the 1960 or 1965 start dates. With the 1965 date, forecasting in our first sub-

sample is difficult, of course, as models are estimated with few observations. But evaluation

over the second subsample, where models are estimated with a much larger number of

observations, does not indicate that starting the estimation later results in significantly

improved forecasts.

We also note that the Beveridge-Nelson, Gerlach-Smets and Kuttner models give quite

a bit (but not significantly) better RMSEs with the 1947 start; this is apparently due to

their improved performance in the high inflation subsample; the earlier start makes all three

do quite a bit worse than than before in the post-1983 period.

We conclude that our baseline results appear to be robust to a substantial range of

starting dates.

5.3 Restricting the Forecasting Model

In our forcasting equation, the level of inflation is regressed on its own lags as well as those

of the output gap. An important special case is one in which the output gap affects the

change rather than the level of inflation, that is the specification that imposes the so called

“accelerationist restriction” on the data. Our general specification nests this special case

as one in which the sum of the coefficients on lagged inflation sum to one. However, if the

special restricted case reflects the true relationship between inflation and the output gap

more accurately, we may be able to improve the accuracy of our forecasts by imposing this

restriction.

Table 9 compares the base case results from Table 5 to those produced by imposing

the accelerationist restriction (∆pi). Imposing the accelerationist restriction (∆pi columns

in the table) does not appear to change the baseline results; the number of models which
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forecast significantly better than the AR falls by one in the full sample, rises to two in

the second subsample and is unchanged in the first subsample. No single model improves

significantly on the AR model over any two of these three samples. However, both the

Watson and the Kuttner models give significant improvements in the most recent period

and improve the RMSE by 10 to 15% in all three periods.

Table 9 also considers whether using lags of changes in the gap (∆y) rather than its

level produces better forecasts of inflation. Again, while this possibility is nested within

the specification we consider as our Base Case, imposing a valid restriction should improve

the accuracy of our forecasts. Table 9 shows that this restriction produces mixed results.

Overall forecast performance is worse, with none of the models now forecasting significantly

better than the AR model over the full sample, and every model forecasting worse than the

AR in the most recent subsample. However, performance over the first subsample improves

noticeably, with 13 of 14 models resulting in lower RMSEs and six of those forecasting

significantly better than the AR.

5.4 Final versus Real-Time Gaps

It is of interest to explore whether the weak forecasting performance we find for real-time

gaps is primarily due to the subsequent revision of these gaps (documented in Orphanides

and van Norden, 2002) or the inherent difficulty in forecasting US inflation over this period

(documented in Stock and Watson, 1999), To isolate these effects, we compared the perfor-

mance of the real-time and final output gaps in explaining inflation, both in-sample and in

simulated out-of-sample experiments.

First we compare the performance of the real-time and final output gaps in explaining

inflation in-sample in a manner analogous to that of Table 2. The results are shown in

Table 10. We see that over the full sample, use of real-time output gaps provide a better

fit for inflation (in terms of lower RMSE in-sample) than do final gaps in the majority of

cases (although the improvement over the AR model is more frequently significant for the

final gaps). In the pre-1984 sample, the real-time gaps fit better than the corresponding
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final gap estimates in all but two cases and are always nominally significant, while in the

post-1983 sample real-time gaps provide a worse fit in all but one case and neither ever

appears to offer a significant improvement over the AR model. These results provide no

evidence to suggest that the relative inaccurracy of the real-time gaps is responsible for

their poor forecasting performance. Instead, the marked deterioration of the in-sample fit

in the latter portion of the sample period suggests quantitatively important instability in

the relationship between output gaps (however measured) and inflation.

In Table 11, we present a similar comparison of real-time and final output gaps, but

now for out-of-sample forecast performance. Over the full sample, real-time gap estimates

provide lower RMSEs slightly more often than final estimates, and provide the only instance

of a significant forecast improvement. During the high-inflation sub-sample, real-time es-

timates again provide the only nominally significant evidence of forecast improvement (in

two of the fourteen models tested); during the low-inflation subperiod no models forecast

significantly better than the AR model. In both subsamples, real-time output gap estimates

forecast better than the final estimates for 8 of the 14 models examined. This reinforces

the results from the comparison of in-sample fits; it appears that instability in the inflation-

output gap relationship, rather than the relative imprecision of real-time estimates is the

primary cause of the poor forecasting performance of the real-time gaps.

6 Sensitivity to the Econometric Methodology

The design of our forecast experiment has also required some choices regarding econometric

techniques. For example, we must select the lag structure used in the forecasting equation,

choose a way in which to evaluate the significance of a particular change in RMSE, etc.

As check of robustness against alternative choice, in this section we consider the impact of

several of these choices on the interpretation of our baseline results.
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6.1 Lag Selection

To determine the number of lags used in our forecasting equation, we used a simple general-

to-specific testing procedure. We began with large number of lags (12) of both output

and inflation, then discarded the highest lag if its t-statistic indicated its coefficient was

insignficantly different from zero.9 Of course, if this method does a poor job of identifying

the correct lag structure, then we may expect our forecasting models to perform poorly

(although this by itself should not cause our bivariate models to perform poorly relative

to our univariate model.) Therefore, to check the robustness of our results, we repeated

the forecasting experiment using an information criterion (AIC or BIC) to determine the

number of lags of each variable used in the forecasting equation. Results are shown in Table

12.

Using BIC seems to produce some modest improvements in relative forecast accuracy

overall while using AIC gives results roughly comparable to those in Table 5. In all three

cases we find exactly one model which improves significantly on the AR model in the full

sample; the biggest change perhaps being the improvement of the forecast accuracy of the

Band-Pass model with BIC-determined lags, coming up to roughly the level of the real

and nominal output growth models. We continue to find that none of the models forecasts

significantly better than the AR model in the post-1983 period. However, the use of BIC

improves relative forecast performance in the high-inflation period, with 3 of 12 models

now forecasting significantly better than the AR model. However, two of these (Hodrick-

Prescott and Harvey-Jaeger) become the worst-performing models in the post-1983 period.

We conclude that apparent reliablity of the forecasts documented in Table 5 is not very

sensitive to the choice of lag selection technique.

6.2 Alternative use of Data Vintages

In a recent paper examining the problem of forecasting with data subject to revision, Koenig

et al. (2000) argue that we may be able to improve the accuracy of our forecasts by
9We experimented briefly with the use of heteroscedasticity and autocorrelation consistent standard errors

in this test but found they made little or no difference.

