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Résumé / Abstract 
 

Nous proposons une méthode d’inférence appelée «latent backfitting». Cette méthode est 
spécialement conçue pour les modèles économétriques dans lesquels les relations structurelles 
d’intérêt définissent les variables endogènes observées comme une fonction connue des variables 
d’états non observées et des paramètres inconnus. Cette spécification espace-état non linéaire 
ouvre la voie à des stratégies itératives ou récursives de type EM. Dans l’étape E, les variables 
d’état sont prédites à partir des observations et des valeurs des paramètres. Dans l’étape M, ces 
prévisions sont utilisées pour déduire des estimateurs des paramètres inconnus à partir du modèle 
statistique des variables latentes. L’estimation itérative/récursive proposée est particulièrement 
utile pour les modèles avec équation de régression latente et les modèles dynamiques d’équilibre 
utilisant des variables d’état latentes. Les questions relatives à l’application de ces méthodes sont 
analysées à travers l’exemple des modèles de structure par termes des taux d’intérêt.  
 

Mots clés : Modèles d’évaluation d’actifs financiers, variables latentes, 
estimation, algorithmes itératifs ou récursifs. 
 

An inference method, called latent backfitting is proposed. It appears well suited for econometric 
models where the structural relationships of interest define the observed endogenous variables 
as a known function of unobserved state variables and unknown parameters. This nonlinear state 
space specification paves the way for iterative or recursive EM-like strategies. In the E-steps the 
state variables are forecasted given the observations and a value of the parameters. In the M-
steps these forecasts are used to deduce estimators of the unknown parameters from the 
statistical model of latent variables. The proposed iterative/recursive estimation is particularly 
useful for latent regression models and for dynamic equilibrium models involving latent state 
variables. Practical implementation issues are discussed through the example of term structure 
models of interest rates. 
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1 Introduction
The goal of this paper is to provide an unified theory for a variety of estimation algorithms
that can be used as part of a likelihood analysis of a non linear state space model or as part
of a conditional moment-based inference in a structural econometric model. Structural
econometric models are challenging because the quantities of interest are not directly
related to sample moments of the observations. Typically, these quantities may not only
be some unknown parameters but also latent Markov states which enter the observation
in a non-analytical form, as the solution to differential equations.
Although this econometric setting arises in many empirical applications, we are going

to consider as a leading example for this paper the econometrics of financial market mod-
els. Beginning with the Generalized Method of Moments (GMM) as applied by Hansen
and Singleton (1982), econometric analysis of asset pricing models is mainly dedicated to
an inversion problem: recovering the pricing kernel or stochastic discount factor (SDF)
from the observed asset prices.
Empirical asset pricing theory takes as given a set of J discretely observed asset prices

Yt (Yt ∈ RJ) and tries to recover the SDF mt+1 which relates them to the vector Gt+1 of
their payoffs by the asset pricing model:

Yt = E[mt+1 ·Gt+1|It] (1.1)

where It is the relevant conditioning information at time t. Note that (1.1) implicitly
assumes that prices and payoffs are observed at equally spaced intervals, although this
assumption is not important.
In the simplest cases, the asset pricing model (1.1) is fully specified by the definition

of the joint conditional probability distribution of (mt+1, Gt+1) given the observed values
at time t of some state variables (which summarize the relevant conditioning information
It) and the value of a vector λ of q unknown parameters. The two most famous examples
of such asset pricing models are the CAPM of Sharpe-Lintner (1964/1965) and the Black-
Scholes-Merton (1973) option pricing model.
It has since been widely documented that both the standard CAPM and Black-Scholes

(BS) models generate more often than not empirically untenable results. Typically, there
is no hope that a fixed volatility parameter in the BS option pricing formula or some
fixed shares of the wealth invested in the CAPM market portfolio characterize the SDF
in a satisfactory way. This has been acknowledged since the mid-seventies through both
the Roll critique and the practitioners’ rather bizarre uses of the BS formula. First, the
Roll critique pointed out that the wealth portfolio needed for CAPM pricing might not
be observable. Second, practitioners have considered the BS pricing formula as a mea-
surement equation to recover an implied volatility parameter. In complete contradiction
to the original BS model, this BS implied volatility is seen as a stochastic and time vary-
ing summary of the relevant information conveyed by option prices. Similarly, the Roll
critique revisited as the “Hansen-Richard critique” (see Cochrane (2001)) stresses that
the conditioning information of agents may not be observable, and that one cannot omit
it for inference regarding asset pricing models.
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This observation does not invalidate the methodology of statistical inference in the
context of structural models of financial markets equilibrium. On the contrary, when one
imagines that agents on the market observe some state variables which are not those an
econometrician can measure directly but the values of which are precisely incorporated in
the observed asset prices, the addition of state variables is an elegant way of reconciling
the equilibrium paradigm and the statistical data on market prices. While the use of
the BS option pricing formula will surely lead to a logical contradiction (different values
of a volatility parameter are used, while its constancy is a maintained assumption), the
introduction of a convenient number of state variables will avoid this logical contradiction.
This strategy of structural econometric modeling of option pricing errors (see Renault
(1997) for a survey) maintains the no-arbitrage principle while even very small pricing
errors would open the door (up to transaction costs) for huge arbitrage opportunities.
The resulting statistical specification of the economic model (1.1) will appear as a

relationship:

Yt = g[Y
∗
t ,λ] (1.2)

where g is a given function completely defined by the economic model, possibly in a non-
analytic form, while Y ∗t is a vector of possibly latent state variables which summarize the
conditioning information It needed to compute the conditional expectation (1.1) when the
relevant distributional characteristics are specified up to a vector λ of unknown parame-
ters. Typically, the stochastic process (m,G) = {mt+1, Gt+1}Tt=1 will be seen as a function
of the path over the lifetime of the asset of the possibly continuous-time stochastic process
Y ∗ of state variables, the probability distribution of which is described by a vector θ of
p unknown parameters. Then, the joint definition of the SDF and the vector of payoffs
will characterize the vector λ of “pricing parameters” as a given function of the vector θ
of statistical parameters:

λ = λ(θ), θ ∈ Θ ⊂ Rp. (1.3)

This “data augmentation” modeling strategy is often considered as a difficult chal-
lenge for empirical finance and has generated a variety of new simulation-based minimum
chi-square methods surveyed in Tauchen (1997). However, these methods often use a fully
parametric model as a simulator while neither the parametric efficiency nor the semipara-
metric robustness are guaranteed (see Dridi and Renault (2000) for a discussion). Still
the Bayesian literature and in particular the explosion of papers in the area of Markov
chain Monte Carlo (MCMC) in the past ten years told us that data augmentation should
not amount to “difficulty augmentation”.
As nicely summarized by Tanner (1996) (see introduction of chapter 4 about EM

algorithm) “all these data augmentation algorithms share a common approach to prob-
lems: rather than performing a complicated maximization or simulation, one augments
the observed data with “stuff” (latent data) that simplifies the calculation and subse-
quently performs a series of simple maximizations or simulations. This “stuff” can be the
“missing” data or parameters values”. Typically, in our case, this will include both the
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data augmentation from Y to Y ∗ and the parameter augmentation from λ to θ. And,
instead of increasing the difficulty, it will allow for simpler maximization-based estimation
procedures (M-estimation or minimum distance) as applied to latent data.
The basic idea of this paper can be described by analogy with the MCMCmethodology.