17



combining different vintages of data in our estimated forecasting equation. Specifically,

they begin by considering relationships of the form

Y (t) = X(t)t · a + w(t) (2)

where Y (t) and X(t) are the “true” values of Y and X in period t. They consider the use

of alternative vintages for estimation when the official estimates of Y (t) and X(t) available

in period s, Y (t)s and X(t)s, may differ from the “true” values. When lags of X(t) enter

the above relationship, forecasters generally estimate:

Y (t)T =
p∑

j=0

X(t − j)T · aj + w(t) for t = {1, ..., T} (3)

Koenig et al. point out that since this uses extensively revised estimates of X (i.e. t− j <<

T ) for most of the sample, whereas forecasts are generated using the last vintage available,

X(T )T , and neighbouring observations which are little revised, better forecast performance

may be produced by estimating:

Y (t)T =
p∑

j=0

X(t − j)t · aj + w(t) for t = {1, ..., T} (4)

Here, X and its lags are no longer taken from the same vintage of data for each observation;

rather, X(t)T is replaced by unrevised estimates X(t)t, the first lag X(t − 1)T is replaced

by the first revision X(t − 1)t and so on. (Again, it is not clear that this by itself should

cause our bivariate models to perform poorly relative to our univariate model.)

On the other hand, van Norden (2002b) argues that Koenig et al.’s procedure does not

always result in improved forecasts. In particular, he suggests that when Y is not subject

to revisions, so Y (t)t = Y (t), and the underlying relationship is of the form

Y (t) = X(t) · a + w(t) (5)

rather than (2), then (3) should forecast better than (4). However, since neither (2) nor (5)

can be directly observed, only a direct comparison of forecasts from (3) and (4) can discern

the best method.
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To investigate the possibility that respecification of the use of vintages in our our fore-

casting equation might result in better forecasts, we performed a comparison using the

combination of different data vintages suggested by Koenig et al. (2000). Because the first

data vintage in our sample was published in 1965Q2, the period over which we could es-

timate our forecasting models is considerably restricted. We therefore considered only the

forecast performance in the 1984-98 period using forecasting models estimated starting in

1965Q1 for this comparison. For computational reasons we also restricted attention to two

of our three lag-selection criteria, the AIC and BIC and did not implement the Ng-Perron

selection criterion in this case.

Table 13 presents the results results using the conventional data structure (3), with

those using the Koenig et al. structure (4), (labelled KDP in the Table.) The table does

not suggest that the alternative use of revised data changes the conclusions. The new lag

structure improves the relative RMSE in only 7 of the 28 cases examined (3 using AIC,

4 using BIC). Furthermore, although the improvements are often small, the changed lag

structue also frequently causes sharp deteriorations in forecast performance. In no case did

any of these models appear to improve significantly on those of the simple AR model, and

all but 8 of the 56 appeared to have larger RMSEs.

6.3 Bootstrap Inference and Test Power

As a last check on our results, we examine the reliability of our use of RMSE as a measure of

forecast accuracy as well as on the use of modified Diebold-Mariano tests for the significance

of measured differences in RMSE.

If a forecaster or policy-maker simply wishes to minimize expected RMSE, and can trust

historic rankings of the alternative methods to be unbiased indicators of future relative

performance, the he/she should select the model which reports the lowest such errors,

regardless of how small or large its edge over competing models. The significance of the

differences in measured performance arises only if we ask how certain they can be about

this choice of model.
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This question in turn forces us to consider both the power and size of our statistical

tests. If our tests lack power, we might fail to detect a model with superior forecasting

ability. There are reasonable grounds to worry about the power of Diebold-Mariano and

related tests. Kilian and Inoue (2002) argue that tests of forecasting ability will tend to

be less powerful in detecting structural changes than in-sample break tests, while Clark

and McCracken (2002) argue that forecast encompassing tests offer more power against the

null of equivalent forecast performance. Despite this, we think the inferences we draw from

modified Diebold-Mariano tests are interesting for a number of reasons.

First, our baseline results clearly show that the tests we use have the power to detect

at least some interesting differences in forecast performance; in particular they suggest

that differences in RMSE of more than 15-20% will typically be statistically significant.

Therefore, while our tests may well fail to detect some significant differences in forecast

performance, such differences are likely to be limited in size and economic importance.

Second, while in-sample tests may be a more powerful way of detecting structural breaks,

the hypothesis of no structural breaks seems to us to be of less interest than that of no im-

provement in forecast accuracy. For example, it is possible that a test may detect significant

evidence of a structural break, but that the shift is small enough to be of little economic

importance.

Third, although we experimented with the use of forecast encompassing tests (along

the lines of Harvey, Leybourne and Newbold (1998) and Clark and McCracken (2002)), we

decided against their use. To be sure, they permit a direct test of an interesting hypothesis;

that a model’s forecasts cannot be improved by incorporating estimates of the output gap.

However, they allow for the weights on the output gap to be determined ex post, whereas

our testing procedure requires such weights be determined ex ante. We feel that the latter

better reflects the operational needs of forecasters. Furthermore, our bootstrap experiments

(discussed below) indicated that nominal critical values for the encompassing tests were

much less accurate than those for tests of forecast accuracy. Encompassing tests seemed to

suffer from much more severe size distortion in our setting, greatly increasing the frequency

20



of spurious findings of potential improvements in forecast performance.

The size of the tests we use is also a legitimate cause for concern. Most recently, Clark

and McCracken (2002) show that in the case of multi-step forecasts from models with esti-

mated parameters, Diebold-Mariano statistics are not pivotal even asymptotically, implying

that appropriate critical values must be determined by bootstrap or other simulation meth-

ods on a case-by-case basis. We therefore checked the accuracy of our tests using such a

bootstrap experiment.

Specifically, we estimated bivariate VAR systems of inflation and the output gap under

the restriction that the output gap does not Granger-cause inflation. Residuals from the

VAR were then used to bootstrap 2000 simulated data sets. The Granger-causal restriction

implies that the output gap should not aid in forecasting inflation in the simulated data.

The simulated data was then used to repeat our standard forecasting experiment, with

recursive lag length determination, estimation and forecasting. The resulting distribution

of our forecast test statistics under the null hypothesis was then analysed and tabulated.

This was then repeated for each of the 14 different output gap measures examined in our

study.10

Figure 5 presents a summary of the simulation results in the form of Davidson-MacKinnon

p-value plots. These graphs compare the empirical cummulative distribution function (cdf)

of the simulated Diebold-Mariano statistics to the standard normal cdf proposed by Diebold-

Mariano (1995). The difference between the two is simply the degree of observed size distor-

tion. The top-left panel in the figure is simply a scatterplot of the two cdfs; in the absence

of any size distortion we should therefore find a straight line from the origin with a slope

of 1 (shown by the green solid line.) The bottom-left panel shows the difference between
10Complete details on the simulation experiment are available from the authors. Note that only final data

were used to estimate the VAR system; any effects of data revision are therefore ignored. The experiments
were computationally demanding, requiring approximately 2 weeks of CPU time on an UltraSPARC 10
workstation. This was in large measure due to the need to select two optimal lag lengths for the forecasting
equation at every period in every simulation for every model. Some experimentation showed that minor
modifications to the determination of lag length produced only limited gains in speed but changed the
distribution of test statistics. We therefore limited our analysis to that of the ”base case” results presented
in Table 5.
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the cdfs on the vertical axis; in the absence of any size distortion we should therefore find

a horizontal line at zero (shown by the green solid line.) The shaded region around the

x-axis in this panel shows an approximate confidence interval for the difference between the

theoretical and empirical cdf based on the 95% critical values for the Kolmogorov-Smirnov

statistic. Although the two left panels show the entire cdfs over the interval [0, 1], for

hypothesis testing we are most interested in the region close to 0, which represents small

p-values. This is more easily seen in the right panels which simply present a detail of the

left tail of the distributions from the left panels, over the [0, 0.1] interval.

The figure summarizes the distribution of the test statistics across all 14 output gap

models, for a total of 28,000 simulated data sets.11 Furthermore, it shows the distribution

of both the full-sample and the two sub-sample (1st and 2nd half) forecast test statistics.

Concentrating on the bottom-right panel, we see that all three statistics plot well above the

horizontal axis, implying the presence of significant size distortion which varies considerably

across the three statistics. For example, consider the case of the 5% nominal critical value

typically used to test the null hypothesis of no improvement in forecast accuracy; this

corresponds to the 0.05 theoretical p-value on the horizontal axis. The figure shows that

the empirical p-value is higher than this by an amount which varies considerably with the

sample considered; it is higher by about 3% for the 1st-half of the sample, 5% for the overall

sample, or 13% for the 2nd-half of the sample. Using the standard 5% critical values, we

should therefore expect to find spurious evidence of improvements in forecast performance

with a probability of between 8% and 18%, depending on the sample period we consider.

This implies that our baseline results overstate the degree to which output gaps signifi-

cantly improve the forecasts of inflation. Furthermore, this exaggeration is most severe in

the most recent half of our sample. To correct for this, we redid the analysis presented in

Table 5 with bootstrapped critical values specific to both the sample period and the model

of the output gap. We also expanded the range of test statistics we consider to include
11These distributions varied somewhat across models. A complete set of p-value plots broken down by

model is available from the authors by request. We take account of this variation when we tabulate model-
specific critical values, below.
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all four considered by Clark and McCracken (2002); the original Diebold-Mariano statistic

(DM), a modified version proposed by Clark and McCracken (2002) which should be more

powerful (MSE-F), the test for forecast encompassing (FE) and its similarly modified coun-

terpart (MFE). Test statistics and their bootstrapped 95% critical values are presented in

Table 14.

The conclusions from the two tests of forecast accuracy presented in Table 14 are similar

to and somewhat more pessimistic than those in Table 5. None of the models are able

to significantly improve on the univariate forecast over the full sample or over the more

recent low-inflation period. In the high-inflation period, only the Harvey-Jaeger univariate

estimate of the gap significantly improves forecast performance relative to the AR model of

inflation. (Recall, however, that even this model does not forecast as well over this period

as the nominal output growth model.)

These results change somewhat if we test for forecast encompassing rather than forecast

accuracy. According to the MFE statistic, over the full sample, only the Harvey-Jaeger

and nominal output growth models can significantly improve the accuracy of the univariate

forecast, but no model does so over either subsample. According to the FE statistic, how-

ever, three models potentially allow us to improve on the univariate AR model in the most

recent sub sample; the linear trend, Watson and Kuttner models.

We note that aside from the nominal output growth model, all these models share the

assumption of a constant trend growth rate for potential output. This tends to cause large

revisions; Table 1 shows that three of these have the worst noise-signal ratios. Furthermore,

all three have forecast accuracy statistics which are far from significant; the best is the

Watson model with a statistic roughly half of its critical and the worst is the linear trend

which worsened forecast performance relative to the univariate model. For these reasons, we

are sceptical that forecasters would have been able to exploit the potential benefits which

the encompassing test here identifies ex post.

Overall, these results provide even less reason to expect a reliable improvement in fore-

casting performance by adding information from output gap in univariate inflation forecasts

23



than our baseline findings.

7 Conclusion

Forecasting inflation is a difficult but essential task for the successful implementation of

monetary policy. The hypothesis that a stable predictive relationship between inflation

and the output gap—a Phillips curve—is present in the data, suggests that output gap

measures could be useful for forecasting inflation. This has served as the basis for empirical

formulations of countercyclical monetary policy. We find that many alternative measures

of the output gap appear to be quite useful for forecasting inflation, on the basis of in-

sample analysis. That is, a historical Phillips curve is suggested by the data, and ex post

estimates of the output gap are useful for understanding historical movements in inflation.

However, this suggested usefulness does not imply a similar operational usefulness. Our

simulated real-time forecasting experiment suggests, instead, that this predictive ability is

mostly illusory. These disappointing results bring into question the practical usefulness of

output-gap-based Phillips curves for forecasting inflation and the monetary policy process.
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Appendix: Alternative Detrending Methods

A detrending method decomposes the log of real output, qt, into a trend component, µt,
and a cycle component, zt.

qt = µt + zt (A.1)

Some methods use the data to estimate the trend, µt, and define the cyclical component as
the residual. Others specify a dynamic structure for both the trend and cycle components
and estimate them jointly. We examine detrending methods that fall into both categories.

A.1 Deterministic Trends

The first set of detrending methods we consider assume that the trend in (the logarithm of)
output is well approximated as a simple deterministic function of time. The linear trend is
the oldest and simplest of these models. The quadratic trend is a popular alternative.