Consider the following algorithm: given an initial estimator θ(1) of the parameters of
interest, compute a proxy Y ∗(1)t of the latent variables Y ∗t from the structural relationships:
Yt = g[Y

∗(1)
t ,λ(θ(1))], t = 1, · · · , T . This is the analog of the MCMC step of drawing latent

variables given the observables and an initial draw of the parameters. Then, using the
simplicity of the latent model enables one to compute an estimator θ(2) of the parameters
from the “draw” Y ∗(1)t t = 1, · · · , T of the latent data. This is the analog of the posterior
mean (or a random draw) of the augmented posterior distribution which has precisely
been used to obtain simplicity. Typically, the latent statistical model which characterizes
the stochastic latent data generator is much simpler than the statistical model which
characterizes the law of motion of the observed process Y . Continuing in this fashion, the
algorithm generates a sequence of random variables [Y ∗(p)t , θ(p)] which are consistent with
both the observed data and the structural model:

Yt = g[Y
∗(p)
t ,λ(θ(p))], t = 1, · · · , T. (1.4)

Moreover, in the same way that a fixed point argument implies the convergence of the
Markov chain produced by a MCMC algorithm, a fixed point argument is going to ensure
that the limit [Y ∗(∞)t , θ(∞)] = Limp→∞[Y

∗(p)
t , θ(p)] of the above algorithm will exist. Then,

θ(∞) is going to be a consistent estimator (for a sample size T going to infinity) of the
true value θ0 of the parameters while Y ∗(∞)t consistently “estimates” the best proxy of Y ∗t
one could deduce from the exact pricing relationship:

Yt = g[Y
∗
t ,λ(θ

0)] (1.5)

We will show that it is even not necessary to iterate the above algorithm to infinity.
A number p(T ) of iterations going to infinity with T at a sufficient rate will ensure the
consistency and root-T normality of the resulting estimators.
Therefore, while in a recent survey of MCMC methods for financial econometrics, Jo-

hannes and Polson(2001) claim that “in contrast to all other estimation methods, MCMC
is a unified estimation procedure, estimating both parameters and state variables si-
multaneously”, the iterative methodology put forward in this paper can be seen as the
frequentist analog of MCMC and shares most of its advantages. Among the three main
advantages of MCMC methods highlighted by Johannes and Polson (2001), our iterative
procedure shares two of them. Besides the aforementioned simultaneous estimation of
parameters and state variables, it is also true that it “exclusively uses conditional simula-
tion, and it therefore avoids numerical maximization and long unconditional state variable
simulation. Because of this, (. . . ) estimation is typically extremely fast in terms of com-
puting time”. Of course, when one reads “conditional simulation”, one should understand
in the context of classic statistics “estimation” of Y ∗t and θ

0, irrespective of the fact that
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this estimation is simulation-based or not. The important point, in particular for compu-
tational time, is that it is “conditional” that is it takes advantage of a previous estimator
of the parameters or of the state variables to work directly with the “stuff” (latent data)
that simplifies the calculation.
Of course, the third advantage of MCMCmethods, namely to “deliver exact finite sam-

ple inference” is not shared by our frequentist methodology which replaces the Bayesian
paradigm by an asymptotic one. However, the alleged exact finite sample performance
of the Bayesian approach rests upon the validity of the specification of a prior, while
our asymptotic approach may be much less demanding in terms of parametric specifica-
tion. The likelihood based inference the closest to our methodology is the EM algorithm
(Dempster et al. (1977)). In some particular cases, our approach can be interpreted as
an EM algorithm. However, it is more general for at least two reasons:
First, it is not limited to a likelihood framework and can be useful in a number of

conditional moment-based inference procedures as popular in modern semiparametric
structural econometrics. The analog of the M-step of the EM algorithm (computation of
the “estimator” θ(p+1) from the “data” Y ∗(p)t , t = 1, . . . , T ) will then be performed by any
extremum or minimum distance principle.
Second, even in its maximum-likelihood type applications, our approach does not

resort to EM for the main examples of this paper. In these examples, EM theory cannot be
applied since the support of the conditional probability distribution of the latent variables
given the observable ones depend on the unknown parameters via the “inversion” of the
measurement equation (1.5). The analog of the E-step of the EM algorithm (computation
of the “data” Y ∗(p+1)t from the new estimator θ(p+1)) will resort more to an “implied-
state” approach as popularized in finance by the practitioners’ use of BS implied volatility
parameters.
Typically, as explained above, it is often the case that a number of state variables has

only been introduced to get rid of observed pricing errors with respect to the theoretical
asset pricing model. In this case, the measurement equation (1.5) will provide, for a given
value of the parameters, a one-to-one relationship between observed prices or returns Yt
and latent state variables Y ∗t . Then, implied states Y

∗
t can simply be recovered from

observations by:

Yt = g[Y
∗
t ,λ]⇔ Y ∗t = g

−1[Yt,λ]. (1.6)

Of course, this does not make the inference issue as trivial as it may appear at first sight
since implied states can be recovered only for a given value of the unknown parameters.
Even in the simplest case of a nonlinear state space model defined by the measurement
equation (1.5) (conformable to (1.6) with λ = λ(θ)) jointly with a transition equation
which specifies the dynamics of the latent process Y ∗ as a parametric model indexed by the
vector θ of unknown parameters, it turns out that the identification and efficiency issues
for asymptotic statistical inference about θ have been largely ignored by the literature
until now.
In the context of multifactor equilibrium models of the term structure of interest rates,
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Chen and Scott (1993), Pearson and Sun (1994) and Duan (1994) have been the first
papers to propose a “maximum likelihood estimation using price data of the derivative
contract”. These papers have stressed in particular that, since the observed data are
the transformed values of some underlying state variables and “since the transformations
in finance generally involve unknown parameters and the inverse transformations may
not have analytical solutions, the likelihood functions can be difficult to derive” and in
particular “it will be better to avoid the direct computation of the Jacobian for the inverse
transformation” (Duan (1994)).
Affine term structure models (Duffie and Kan (1996), Dai and Singleton (2000)) are

very popular nowadays precisely because the bond prices can be calculated quickly as a
function of state variables solving a system of ordinary differential equations. It is usually
argued that, given the closed-form expressions for bond prices, one can invert any n bond
prices into the n state variables and use the implied state variables in the estimation as
if they were directly observable.
This common belief is actually wrong on theoretical grounds. The key point is that,

since transformations in finance generally involve unknown parameters, these unknown
parameters will appear in the likelihood function, not only through the parametric model
of the latent state variables, but also as inputs of the inverse transformation and its
Jacobian. Besides the aforementioned computational difficulties, the main consequence of
that is a modification of the statistical information, as measured by the Fisher information
matrix in the likelihood setting.
The first contribution of this paper is a theoretical study of the difference between the

statistical information conveyed by the state variables and the one conveyed by observed
data. This study will be carried out not only in the fully parametric setting (implied
states maximum likelihood and Fisher information matrix) but also in more general semi-
parametric contexts defined either by a set of conditional moment restrictions (implied
states GMM and semiparametric efficiency bound) or by some quasi-maximum likelihood
or any extremum estimation (robustified Fisher information matrix).
Besides its theoretical drawbacks, the aforementioned confusion between infeasible ef-

ficient estimation with hypothetically observed state variables (we will say hereafter “la-
tent” estimation) and actual “implied-states” estimation is misleading for the definition
of well-suited estimation algorithms. The other contribution of this paper is various algo-
rithmic estimation procedures, first with an iterative viewpoint, second with a recursive
approach. A general asymptotic theory of the proposed estimators is developed.
As far as iterative estimation is concerned, the asymptotic properties of our EM-type

estimator cannot properly be assessed without a clear characterization of its two main
ingredients: asymptotic probability distribution of the infeasible latent estimator on the
one hand, and asymptotic contracting feature of the mapping θ̄T which generates the
sequences of random variables θ(p) on the other hand:

θ(p+1) = θ̄T
³
θ(p)
´
p = 1, · · · , p(T ). (1.7)

The general asymptotic theory of the estimator θp(T ) proposed in this paper nests
several estimators previously proposed in the literature. Renault and Touzi (1996) had
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considered, for the purpose of option pricing with stochastic volatility, the case of max-
imum likelihood with p(T ) = ∞. Renault (1997) sketched the case of more general
extremum estimators and other fields of applications. Pan (2002) focuses on an implied
states method of moments which is implicitly considered with p(T ) =∞.
Moreover, the structural econometric model of interest (1.5) may not only be any asset

pricing model but also other equilibriummodels, as produced in particular by game theory.
Florens, Protopopescu and Richard (2001) consider the case of auction markets. Our
estimator also nests the iterative least square (ILS) estimator as proposed by Gouriéroux,
Monfort, Renault and Trognon (1987) and extensively studied by Dominitz and Sherman
(2001) in the context of semiparametric binary choice models.
We will show that in this latter context too it is worth disentangling the semiparamet-

ric efficiency concepts associated respectively with latent estimation and implied-states
estimation.
It is often the case that the filtering of the latent variables (computation of the implied

states from a given value of the parameters) involves computer intensive calculations
and/or simulations like in the E-step of simulated SEM algorithms (see e.g., Ruud (1991)).
Therefore, we also propose some recursive procedures which, contrary to the iterative ones,
do not involve the batch processing of the full block of data at each step of the algorithm
but only a simple updating of the estimator each time new data arrives. Moreover, the
updating scheme does not imply an optimization procedure (e.g., Young (1985), Kuan and
White (1994), Kushner and Yin (1997)). Generally speaking, the advantage of a recursive
approach is twofold. First, as long as the guess on the parameters is far from the true
value, the updating of the guess may be performed using only a small part of the sample
which allows much faster nonlinear filtering procedures. Once the sequence of recursive
guesses stabilize one may use these values as starting values for an iterative algorithm.
Second, the quick and simple updating formula provided by the recursive approach is
well-suited for on-line estimation.
The price to pay for time saving through recursive procedures which are directly

focused on the implied-states latent moment conditions is, in general, some efficiency loss
with respect to iterative procedures. We also characterize this efficiency loss in terms
of the asymptotic contracting feature of the mapping θ̄T . This efficiency loss should be
much smaller than the one produced by less specific recursive procedures like the Kalman
filter, which do not take advantage of the exact non-linear structure of the model and
introduce too much error. For the simplest examples of affine term structure models,
we put forward some Monte-Carlo results, which show the better computational and
statistical performance of our approach with respect to traditional Kalman filter ones
(Duan and Simonato (1995), De Jong(2000)). The superior performance of exact implied-
states recursive procedures proposed here should be even more striking in more non-linear
asset pricing models where the Kalman filter no longer admits any theoretical justification.
The paper is organized as follows. In section 2, we study the general identification

problem for our implied-states approach and we compare it with some classical issues
of non-adaptivity in econometrics. The regression example allows us to interpret our it-
erative approach as an extension of classical backfitting. The identification condition is

7



further interpreted in the framework of latent regression models and iterative least squares
through generalized residuals. In section 3, we specialize the implied states approach to
the case (1.6) where the observed variables are one-to-one functions of the latent state
variables. We show how our approach can apply to GMM and likelihood type criteria.
Section 4 is devoted to asymptotic theory of the iterative estimators while this theory is
extended in section 5 to a recursive version of the same algorithms. The efficiency loss
of the recursive implied-states estimator with respect to the iterative one is also ana-
lyzed. The practical issues associated with the implementation of the various competing
approaches are sketched in section 6 through a short empirical illustration in the context
of a model of the term structure of interest rates. Miscellaneous proposals for further
empirical research and concluding remarks appear in section 7. The technical proofs are
gathered in the appendix.

2 Identification and non-adaptivity
In this section, we motivate our iterative approach as a natural way to address an issue
of non-adaptivity, that is the occurrence of some nuisance parameters which prevent one
from obtaining directly a consistent estimator of the parameters of interest. The price to
pay for the proposed iterative strategy is that the required identification condition may
be stronger than the usual one. Though, we will argue that the strengthening is rather
weak.
In order to support this claim, we consider some benchmark examples of non-adaptivity

in econometrics and we show that our iterative strategy nests some already well-documented
procedures. The first example is the partially parametric regression model, when only
some parameters of the parametric part are of interest. Our iterative estimation proce-
dure is then tantamount to standard backfitting and the required identification condition
appears to be, at least locally, not stronger than the identification condition of the regres-
sion model.
The second example is iterative least squares through generalized residuals of a latent

regression model. In this case, the iterative procedure can be interpreted as an extension of
standard backfitting that we term latent backfitting. The relevant identification conditions
have already been extensively characterized by Dominitz and Sherman (2001) and we just
revisit their argument to illustrate that the needed identification condition is not much
stronger than the usual one.

2.1 The general framework

The focus of interest is a class of inference problems that can be described via the more
general issue of non-adaptivity. We consider a semiparametric statistical model specified
by a family P of probability measures P on the sampling space and two mappings θ (·) :
P → Θ ⊂ Rp and λ (·) : P → Γ ⊂ Rq. The vector θ = θ(P ) contains the p parameters
representing the features of interest of the probability P which has hypothetically governed
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the sampling of the observations. The vector λ = λ(P ) contains q nuisance parameters.
The model is assumed to be well specified in the sense that there exists a true unknown
probability P 0 ∈ P which defines the Data Generating Process (DGP) and θ0 = θ(P 0)
and λ0 = λ(P 0) are the corresponding true unknown values of the parameters of interest
and of the nuisance parameters, respectively.
We are interested in an extremum estimator of θ deduced from a sample based criterion

(objective function)

QT [ θ, λ] = QT
£
θ, λ, {Yt}1≤t≤T

¤
which depends on both vectors θ ∈ Θ and λ ∈ Γ. Let us consider a first set of assumptions
similar to those usually imposed for extremum estimation in the presence of nuisance
parameters (see, e.g., section 4 of Wooldridge (1994)).