Because of the noticeable downturn in GDP growth after 1973, another simple deter-
ministic technique is a breaking linear trend that allows for the slowdown in that year. Our
implementation of the breaking trend method incorporates the assumption that the location
of the break is fixed and known. Specifically we assume that a break in the trend at the
end of 1973 would have been incorporated in real time from 1977 on. As discussed in Or-
phanides and van Norden (1999) this conforms with the debate regarding the productivity
slowdown during the 1970s.

A.2 Unobserved Component Models and the Hodrick–Prescott Filter

Unobserved component (UC) models offer a general framework for decomposing output
into an unobserved trend and a cycle, allowing for an assumed dynamic structure for these
components.

This framework can also nest smoothing splines, such the popular filter proposed by
Hodrick and Prescott (1997) (the HP filter). We implement the HP filter, following Harvey
and Jaeger (1993) and King and Rebelo (1993), by writing it in its unobserved components
form. Assuming that the trend in (1) follows:

(1 − L)2µt = ηt (A.2)

the HP filter is obtained from (A.1) and (A.2) under the assumption that zt and ηt are
mutually uncorrelated white noise processes with a fixed relative variance q. We set q to
correspond to the standard application of the HP filter with a smoothing parameter of 1600.

UC models also permit more complex dynamics to be estimated, and we examine two
such alternatives, by Watson (1986) and by Harvey (1985) and Clark (1987). The Wat-
son model modifies the linear level model to allow for greater business cycle persistence.
Specifically, it models the trend as a random walk with drift and the cycle as an AR(2)
process:

µt = δ + µt−1 + ηt (A.3)

zt = ρ1 · zt−1 + ρ2 · zt−2 + εt (A.4)
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Here εt and ηt are assumed to be i.i.d mean-zero Gaussian and mutually uncorrelated and δ,
ρ1 and ρ2, and the variances of the two shocks are parameters to be estimated (5 in total).

The Harvey-Clark model similarly modifies the local linear trend model:

µt = gt−1 + µt−1 + ηt (A.5)

gt = gt−1 + νt (A.6)

zt = ρ1 · zt−1 + ρ2 · zt−2 + εt (A.7)

Here ηt, νt, and εt are assumed to be i.i.d mean-zero Gaussian and mutually uncorrelated
processes and ρ1 and ρ2 and the variances of the three shocks are parameters to be estimated
(5 in total).

A.3 Unobserved Component Models with a Phillips Curve

Multivariate formulations of UC models attempt to refine estimates of the output gap by
incorporating information from other variables linked to the gap. We consider two models
which add a Phillips curve to the univariate formulations described above; those of Kuttner
(1994) and Gerlach and Smets (1997).

Let πt be the quarterly rate of inflation. The Kuttner model adds the following Phillips
curve equation to the Watson model:

∆πt = ξ1 + ξ2 · ∆qt + ξ3 · zt−1 + et + ξ4 · et−1 + ξ5 · et−2 + ξ6 · et−3 (A.8)

The Gerlach-Smets model modifies the Harvey-Clark model by adding the similar Phillips
curve:

∆πt = φ1 + φ2 · zt + et + φ3 · et−1 + φ4 · et−2 + φ5 · et−3 (A.9)

In each case the shock et is assumed i.i.d. mean zero and Gaussian. In the Gerlach-Smets
model, et is also assumed uncorrelated with shocks driving the dynamics of the trend and
cycle components of output in the model. Thus, by adding the Phillips curve, the Gerlach-
Smets model introduces an additional six parameters that require estimation ({φ1, ..., φ5}
and the variance of et). The Kuttner model also allows for a non-zero correlation between et

and the shock to the cycle, ηt. Thus, it introduces eight additional parameters that require
estimation ({ξ1, ..., ξ6}, the variance of et and its covariance with ηt.)

A.4 The Band-Pass Filter

Another approach to cycle-trend decomposition is via the use of band-pass filters in the
frequency domain. The clearest exponent of this approach is Baxter and King (1999), who
suggest the use of truncated versions of the ideal (and therefore infinitely long) filter with
a band passing fluctuations with durations between 6 and 32 quarters in length. Stock
and Watson (1998) adapt this for use at the end of data samples by padding the available
observations with forecasts from a low-order AR model fit to the data series. Following Stock
and Watson, we use a filter 25 observations in length and pad using an AR(4) forecast.
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A.5 The Beveridge-Nelson Decomposition

Beveridge and Nelson (1981) consider the case of an ARIMA(p,1,q) series, y, which is to be
decomposed into a trend and a cyclical component. For simplicity, we can assume that all
deterministic components belong to the trend component and have already been removed
from the series. Since the first-difference of the series is stationary, it has an infinite-order
MA representation of the form

∆yt = εt + β1 · εt−1 + β2 · εt−2 + · · · = et (A.10)

where ε is assumed to be an innovations sequence. The change in the series over the next
s periods is simply

yt+s − yt =
s∑

j=1

∆yt+j =
s∑

j=1

et+j (A.11)

The trend is defined to be

lim
s→∞Et(yt+s) = yt + lim

s→∞Et(
s∑

j=1

et+j) (A.12)

From equation 6, we can see that

Et(et+j) = Et(εt+j + β1 · εt+j−1 + β2 · εt+j−2 + · · ·) =
∞∑

i=0

βj+i · εt−i (A.13)

Since changes in the trend are therefore unforecastable, this has the effect of decomposing
the series into a random walk and a cyclical component, so that

yt = τt + ct (A.14)

where the trend is
τt = τt−1 + et

and et is white noise.
To use the Beveridge-Nelson decomposition we must therefore: (1) Identify p and q

in our ARIMA(p,1,q) model. (2) Identify the {βj} in equation 6. (3) Choose some large
enough but finite value of s to approximate the limit in equation 8. (4) For all t and
for j = 1, · · · , s, calculate Et(et+j) from equation 9. (5) Calculate the trend at time t as
yt + Et(

∑s
j=1 et+j) and the cycle as yt minus the trend.

Based on results for the full sample, we use an ARIMA(1,1,2), with parameters re-
estimated by maximum likelihood methods before each recalculation of the trend.