Assumption 2.1 i) For any T ≥ 1, QT [·, ·] satisfies the standard measurability and
continuity conditions, i.e., it is measurable as function of observations and it is continuous
as a function of parameters (θ,λ).
ii) There exists a limit criterion Q∞[·, ·] = Q∞,P0 [·, ·] such that

p lim
T→∞

QT [θ,λ] = Q∞[θ,λ], ∀(θ,λ) ∈ Θ× Γ.

The specificity of the general framework considered in this paper is the mode of oc-
currence of the nuisance parameters λ into the objective function QT . As noted in the
introduction, θ is associated with the probability distribution of some state variables
process Y ∗ while λ appears into the measurement equation:

Yt = g(Y
∗
t ,λ). (2.1)

In other words, QT
£
θ,λ0

¤
will typically be an objective function provided by some

standard latent extremum estimation principle while λ appears due to the need to recover
implied states from the observations {Yt}1≤t≤T and the measurement equation (2.1).
Since this measurement equation is defined by an equilibrium model stemming from

for example option pricing or game theory, it is itself tightly related to the DGP of the
state variables. Therefore the true unknown value λ0 of the nuisance parameters is a
function of the true unknown value θ0 of the parameters of interest. To highlight this
point, we will write λ(P ) = λ(θ(P )). Note that λ(P ) may also depend on some other
nuisance parameters insofar as we get a consistent estimator of them. The important
point is that there is no hope in general to obtain a preliminary consistent estimator of
λ0 to be able to deduce a consistent estimator of θ0 since the former is a function of the
latter.
In other words, we consider that there is no reason to assume that an extremum

estimator θ̄T (λ̄) built as
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θ̄T (λ) = arg max
θ
QT [θ,λ] (2.2)

from an arbitrarily fixed value λ of the nuisance parameters will provide a consistent
estimation of the true value θ0 of the parameters of interest. Typically, only θ̄T (λ

∗) com-
puted from some particular value λ∗ of the nuisance parameters may provide a consistent
estimator. This is the general issue of non-adaptivity.

Assumption 2.2 i) For any λ ∈ Γ, the function θ → Q∞ [θ,λ] admits a unique maxi-
mizer θ(P 0,λ), where P 0 is the probability measure governing the observations.
ii) There exists some λ∗ ∈ Γ such that θ(P 0,λ∗) = θ0.

Perhaps, the best known example of non-adaptivity in econometrics is the linear re-
gression model with two sets of explanatory variables which we shall consider now for illus-
tration purposes. With a slight change of notations to introduce exogenous variables, let
(Yt, Xt) , t = 1, ..., T be i.i.d. random vectors such that Yt ∈ R, Xt = (X

0
1t,X

0
2t)

0 ∈ Rp×Rq

and 
EP (XtX

0
t) is a non singular matrix,

EP [Yt −X 0
1tθ(P )−X 0

2tλ(P ) | X1t, X2t] = 0,

θ(P) = Θ = Rp and λ(P) = Γ = Rq,

(2.3)

where EP denotes the expectation with respect to the probability P ; in particular, EP0 =
E0 stands for the expectation with respect to the DGP.
The ordinary least-squares principle leads to the maximization criterion

Q∞ [θ,λ] = −E0 (Yt −X 0
1tθ −X 0

2tλ)
2 . (2.4)

Therefore, the set of values λ∗ of the nuisance parameters λ such that

θ̄
¡
P 0,λ∗

¢
= θ0

is characterized by a translation of the kernel space of the matrix E0 (X1tX 0
2t):

λ∗ − λ0 ∈ Ker E0 (X1tX 0
2t) .

Of course, we are faced with the non-adaptivity problem when the kernel subspace does
not coincide with the whole spaceRq. Therefore, except for specific choices of the function
λ(·), we have

θ0 6= arg max
θ
Q∞ [θ,λ(θ)] (2.5)

In the simple linear model (2.3), the Frisch-Waugh theorem (see Frisch andWaugh (1933);
see also Davidson and Mackinnon (1993), page 19) provides a particular function λ0(·) to
avoid the ‘problem’ (2.5). Indeed, if we define λ0(·) by

E0
£
X2tX

0
2t λ

0(θ)
¤
= E0 [X2t (Yt −X 0

1tθ)] , (2.6)

10



then
θ0 = arg max

θ
Q∞

£
θ,λ0(θ)

¤
. (2.7)

In practice, it may happen that the function λ0(·) is unknown, but it can be consis-
tently estimated by, say, λT (·). In the Frisch-Waugh example

λT (θ) = (X
0
2X2)

−1
X0
2 [Y −X1θ] ,

is the empirical counterpart of (2.6); Y,X1,X2 are the matrices corresponding to the first
T observations of the variables Y,X1 and X2, respectively. The finite sample criterion
associated with (2.4) where λ is replaced by the function λT equals:

QT
£
θ,λT (θ

1)
¤
= −T−1

TX
i=1

£
Yt −X 0

1tθ −X 0
2tλT (θ

1)
¤2

= −T−1 °°(Id−PX2)Y −X1θ +PX2X1θ
1
°°2 ,

where PX2 = X2 (X
0
2X2)

−1 X0
2 is the orthogonal projection matrix onto the subspace of

RT spanned by the columns of X2.
The focus of interest of this paper is a class of structural econometric models where

only a function λ(·) such that

θ0 = argmax
θ
Q∞

£
θ,λ(θ0)

¤
(2.8)

is known, or is available by estimation, but (2.5) may happen. Therefore, by analogy
with standard backfitting, natural estimation strategies based on the criterion QT should
distinguish the two occurrences of θ. The criterion is then written QT

£
θ,λT

¡
θ1
¢¤
and the

estimations are defined through iterative steps:

θ(p+1) = argmax
θ
QT

h
θ,λ(θ(p))

i
, p = 1, 2, ... (2.9)

Note that for the sake of notational simplicity we always denote by QT
£
θ,λ(θ1)

¤
the finite

sample criterion while, in some cases, λ(θ1) should be replaced by a consistent estimator
λT (θ

1). In other words, by a slight abuse, all the data dependence is summarized by the
notation QT .
It is important to keep in mind in this respect that all the iterative/recursive estimation

strategies considered in this paper do not change when the criterion QT is replaced by
Q̃T conformable to

Q̃T

h
θ,λ(θ(p))

i
= QT

h
θ,λ(θ(p))

i
+ ϕT (θ

(p)),

for an arbitrary numerical function ϕT (·) defined on Θ. Thus, we are definitely unable to
check a condition like (2.7).

11



Moreover, this ‘limited information’ use of the criterion QT requires that we strengthen
the standard identification condition. Since, by (2.8) we have in mind an infeasible ex-
tremum estimator which would be defined from the criterion QT

£
θ,λ(θ0)

¤
, a basic iden-

tification condition to be imposed should be that θ0 is the unique maximizer of the limit
criterion θ → Q∞

£
θ,λ(θ0)

¤
, that is

θ̄
£
P 0,λ(θ0)

¤
= θ0. (2.10)

This condition would be quite similar to the usual identification condition that would
have been imposed if the limit criterion was considered as a function (θ,λ) → Q∞ [θ,λ]
and λ were nuisance parameters for which a consistent estimator is available (see, e.g.
Wooldridge (1994), Theorem 4.3). But, given the non-adaptivity problem and the need
to build an estimation procedure from the steps (2.9), we will have to maintain a stronger
identification condition which imposes that the only fixed point of the function θ̄ [P 0,λ(·)]
is θ0. Otherwise, it may happen that the statistician will not be able to reject a “bad
guess” θ(p) 6= θ0 used to build the criterion QT

h
·,λ(θ(p))

i
. This remark leads to the

following identification condition required by our estimation strategy.

Assumption 2.3 θ0 = θ(P 0) is the unique fixed point of the map θ̄ [P 0, λ (·)] .

Note that this assumption implies that θ0 is well identified from the observations as
the unique fixed point of the function θ̄ [P 0,λ (·)] where, recall, θ̄ [P 0,λ] is the unique
maximizer of p lim QT [·,λ] .
Now, let us analyze some conditions ensuring Assumption 2.3. Consider that the

function θ̄ [P 0,λ(·)] is differentiable with continuous partial derivatives. If θ̄ £P 0,λ(θ0)¤ =
θ0, by a Taylor expansion argument we can deduce that (at least locally) θ0 is the unique
fixed point of θ1 → θ̄ [P 0,λ(θ1)] provided that the matrix

Ip − ∂θ̄

∂θ10
£
P 0, λ

¡
θ0
¢¤

is invertible. In terms of the first derivatives of the function θ̄ [P 0,λ(·)], this appears to
be the minimal condition for ensuring the unique fixed point property locally. However,
θ0 will be estimated by iterations which requires a stronger condition for ensuring the
convergence of the estimator.
Suppose that the function θ̄ [P 0,λ(·)] is known. Then, its unique fixed point could

be approximated through the iterations θ(k) = θ[P 0,λ(θ(k−1))], k = 1, 2, ... Note that, in
fact, the iterative estimation strategy methodology proposes to replace θ̄ [P 0,λ(·)] with its
sample counterpart (2.2) and to perform the corresponding iterations. A suitable way to
ensure the convergence of the iterations θ(k) is to assume that θ̄ [P 0,λ(·)] is a contracting
mapping, that is there exists c ∈ [0, 1) such that°°θ̄ £P 0,λ(θ0)¤− θ̄ £P 0,λ(θ00)¤°° ≤ c kθ0 − θ00k , θ0, θ00 ∈ Θ.

12



When θ̄ [P 0,λ(·)] admits continuous first order derivatives and θ0 is an interior point of
Θ, the contracting property is tantamount to the condition°°°° ∂θ̄∂θ10 £P 0,λ(θ0)¤

°°°° < 1, (2.11)

at least after reducing Θ; here and for the rest of the paper, kAk denotes the spectral
norm of the matrix A and it is defined by kAk2 = ρ(A0A) where ρ (B) stands for the
spectral radius of the squared matrix B, that is its largest eigenvalue in absolute value.
Clearly, if (2.11) holds, then Ip − ∂θ̄/∂θ10

£
P 0,λ(θ0)

¤
is invertible and thus the unique

fixed point property is guaranteed locally.
In conclusion, the contracting condition, or its local version (2.11) , will represent key

assumptions for proving convergence results for our estimators in a general framework.
However, as far as identification is concerned, the relevant condition is the weaker As-
sumption 2.3.
Let us now illustrate the hierarchy of the identification hypotheses — the basic condition

θ̄
£
P 0,λ(θ0)

¤
= θ0, the unique fixed point property as well as the model identification

condition — in the context of the standard backfitting algorithm.

2.2 Classical backfitting revisited

Consider the backfitting algorithm identification (see, e.g., Hastie and Tibshirani (1990))
in the context of a general partially parametric regression model (PPR hereafter). Such
a model is characterized by a regression function split into two parts: a parametric one,
possibly nonlinear, and a nonparametric one (see Andrews (1994a), page 52). In general,
one writes

Yt = h(X1t, θ) + λ(X2t) + ut, θ ∈ Θ ⊂ Rp, λ ∈ G,

E(ut | Xt) = 0, Xt = (X
0
1t, X

0
2t)

0 , t = 1, ..., T,

with h(·, ·) known and G an infinite dimensional set of real-valued functions. For the sake
of simplicity, in this example we assume that the process {ut,X 0

t} is stationary and ergodic.
The quantities of interest, namely the true unknown values θ0 and λ0 of the Euclidean
parameter θ and the function λ, respectively, are defined as the unique minimizers of the
mean squared error, that is the unique maximizers of

Q∞ [θ,λ] = −E0 [Yt − h(X1t, θ)− λ(X2t)]2 .
The identification assumption expressed by this condition can be made even more precise
using the following decomposition:

E [Yt − h(X1t, θ)− λ(X2t)]2 = E [Yt − h(X1t, θ)− E (Yt − h(X1t, θ) | X2t)]2 (2.12)

+ E [E (Yt − h(X1t, θ) | X2t)− λ(X2t)]2 .

13



Indeed, since for any value of θ one can define a function λ(·) which renders the second term
of the right hand side (2.12) equal to zero, the identification condition for the Euclidean
parameter amounts to

h(X1t, θ
1)− E0 ¡h(X1t, θ1) | X2t¢ = h(X1t, θ0)−E0 ¡h(X1t, θ0) | X2t¢ =⇒ θ1 = θ0.

Given a guess λ(1)T , a natural way to estimate θ is to consider the empirical counterpart
θ
(2)
T of

θ(P 0,λ) = argmax
θ∈Θ

− E0 [Yt − h(X1t, θ)− λ(X2t)]2

with λ replaced by λ(1)T .With this estimate θ
(2)
T , one can get an improved guess λ

(2)
T of the

function λ by smoothing Yt−h(X1t, θ(2)T ) on X2t.We can continue this iterative smoothing
process thus obtaining an example of classical backfitting. If it exists, the limit of the
backfitting algorithm can be explicitly characterized as solution of the following system
of equations

bλT = K hY − h(X1,bθT )i
(2.13)

bθT = argmin
θ∈Θ

TX
t=1

h
Yt − h(X1t, θ)− bλT (X2t)i2 ,

where h(X1, θ) = (h(X11, θ), ..., h(X1T , θ))
0 and K is the smoothing matrix used to esti-

mate the conditional expectation of Y − h(X1, θ) given X2. Such a fixed point may not
exist in finite samples but only asymptotically when T goes to infinity. This issue will be
addressed later in our general theory (see section 4) but is omitted here for the sake of
expositional simplicity. Hence, bθT is obtained by solving the first order conditions

TX
t=1

∂h

∂θ
(X1t,bθT ) hYt − h(X1t,bθT )− bλT (X2t)i = 0,

which corresponds to the limit first order conditions

E0
·
∂h

∂θ
(X1t, θ

(p+1))
h
Yt − h(X1t, θ(p+1))− λ(p)(X2t)

i¸
= 0, (2.14)

where the function λ(p)(·) is defined by

λ(p)(X2t) = λ(θ
(p))(X2t) = E

0
h
Yt − h(X1t, θ(p)) | X2t

i
.