A.6 The Structural VAR Approach

The Structural VAR measure of the output gap is based on a VAR identified via restrictions
on the long-run effects of the structural shocks, as proposed by Blanchard and Quah (1989).
Our implementation is identical to that of Cayen and van Norden (2002), who use a trivariate
system including output, CPI and yields on 3-month treasury bills. Lag lengths for the VAR
are selected using corrected LR tests and a general-to-specific approach.
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Table 1

Reliability of Alternative Output Gap Measures

Method COR AR NS NSR OPSIGN
Linear Trend 0.87 0.93 0.50 1.36 0.53

Quadratic Trend 0.61 0.95 0.95 0.98 0.31

Breaking Trend 0.78 0.85 0.80 0.81 0.21

Hodrick-Prescott 0.50 0.92 1.10 1.10 0.38

Band Pass 0.69 0.78 0.73 0.81 0.32

Beveridge-Nelson 0.82 0.02 0.60 0.62 0.22

Stuctural VAR 0.67 0.87 1.04 1.06 0.21

Watson 0.90 0.88 0.54 1.25 0.24

Harvey-Clark 0.88 0.88 0.61 0.64 0.13

Harvey-Jaeger 0.94 0.90 0.49 0.49 0.07

Kuttner 0.87 0.92 0.51 1.19 0.53

Gerlach-Smets 0.75 0.83 0.78 1.11 0.36

Notes: The table present summary measures of the reliability of real-time estimates of the
output gap for 12 alternative methods of estimating the output gap. All statistics are for
the 1969:1–1998:4 period. COR, denotes the correlation of the real-time and final estimates
of the output gap. AR the first order serial correlation of the revision (the difference
between the final and real-time series). NS indicates the ratio of the standard deviation
of the revision and the standard deviation of the final estimate of the gap. NSR indicates
the ratio of the root mean square of the revision and the standard deviation of the final
estimate of the gap. OPSIGN indicates the frequency with which the real-time and final
gap estimates have opposite signs.
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Table 2

RMSE of Forecasts—In Sample

Method 1969-1998 1969-1983 1984-1998
Linear Trend 1.601 1.953 1.137

Quadratic Trend 1.629 1.971 1.183

Breaking Trend 1.741 2.127 1.230

Hodrick-Prescott 1.662 1.885 1.399

Band Pass 1.765 2.135 1.284

Beveridge-Nelson 1.746 2.085 1.315

Stuctural VAR 1.742 2.067 1.334

Watson 1.623 1.972 1.165

Harvey-Clark 1.728 2.077 1.279

Harvey-Jaeger 1.798 2.048 1.503

Kuttner 1.550 1.902 1.079

Gerlach-Smets 1.470 1.747 1.119

AR 1.912 2.340 1.344

Real Growth 1.750 2.078 1.337

Nominal Growth 1.550 1.737 1.332

Notes: The entries show the RMSE of the inflation forecast from equation (1). The first
twelve rows show results using alternative output gaps. The AR forecast is univariate, and
the last two rows show the forecasts based on real and nominal growth instead of the gaps.
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Table 3

RMSE Relative to AR—In Sample

Method 1969-1998 1969-1983 1984-1998
Linear Trend 0.838∗ 0.835∗ 0.846∗

Quadratic Trend 0.852∗ 0.843∗ 0.880

Breaking Trend 0.910∗ 0.909∗ 0.915∗

Hodrick-Prescott 0.869∗ 0.805∗ 1.041

Band Pass 0.923∗ 0.913∗ 0.956

Beveridge-Nelson 0.913∗ 0.891∗ 0.978

Stuctural VAR 0.911∗ 0.883∗ 0.992

Watson 0.849∗ 0.843∗ 0.867

Harvey-Clark 0.904∗ 0.888∗ 0.952

Harvey-Jaeger 0.941 0.875∗ 1.119

Kuttner 0.810∗ 0.813∗ 0.803∗

Gerlach-Smets 0.769∗ 0.747∗ 0.833

Real Growth 0.915∗ 0.888∗ 0.995

Nominal Growth 0.811∗ 0.743∗ 0.991

Notes: The entries show the ratio of the RMSE of the inflation forecast based on the method
shown and the RMSE of the AR forecast. ∗ indicates that the improvement in forecasts
relative to the AR forecast, as measured by the modified Diebold-Marianno test statistic,
is statistically significant at 5 percent level.
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Table 4

RMSE of Forecasts—Real Time

Method 1969-1998 1969-1983 1984-1998
Linear Trend 2.341 2.821 1.719

Quadratic Trend 2.390 2.878 1.761

Breaking Trend 2.377 2.936 1.622

Hodrick-Prescott 2.333 2.622 1.998

Band Pass 2.244 2.634 1.763

Beveridge-Nelson 2.185 2.681 1.522

Stuctural VAR 2.483 3.007 1.798

Watson 2.214 2.764 1.453

Harvey-Clark 2.592 3.263 1.648

Harvey-Jaeger 2.111 2.316 1.880

Kuttner 2.254 2.807 1.495

Gerlach-Smets 2.242 2.810 1.451

AR 2.308 2.869 1.540

Real Growth 2.153 2.587 1.596

Nominal Growth 1.946 2.252 1.576

Notes: See notes to Tables 2 and 3.
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Table 5

RMSE Relative to AR—Real Time

Method 1969-1998 1969-1983 1984-1998
Linear Trend 1.014 0.983 1.116

Quadratic Trend 1.036 1.003 1.144

Breaking Trend 1.030 1.023 1.053

Hodrick-Prescott 1.011 0.914 1.297

Band Pass 0.973 0.918 1.144

Beveridge-Nelson 0.947 0.935 0.988

Stuctural VAR 1.076 1.048 1.168

Watson 0.959 0.964 0.944

Harvey-Clark 1.123 1.138 1.070

Harvey-Jaeger 0.915 0.807∗ 1.221

Kuttner 0.977 0.979 0.971

Gerlach-Smets 0.971 0.980 0.942

Real Growth 0.933 0.902∗ 1.036

Nominal Growth 0.843∗ 0.785∗ 1.023

Notes: See notes to Tables 2 and 3.

35



Table 6

Relative RMSE: 1969-1998—Real Time

Method AR Real Growth Nominal Growth
Linear Trend 1.014 1.087 1.203

Quadratic Trend 1.036 1.110 1.228

Breaking Trend 1.030 1.104 1.221

Hodrick-Prescott 1.011 1.084 1.199

Band Pass 0.973 1.042 1.153

Beveridge-Nelson 0.947 1.014 1.122

Stuctural VAR 1.076 1.153 1.276

Watson 0.959 1.028 1.137

Harvey-Clark 1.123 1.204 1.332

Harvey-Jaeger 0.915 0.980 1.085

Kuttner 0.977 1.047 1.158

Gerlach-Smets 0.971 1.041 1.152

AR 1.072 1.186

Real Growth 0.933 1.106

Nominal Growth 0.843 0.904

Notes: Each entry denotes the ratio of the RMSE of the inflation forecast based on the
methods shown in the corresponding row to the RMES based on the method shown in the
corresponding column.
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Table 7

RMSE Relative to AR for Alternative Horizon Forecasts

1969-1998 1969-1983 1984-1998
Horizon (quarters) 3 5 7 9 3 5 7 9 3 5 7 9

Linear Trend 1.006 1.014 0.924 0.921 0.974 0.983 0.862 0.871 1.088 1.116 1.224 1.142

Quadratic Trend 0.988 1.035 0.957 0.943 0.948 1.003 0.900 0.915 1.086 1.143 1.241 1.077

Breaking Trend 1.019 1.030 1.004 0.978 0.976 1.023 0.962 0.959 1.127 1.053 1.219 1.069

Hodrick-Prescott 0.965 1.011 0.964 0.903 0.875 0.913 0.905 0.888 1.173 1.297 1.259 0.978

Band Pass 0.942 0.972 0.935 1.002 0.914 0.918 0.880 0.974 1.015 1.144 1.212 1.134

Beveridge-Nelson 0.960 0.946 0.985 0.967 0.949 0.934 0.962 0.961 0.989 0.988 1.105 0.996

Structural VAR 1.052 1.075 0.989 0.942 1.013 1.048 0.924∗ 0.899 1.151 1.167 1.311 1.135

Watson 1.000 0.959 0.891 0.908 0.972 0.963 0.879 0.896 1.071 0.943 0.962 0.970

Harvey-Clark 1.036 1.123 1.085 1.042 1.022 1.137 1.069 1.058 1.072 1.070 1.176 0.956

Harvey-Jaeger 0.939 0.914 0.876 0.935 0.814∗ 0.807∗ 0.807 0.920 1.210 1.220 1.204 1.008

Kuttner 0.970 0.976 0.902 0.871 0.953 0.978 0.875 0.868 1.016 0.970 1.044 0.887

Gerlach-Smets 0.953 0.971 0.920 0.900 0.941 0.979 0.910 0.915 0.983 0.942 0.978 0.822

Real Growth 0.954 0.933 0.941 0.992 0.913 0.901 0.899 0.985 1.054 1.036 1.160 1.027

Nominal Growth 0.916 0.843∗ 0.857∗ 0.899 0.873 0.785∗ 0.803 0.885 1.022 1.023 1.121 0.968

AR 0.014 0.023 0.032 0.040 0.017 0.029 0.041 0.050 0.010 0.015 0.018 0.023

Notes: The horizons, j ∈ {3, 5, 7, 9} indicate forecasts of the rate of inflation from quarter t − 1 to quarter t + j − 1. The last row
shows the RMSE of the AR based forecast errors for the evaluation period shown. Entries in all other rows show the ratio of the
RMSE of the forecasts using the output gap in that row relative to that of the corresponding AR forecast, for the same evaluation
period.
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Table 8

Relative RMSE with Alternative Start of Estimation Period

1969-1998 1969-1983 1984-1998
Est. Start 1947 Base 1960 1965 1947 Base 1960 1965 1947 Base 1960 1965

Linear Trend 1.126 1.014 1.105 2.705 1.046 0.983 1.103 2.962 1.579 1.116 1.113 1.121

Quadratic Trend 0.996 1.035 1.123 2.706 0.992 1.003 1.106 2.965 1.029 1.143 1.198 1.110

Breaking Trend 1.000 1.030 1.119 2.717 0.996 1.023 1.117 2.961 1.030 1.053 1.128 1.262

Hodrick-Prescott 1.059 1.011 1.302 10.617 1.026 0.913 1.304 11.804 1.270 1.297 1.292 1.424

Band Pass 1.016 0.972 1.088 6.908 0.993 0.918 1.074 7.667 1.160 1.144 1.149 1.302

Beveridge-Nelson 0.879 0.946 1.041 6.410 0.818 0.934 1.052 7.119 1.225 0.988 0.991 1.073

Structural VAR 0.999 1.075 1.033 13.493 0.918 1.048 1.003 15.015 1.447 1.167 1.159 1.175

Watson 0.993 0.959 1.115 2.798 0.989 0.963 1.136 3.065 1.018 0.943 1.013 1.148

Harvey-Clark 1.070 1.123 1.157 3.452 1.062 1.137 1.172 3.777 1.126 1.070 1.089 1.455

Harvey-Jaeger 1.025 0.914 1.102 1.363 0.977 0.807∗ 1.062 1.362 1.316 1.220 1.267 1.366

Kuttner 0.882 0.976 1.091 2.707 0.820 0.978 1.094 2.967 1.235 0.970 1.078 1.091

Gerlach-Smets 0.850 0.971 1.077 2.703 0.785∗ 0.979 1.090 2.961 1.212 0.942 1.018 1.105

Real Growth 0.940 0.933 1.033 6.312 0.932 0.901 1.036 7.008 0.992 1.036 1.017 1.107

Nominal Growth 0.971 0.843∗ 0.953 10.016 0.953 0.785∗ 0.925 11.144 1.091 1.023 1.072 1.022

AR 0.025 0.023 0.029 0.028 0.033 0.029 0.037 0.035 0.012 0.015 0.017 0.017

Notes: The table compares evaluation results when the start of the estimation models used for forecastig varies from the baseline,
1955Q1, as shown. The last row shows the RMSE of the AR based forecast errors. Entries in all other rows show the ratio of the
RMSE of the forecasts using the output gap in that row relative to that of the corresponding AR forecast.
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Table 9