Therefore, the backfitting algorithm will possibly provide a consistent estimator of θ0

insofar as the following identification condition is fulfilled:

E0
·
∂h

∂θ
(X1t, θ

1)
¡
Yt − h(X1t, θ1)− E0

£
Yt − h(X1t, θ1) | X2t

¤¢¸
= 0 =⇒ θ1 = θ0.
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When maintaining the assumption that the first order conditions characterize a unique
maximizer, the backfitting identification condition coincides with the unique fixed point
condition of Assumption 2.3 where the function θ̄ is defined by

θ̄
£
P 0,λ

¡
θ1
¢¤
= argmax

θ
− E0 £Yt − h (X1, θ)− λ ¡θ1¢ (X2t)¤2 .

Using the model equations

Yt = h(X1t, θ
0) + λ0(X2t) + ut, E0(ut | Xt) = 0,

we rewrite this backfitting identification condition as:

Condition C1 (backfitting identification)

E0
·
∂h

∂θ
(X1t, θ

1)
¡
h(X1t, θ

1)− E0 £h(X1t, θ1) | X2t¤¢¸
= E0

·
∂h

∂θ
(X1t, θ

1)
¡
h(X1t, θ

0)− E0 £h(X1t, θ0) | X2t¤¢¸ =⇒ θ1 = θ0.

As already noted, the PPR model identification condition can be written in the fol-
lowing way.

Condition C2 (identification in the PPR model)

h(X1t, θ
1)− E0 ¡h(X1t, θ1) | X2t¢ = h(X1t, θ0)−E0 ¡h(X1t, θ0) | X2t¢ =⇒ θ1 = θ0.

Finally, let us note that the basic identification condition

θ̄
£
P 0,λ

¡
θ0
¢¤
= θ0

is tantamount to the following standard identification condition in the “latent” regression
model.

Condition C3 (identification in the latent regression model)

h(X1t, θ
1) = h(X1t, θ

0) =⇒ θ1 = θ0;

It is clear that
C1 =⇒ C2 =⇒ C3.

As previously mentioned, the difficulty in PPR models appears when considering non-
linear regression functions h. If h is linear (this is the case of partially linear regression
model), the conditions C1 and C2 are equivalent and mean that the residual variance
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V ar0 (X1t − E [X1t | X2t]) is positive definite. C3 means that E0 [X1tX 0
1t] is positive def-

inite.
Let us now study to what extent, in the general PPR, the backfitting identification

condition C1 is more restrictive than the standard identification condition C2. Define

ϕ(Xt, Yt, θ,λ
¡
θ1
¢
) =

∂h

∂θ
(X1t, θ)

¡
Yt − h(X1t, θ)−E0

£
Yt − h(X1t, θ1) | X2t

¤¢
and assume that the function θ̄ [P 0,λ (·)] can be also defined as the implicit solution of

E0
£
ϕ(Xt, Yt, θ̄

£
P 0,λ

¡
θ1
¢¤
,λ
¡
θ1
¢
)
¤
= 0, θ1 ∈ Θ.

Assuming the needed regularity conditions, differentiate this identity with respect to θ1,
take θ1 = θ0 (recall that θ̄

£
P 0,λ

¡
θ0
¢¤
= θ0) and deduce that

∂θ̄

∂θ10
£
P 0, λ

¡
θ0
¢¤
=M−1N, (2.15)

where

M = −E0
·
∂ϕ0

∂θ
(Xt, Yt, θ,λ

¡
θ0
¢
)

¯̄̄̄
θ=θ0

¸
= E0

·
∂h

∂θ
(X1t, θ

0)
∂h

∂θ0
(X1t, θ

0)

¸
(2.16)

and

N = E0
·
∂ϕ0

∂θ1
(Xt, Yt, θ

0,λ
¡
θ1
¢
)

¯̄̄̄
θ1=θ0

¸
= E0

·
∂h

∂θ
(X1t, θ

0)E0
·
∂h

∂θ0
(X1t, θ

0) | X2t
¸¸

= E0
·
E0
·
∂h

∂θ
(X1t, θ

0) | X2t
¸
E0
·
∂h

∂θ0
(X1t, θ

0) | X2t
¸¸
. (2.17)

Note that M and N are symmetric, positive semidefinite matrices and

M −N = V ar0
·
∂h

∂θ
(X1t, θ

0)

¸
− V ar0

·
E0
·
∂h

∂θ
(X1t, θ

0) | X2t
¸¸

= V ar0
·
∂h

∂θ
(X1t, θ

0)− E0
·
∂h

∂θ
(X1t, θ

0) | X2t
¸¸
.

Thus, M −N is a positive semidefinite matrix, which implies that the eigenvalues of the
matrix M−1N lie in [0, 1]. Moreover, it is sufficient to assume that M − N is positive
definite to ensure that all these eigenvalues are even smaller than one (see Lemma A.1
in Appendix 7). In other words, the backfitting identification condition is tantamount
to the very natural assumption that no linear combination of ∂h/∂θ(X1t, θ

0) is (almost
surely) a function of X2t. Using this observation and a Taylor expansion argument for the
function h(X1t, θ

1)−E0 ¡h(X1t, θ1) | X2t¢, we argue that, at least locally, the backfitting
16



identification condition is not much stronger than the standard identification C2 of the
PPR model.
It is worthwhile to note that the linearity of the regression function h makes unneces-

sary the backfitting iterations since the equations (2.13) admit the closed form solution

bθT = [X1(IT −K)X0
1]
−1

X1(IT −K)Y, (2.18)

provided that X1(IT −K)X0
1 is invertible. This formula has been introduced by Green,

Jennison and Seheult (1985) and Speckman (1988). In the particular case where the λ
function itself is specified as linear, the previous equation amounts to the Frisch-Waugh
theorem. Note that in this particular case where the regression function is linear we
deduce E0 [∂ϕ0/∂θ] = −E0 [X1tX 0

1t] and

E0
·
∂ϕ0

∂θ1

¸
= E0 [X1tX

0
2t]
¡
E0 [X2tX

0
2t]
¢−1

E0 [X2tX
0
1t]

and therefore

∂θ̄

∂θ10
£
P 0, λ

¡
θ0
¢¤
=
¡
E0 [X 0

1tX1t]
¢−1

E0 [X1tX
0
2t]
¡
E0 [X2tX

0
2t]
¢−1

E0 [X2tX
0
1t] .

That is, in the Frisch-Waugh case ∂θ/∂θ10 is what is sometimes called the matricial cor-
relation coefficient between X1 and X2. It’s eigenvalues represent the squared canonical
correlations between X1 and X2 (see, e.g., Muirhead (1982), section 11.3).
Designed for a more general framework than the PPR model with linear function h,

the latent backfitting methodology which is our focus of interest can be useful in cases
where closed form formulae like (2.18) are not available.
For the sake of its extension, we can interpret the standard backfitting setting in terms

of latent variables. Let us define the ’latent regression model’

Y ∗t = h(X1t, θ) + ut.

If {Y ∗t } =
©
Yt − λ0(X2t)

ª
were observed, that is if the function λ0 were known, we could

use the latent model and obtain a more precise estimator of θ0 than in the PPR model.
We can say that the classical backfitting looks for a sample analogue of the unique fixed
point of the function θ [P 0,λ(·)] defined by

θ
£
P 0,λ(θ1)

¤
= argmax

θ∈Θ
− E0 £Y ∗t (θ1)− h(X1t, θ)¤2 ,

where Y ∗t (θ
1) = Yt−λ(θ1)(X2t) is the natural guess of the ‘latent’ variable Y ∗t = h

¡
Xt, θ

0
¢
+

ut for a given value θ1 of the parameters. Indeed, the classical backfitting step for up-
dating bθT can be interpreted as a nonlinear regression in the latent model where Y ∗t has
been replaced by its guess Yt− bλT (X2t). Below, we will extend this idea to genuine latent
variables models.
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2.3 Latent regression models and generalized residuals

Consider a latent regression model Y ∗t = h (Xt; θ) + ut, E [ut | Xt] = 0,

Yt = r (Y
∗
t , Xt; θ) , θ ∈ Θ,

(2.19)

where, for expositional simplicity, it is assumed that there is only one set of explanatory
variables denoted byXt which are independent of the error term ut.Moreover, the process
{ut, X 0

t} is supposed to be stationary. If not stated differently, there is no additional
assumption on the joint law of error terms.
A popular example of latent regression model we will consider throughout this section

is the binary response model where

Yt = 1{Y ∗t >0};

(1A denotes the indicator function of the set A).
In the context of latent regression models, a natural guess of the latent variable Y ∗t

deduced from the observations (Yt, Xt) and a given value θ
1 of the parameters is

Y ∗t
¡
θ1
¢
= h

¡
Xt, θ

1
¢
+ E0

£
ut | Yt,Xt; θ1

¤
. (2.20)

Following Gouriéroux et al. (1987), the notation E0
£
ut | Yt, Xt; θ1

¤
= ũt

¡
θ1
¢
termed

‘generalized residual’ means that, given the observation (Yt, Xt), we compute a forecast
of the latent error term ut from the knowledge of the measurement equation

Yt = r
£
h
¡
Xt, θ

0
¢
+ ut,Xt; θ

0
¤
= g

¡
ut,Xt, θ

0
¢

evaluated at the value θ1 of the unknown parameters. That is,

ũt
¡
θ1
¢
= E0

£
ut | Yt = yt , Xt = xt; θ1

¤
= E0

£
ut | g

¡
ut, xt, θ

1
¢
= yt

¤
. (2.21)

Note that ũt
¡
θ1
¢
and Y ∗t (θ

1) also depend also on P 0 through the true conditional prob-
ability distribution of ut involved in the last expectation. In the binary response model
one has

ũt
¡
θ1
¢
= E0

£
ut | Yt, Xt; θ1

¤
= YtE

0
£
ut | ut > −h

¡
Xt; θ

1
¢
, Xt

¤
+ (1− Yt)E0

£
ut | ut ≤ −h

¡
Xt; θ

1
¢
, Xt

¤
,

(2.22)

where the two conditional expectations are computed with respect to the true probability
distribution of ut. For the sake of expositional simplicity the true marginal distribution of
u is considered as known. See Dominitz and Sherman (2001) for an elegant extension of
the generalized residuals to semiparametric binary choice models where this distribution
has to be estimated nonparametrically.
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Let us note that the forecast provided by the generalized residuals is optimal insofar as
the variables (X 0, u) are serially independent. Nevertheless, we can also consider the case
of autoregressive dynamics for the error term ut as in Robinson (1982) and Gouriéroux,
Monfort and Trognon (1985). Following Gouriéroux, Monfort and Trognon (1985), we
will always compute the generalized residuals as if there were no serial dependence. This
because, even for the simplest models of dependence, the density function of the observ-
ables will take the form of a multidimensional integral whose dimension is T the number
of observations. This creates serious problems for computing the likelihood function as-
sociated to the observations and the optimal forecasts of the latent variables as well. The
use of generalized residuals ũt

¡
θ1
¢
and associated latent backfitting has been precisely

conceived to overcome these difficulties. The formula (2.21) computing the generalized
residuals depends only on the marginal distribution of the errors, as well as the fixed point
property which ensures consistency of the latent backfitting estimator proposed below.
By analogy with the above interpretation of the classical backfitting, we define the

latent backfitting for latent regression models as a search for a sample counterpart of the
alleged unique fixed point of the function θ

£
P 0,λ

¡
θ1
¢¤
defined by

θ
£
P 0,λ

¡
θ1
¢¤
= argmax

θ∈Θ
− E0 £Y ∗t (θ1)− h(Xt, θ)¤2 . (2.23)

In other words, we define the latent backfitting by the iterative procedure

θ(p+1)T = θT
³
λ
³
θ(p)T

´´
,

where

θT
³
λ
³
θ(p)
´´
= argmax

θ∈Θ
−

TX
t=1

h
Y ∗t (θ

(p))− h(Xt, θ)
i2

p = 1, 2, ...

In terms of first order conditions, θ(p+1)T is then defined from θ
(p)
T by

TX
t=1

∂h

∂θ
(Xt, θ

(p+1)
T )

h
Y ∗t (θ

(p)
T )− h(Xt, θ(p+1)T )

i
= 0.

In the particular case of a linear latent regression model, that is h
¡
Xt, θ

1
¢
= X 0

tθ
1, one

computes θ(p+1)T from the orthogonality conditions between explanatory variables and
’generalized residuals’ as first considered by Gouriéroux et al. (1987). Dominitz and
Sherman (2001) revisited this procedure which they term ’iterative least squares’ and
characterized its consistency and asymptotic behavior under more general assumptions
on the errors distribution.
According to (2.23), the identification condition for this latent backfitting, that is the

unique fixed point property of the function θ̄ [P 0,λ (·)] can be written as

θ1 = argmax
θ∈Θ

−E0 £Y ∗t (θ1)− h(Xt, θ)¤2 ⇐⇒ θ1 = θ0 .
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Using the above definition of generalized residuals, we rewrite it as follows.

Condition C1’ (Backfitting identification)

θ1 = argmax
θ∈Θ

− E0 £h(Xt, θ1)− h(Xt, θ) + ũt ¡θ1¢¤2 ⇐⇒ θ1 = θ0 .

In the case of a linear latent regression function and provided that E [XtX 0
t] is invert-

ible, we deduce from (2.23)

θ(θ0,λ(θ1)) = (E [XtX
0
t])
−1
E
£
XtY

∗
t (θ

1)
¤
= θ1 + (E [XtX

0
t])
−1
E
£
Xteut(θ1)¤ . (2.24)

In this case the unique fixed point property means

E
£
Xteut(θ1)¤ = 0 =⇒ θ1 = θ0. (2.25)

Note that the weaker condition θ0 = θ̄
£
P 0,λ

¡
θ0
¢¤
only means that

θ0 = argmax
θ∈Θ

− E0 £h(Xt, θ0)− h(Xt, θ) + ũt(θ0)¤2 ,
that is

θ0 = argmax
θ∈Θ

− E0 £h(Xt, θ0)− h(Xt, θ)¤2
since

E0
£
ũt
¡
θ0
¢ | Xt¤ = E0 £E £ut | Yt, Xt, θ0¤ | Xt¤ = E0 [ut | Xt] = 0.