RMSE Relative to AR with Restricted Estimation Specifications

1969-1998 1969-1983 1984-1998
Base ∆y ∆π Base ∆y ∆π Base ∆y ∆π

Linear Trend 1.014 0.933 0.919 0.983 0.901 0.901 1.116 1.036 0.954

Quadratic Trend 1.035 0.942 0.940 1.003 0.889∗ 0.909 1.143 1.108 1.000

Breaking Trend 1.030 0.941 0.975 1.023 0.885 0.951 1.053 1.117 1.022

Hodrick-Prescott 1.011 0.967 1.003 0.913 0.876∗ 0.936 1.297 1.235 1.130

Band Pass 0.972 0.946 0.973 0.918 0.891∗ 0.957 1.144 1.119 1.005

Beveridge-Nelson 0.946 1.029 0.930 0.934 1.017 0.945 0.988 1.070 0.898

Structural VAR 1.075 0.963 1.069 1.048 0.905 1.060 1.167 1.143 1.088

Watson 0.959 0.944 0.872 0.963 0.894∗ 0.878 0.943 1.101 0.860∗

Harvey-Clark 1.123 0.941 0.880∗ 1.137 0.905 0.854 1.070 1.058 0.930

Harvey-Jaeger 0.914∗ 1.010 0.899 0.807 0.957 0.789∗ 1.220 1.178 1.093

Kuttner 0.976 0.933 0.895 0.978 0.901 0.899 0.970 1.036 0.888∗

Gerlach-Smets 0.971 0.951 0.922 0.979 0.894 0.924 0.942 1.127 0.916

Real Growth 0.933 0.996 0.913 0.901 0.961 0.877 1.036 1.111 0.985

Nominal Growth 0.843∗ 0.996 1.026 0.785∗ 0.973∗ 0.998 1.023 1.076 1.083

AR 0.023 0.023 0.021 0.028 0.028 0.025 0.017 0.015 0.017

Notes: The column marked ∆π reports forecast evaluation results when the forecasting equation (1) is estimated with the acceler-
ationist restriction,

∑
βi = 1, imposed. The column marked ∆y reports results when the differencing restriction on the output gap

variables,
∑

γi = 0, is imposed on the equation.
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Table 10

In-Sample Use of Final Versus Real-Time Output Gaps

1965-1998 1965-1983 1984-1998
Final Real-Time Final Real-Time Final Real-Time

Linear Trend 0.826 0.791∗ 0.779 0.732∗ 0.982 1.015

Quadratic Trend 0.870∗ 0.865 0.850∗ 0.790∗ 0.942 1.139

Breaking Trend 0.917∗ 0.846 0.909∗ 0.786∗ 0.946 1.085

Hodrick-Prescott 0.883 0.841 0.837∗ 0.713∗ 1.038 1.220

Band Pass 0.899 0.856 0.861∗ 0.755∗ 1.029 1.159

Beveridge-Nelson 0.873 0.840 0.808∗ 0.728∗ 1.081 1.184

Structural VAR 0.911 0.950 0.853∗ 0.884∗ 1.100 1.165

Watson 0.892∗ 0.827 0.870∗ 0.794∗ 0.972 0.958

Harvey-Clark 0.934∗ 0.894 0.924∗ 0.827∗ 0.969 1.122

Harvey-Jaeger 0.937 0.897 0.873 0.762∗ 1.147 1.281

Kuttner 0.778∗ 0.782∗ 0.728∗ 0.727∗ 0.941 0.995

Gerlach-Smets 0.795∗ 0.921 0.717∗ 0.872∗ 1.036 1.090

Real Growth 0.903∗ 0.765 0.877∗ 0.652∗ 0.996 1.100

Nominal Growth 0.836∗ 0.752 0.783∗ 0.622∗ 1.008 1.117

AR 0.019 0.019 0.024 0.024 0.012 0.012

Notes: The entries show the RMSE of the inflation forecast for the AR model, and the
RMSE relative to that of the AR for all other models. See also notes to Table 2.
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Table 11
Out-of-Sample Use of Final Versus Real-Time Output Gaps

1965-1998 1965-1983 1984-1998
Final Real-Time Final Real-Time Final Real-Time

Quadratic Trend 0.965 1.035 0.946 1.003 1.027 1.143

Breaking Trend 1.052 1.030 1.041 1.023 1.090 1.053

Hodrick-Prescott 1.045 1.011 0.980 0.913 1.247 1.297

Band Pass 1.052 0.972 1.011 0.918 1.183 1.144

Beveridge-Nelson 1.019 0.946 0.983 0.934 1.136 0.988

Structural VAR 1.005 1.075 0.909 1.048 1.287 1.167

Watson 1.035 0.959 1.039 0.963 1.021 0.943

Harvey-Clark 1.102 1.123 1.096 1.137 1.123 1.070

Harvey-Jaeger 1.028 0.914 0.941 0.807∗ 1.286 1.220

Kuttner 0.935 0.976 0.933 0.978 0.941 0.970

Gerlach-Smets 0.906 0.971 0.876 0.979 1.007 0.942

Real Growth 0.946 0.933 0.925 0.901 1.020 1.036

Nominal Growth 0.900 0.843∗ 0.858 0.785∗ 1.038 1.023

AR 0.023 0.023 0.028 0.028 0.015 0.015

Notes: The entries show the RMSE of the inflation forecast for the AR model, and the
RMSE relative to that of the AR for all other models. See also notes to Table 2.
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Table 12
RMSE Relative to AR with Alternative Lag Selection Criteria

1969-1998 1969-1983 1984-1998
Base AIC BIC Base AIC BIC Base AIC BIC

Linear Trend 1.014 0.989 1.005 0.983 0.954 0.990 1.116 1.114 1.080

Quadratic Trend 1.035 0.981 0.993 1.003 0.932 0.965 1.143 1.147 1.121

Breaking Trend 1.030 1.006 0.929 1.023 0.968 0.897 1.053 1.140 1.071

Hodrick-Prescott 1.011 1.052 0.936 0.913 0.984 0.811∗ 1.297 1.276 1.404

Band Pass 0.972 1.016 0.875∗ 0.918 0.987 0.863∗ 1.144 1.120 0.936

Beveridge-Nelson 0.946 0.971 0.913 0.934 0.947 0.885 0.988 1.057 1.043

Structural VAR 1.075 1.104 1.120 1.048 1.108 1.13 1.167 1.088 1.072

Watson 0.959 0.991 0.956 0.963 1.001 0.971 0.943 0.950 0.881

Harvey-Clark 1.123 1.070 0.984 1.137 1.067 0.975 1.070 1.082 1.028

Harvey-Jaeger 0.914 0.901 0.926 0.807∗ 0.800∗ 0.786∗ 1.220 1.212 1.436

Kuttner 0.976 0.933 0.949 0.978 0.934 0.953 0.970 0.932 0.930

Gerlach-Smets 0.971 0.923 0.927 0.979 0.924 0.938 0.942 0.920 0.873

Real Growth 0.933 0.965 0.898 0.901 0.936 0.865∗ 1.036 1.069 1.050

Nominal Growth 0.843∗ 0.836∗ 0.882 0.785 0.785∗ 0.812∗ 1.023 1.009 1.171

AR 0.023 0.023 0.022 0.028 0.029 0.029 0.015 0.015 0.013

Notes: Base (Ng-Perron), AIC and BIC denote the alternative criteria for lag selection in the forecasting models. The last row shows
the RMSE of the AR based forecast errors. Entries in all other rows show the ratio of the RMSE of the forecasts using the output
gap concept in that row relative to that of the corresponding AR forecast.
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Table 13
RMSE Relative to AR with Alternative Use of Data Vintages

Conventional KDP Conventional KDP
AIC AIC BIC BIC

Linear Trend 1.114 1.643 0.981 1.646

Quadratic Trend 1.147 1.637 1.154 1.314

Breaking Trend 1.140 1.296 1.255 1.206

Hodrick-Prescott 1.276 1.456 1.239 1.427

Band Pass 1.120 1.107 0.989 0.962

Beveridge-Nelson 1.057 1.030 1.063 1.094

Structural VAR 1.088 1.163 1.118 1.183

Watson 0.950 1.571 1.193 1.299

Harvey-Clark 1.082 1.543 1.511 1.517

Harvey-Jaeger 1.212 1.638 1.544 1.509

Kuttner 0.932 1.762 1.016 1.482

Gerlach-Smets 0.920 1.257 1.101 1.250

Real Growth 1.069 0.966 1.044 0.996

Nominal Growth 1.009 1.056 0.953 1.046

AR 0.019 0.017 0.016 0.016

Notes: KDP indicates the Koenig-Dolmas-Piger usage of data vintages for model estimation.
The forecast evaluation period is 1984—1998. AIC and BIC denote the lag selection criteria.
The last row shows the RMSE of the AR based forecast errors. Entries in all other rows
show the RMSE using the output gap concept in that row relative to the AR RMSE.
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Table 14
Bootstrap Results for Forecast Evaluation

1969-1998 1969-1983 1984-1998
DM MSE-F FE MFE DM MSE-F FE MFE DM MSE-F FE MFE

Linear Trend Statistic −0.160 −0.305 2.165 2.396 0.146 0.264 1.279 1.361 −1.639 −1.532 6.503∗ 2.604
95% CV 2.015 4.482 3.114 4.341 2.019 4.576 3.773 5.706 2.630 5.298 4.990 8.434

Quadratic Trend Statistic −0.474 −0.742 1.337 1.131 −0.033 −0.047 1.256 0.972 −1.179 −1.822 0.577 0.332
95% CV 2.204 5.173 3.186 4.361 2.104 4.755 3.711 5.744 2.659 5.452 5.410 8.588

Breaking Trend Statistic −0.774 −0.631 1.925 1.132 −0.523 −0.351 1.927 0.923 −0.644 −0.765 0.873 0.392
95% CV 1.860 3.999 3.006 3.502 1.928 3.966 3.576 4.634 2.366 4.273 4.935 7.320

Hodrick-Prescott Statistic −0.117 −0.239 1.778 1.577 1.352 1.527 2.665 1.871 −1.021 −3.142 −0.282 −0.208
95% CV 2.039 3.051 3.010 2.592 1.968 2.741 3.604 3.312 2.375 3.060 5.014 5.209

Band Pass Statistic 0.311 0.626 1.541 1.739 0.977 1.445 1.615 1.661 −0.611 −1.832 0.344 0.250
95% CV 1.824 2.591 2.873 2.346 1.779 2.669 3.524 3.154 2.372 2.876 5.402 4.797

Beveridge-Nelson Statistic 1.024 1.269 2.595 1.767 1.097 1.122 2.780 1.416 0.129 0.186 1.177 0.724
95% CV 1.685 2.977 2.729 2.668 1.626 2.678 3.212 3.627 2.419 3.558 4.722 5.851

Stuctural VAR Statistic −0.906 −1.489 1.154 1.414 −0.464 −0.697 1.463 1.545 −2.302 −2.064 −1.406 −0.549
95% CV 0.464 0.743 2.058 1.841 0.621 0.986 2.465 2.664 1.725 1.897 3.363 5.043

Watson Statistic 0.504 0.949 2.096 2.488 0.351 0.595 1.435 1.510 1.382 0.950 6.184∗ 2.673
95% CV 2.063 4.321 3.055 3.663 1.993 4.040 3.588 4.558 2.682 5.024 5.150 7.541

Harvey-Clark Statistic −0.748 −2.269 0.046 0.050 −0.676 −1.760 −0.032 −0.030 −0.469 −0.984 0.429 0.302
95% CV 1.622 2.778 2.695 2.776 1.653 2.933 3.248 3.688 2.267 3.667 4.797 6.065

Harvey-Jaeger Statistic 0.728 2.136 1.832 3.088∗ 1.937∗ 4.142∗ 2.043 3.375 −0.779 −2.549 0.369 0.346
95% CV 1.519 2.808 2.672 2.735 1.636 2.865 3.196 3.631 2.161 3.521 4.786 5.960

Kuttner Statistic 0.281 0.525 2.347 2.422 0.203 0.343 1.434 1.330 0.590 0.470 6.073∗ 3.083
95% CV 1.718 4.027 2.937 3.951 1.729 3.911 3.499 5.208 2.508 4.835 4.650 8.556

Gerlach-Smets Statistic 0.307 0.654 1.574 1.816 0.177 0.327 1.194 1.190 0.523 0.980 2.029 1.643
95% CV 2.683 7.777 3.642 6.069 2.494 6.582 4.245 7.481 2.992 7.784 5.930 11.520

Real Growth Statistic 1.199 1.626 1.611 1.710 1.605 1.779 1.769 1.617 −0.487 −0.532 0.225 0.117
95% CV 2.259 3.862 3.292 3.159 2.227 3.619 3.941 4.085 2.617 3.926 5.744 6.129

Nominal Growth Statistic 1.827 4.444 3.857∗ 5.400∗ 2.442 4.823 3.037 3.849 −0.191 −0.348 3.470 3.754
95% CV 2.685 6.292 3.702 4.835 2.556 5.663 4.226 6.109 2.842 5.835 6.461 9.820

Notes: DM: Diebold-Mariano; MSE-F: Clark-McCracken modified statistic; FE: Forecast encompassing; MFE: Modified forecast
encompassing.
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Figure 1
Real-Time and Final Hodrick-Prescott Output Gap
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Figure 2
Historical Vintages and Final Hodrick-Prescott Output Gap
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Figure 3
Univariate Inflation Forecasts

Forecasts and Realized Inflation
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Figure 4
Inflation Forecasts and Errors with the Hodrick-Prescott Output Gap
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Figure 5
Boostrap p-values
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