In other words, while backfitting identification requires that θ0 is the only fixed point of
θ̄ [P 0,λ (·)], the fact that θ0 is a fixed point is tantamount to identification in the latent
regression model:

Condition C3’ (Identification in the latent regression model)

E0 [ut | Xt] = 0,
and

h
¡
Xt, θ

1
¢
= h

¡
Xt, θ

0
¢⇐⇒ θ1 = θ0.

Moreover, one can check that, as for standard backfitting, identification in the observ-
able model corresponds to a condition C2’ which is intermediate between C1’ and C3’.
Under very mild technical assumptions on the support of the error distribution and on
the form of h(Xt, θ) (see Appendix 7), the condition C2’ below amounts to identification
from binary observations.

Condition C2’ (Identification in the observable model)

E0
£
ũt
¡
θ1
¢ | Xt¤ = 0 ⇐⇒ θ1 = θ0
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and
h
¡
Xt, θ

1
¢
= h

¡
Xt, θ

0
¢⇐⇒ θ1 = θ0.

The condition C2’ is usually weaker than C1’, as it can be seen from the equation
(2.25). A more general argument can be the following: if C1’ holds and one were able to
find θ1 6= θ0 such that

E0
£
ũt
¡
θ1
¢ | Xt¤ = 0,

then θ → −E0 £h ¡Xt, θ1¢− h (Xt, θ) + ũt ¡θ1¢¤2 would be maximum for θ = θ1 6= θ0 and
this contradicts C1’.
Generally speaking,

C10=⇒ C20=⇒ C30,

and, by contrast with the standard backfitting case, the linearity of the latent regres-
sion model is not sufficient to ensure that C1’ and C2’ are equivalent (see also (2.25)).
However, the two conditions may be equivalent, for instance under the quite restrictive
assumption that, for any θ1, there exists θ2 such that

h(Xt, θ
2) = h(Xt, θ

1) + E
£
ũt
¡
θ1
¢ | Xt¤ .

This additional assumption is satisfied, for example, in the case of a binary choice model
with constant latent regression function h. Nevertheless, it is no longer satisfied in the
case of a linear latent regression function, that is E

£
ũt
¡
θ1
¢ | Xt¤ is not necessarily linear

in Xt even if h(Xt, θ) = X 0
tθ.

Let us now study to what extent the backfitting identification condition C1’ is in this
latter case more restrictive than the standard identification condition C2’. Define:

ϕ(Xt, Yt, θ,λ
¡
θ1
¢
) = Xt

£
Y ∗t (θ

1)−X 0
tθ
¤

and assume that the function θ̄ [P 0,λ (·)] can be also defined as the implicit solution of
E0
£
ϕ(Xt, Yt, θ̄

£
P 0,λ

¡
θ1
¢¤
,λ
¡
θ1
¢
)
¤
= 0, θ1 ∈ Θ.

Differentiate this identity with respect to θ1, take θ1 = θ0 and deduce that

∂θ̄

∂θ10
£
P 0, λ

¡
θ0
¢¤
=M−1N,

where

M = −E0
·
∂ϕ0

∂θ
(Xt, Yt, θ,λ

¡
θ0
¢
)

¯̄̄̄
θ=θ0

¸
= E0 [XtX

0
t]

and

N = E0
·
∂ϕ0

∂θ1
(Xt, Yt, θ

0,λ
¡
θ1
¢
)

¯̄̄̄
θ1=θ0

¸
= E0 [XtX

0
t] + E

0

·
Xt
∂ũt

∂θ10
¡
θ1
¢¯̄̄̄
θ1=θ0

¸
.
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Next, (2.22) yields:

E0
·
∂ũt

∂θ10
¡
θ1
¢¯̄̄̄
θ1=θ0

¸
= − £p0m0

1

¡−X 0
tθ
0
¢
+
¡
1− p0¢m0

2

¡−X 0
tθ
0
¢¤
X 0
t

where

p0=p0 (Xt)=E
0 [Yt |Xt ] ,m1(s)=E

0 [ut |ut>s,Xt ] and m2(s)=E
0 [ut |ut≤s,Xt ] .

Note that by definition the functions m1(s) and m2(s) are non-decreasing and therefore
their derivatives m0

1 and m
0
2 are non-negative.

Consequently:
N = E0

©
Xt
£
1− g ¡Xt, θ0¢¤X 0

t

ª
with:

g
¡
Xt, θ

0
¢
= p0m0

1

¡−X 0
tθ
0
¢
+
¡
1− p0¢m0

2

¡−X 0
tθ
0
¢ ≥ 0.

Thus:

∂θ̄

∂θ10
£
P 0,λ

¡
θ0
¢¤

= M−1N

=
©
E0 [XtX

0
t]
ª−1

E0
©
Xt
£
1− g ¡Xt, θ0¢¤X 0

t

ª
.

If we assume, without loss of generality, E0 (XtX 0
t) = Ip then ∂θ̄/∂θ

10 £P 0,λ ¡θ0¢¤ is
a symmetric matrix. It is well known that if ut has a strictly log-concave distribution,
then 0 ≤ m0

1(s), m
0
2 (s) ≤ 1 and the inequalities are strict, except possibly on the

boundary of the support of ut (see Heckman and Honoré (1990)). Therefore, in such a
case, ∂θ̄/∂θ10

£
P 0,λ

¡
θ0
¢¤
=M−1N is a positive semidefinite matrix with the norm smaller

than one.
In other words, the required contraction mapping condition is satisfied at least for

error terms whose marginal distribution belongs to the class of strictly log-concave distri-
bution functions. This class is quite large, including many of the common distributions
(normal, logistic, beta, gamma...). Log-concavity is tightly related to well-behaved maxi-
mum likelihood equations in the particular case of serial independence of the error terms.
Moreover, as stressed by Dominitz and Sherman (2001), the class of marginal distribu-
tions of the error terms for which ∂θ̄/∂θ10

£
P 0,λ

¡
θ0
¢¤
=M−1N has a norm smaller than

one is even larger than the class of strictly log-concave distributions.
Therefore, we conclude similarly to the standard backfitting case, that the backfitting

identification condition (C1’) is not much more restrictive than the standard identification
condition (C2’) of the binary choice model.
Moreover, it is important to realize that the formulation of C2’ in terms of conditional

moment restrictions on the generalized residuals should not lead to a one-step least squares
procedure on these generalized residuals:

min
θ

TX
t=1

ũ2t (θ). (2.26)
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Note that, (2.26) is akin to the direct maximization of the sample counterpart of θ →
Q∞ [θ,λ(θ)] , where, according to (2.23),

Q∞
£
θ,λ(θ1)

¤
= −E0 £Y ∗t (θ1)− h(Xt, θ)¤2 .

We show in Appendix A2 that the binary response model provides a counter-example
for the consistency of such a one-step least squares estimator. Therefore, the latent
backfitting is really relevant in this setting.

3 Implied state backfitting
Many structural econometric models (nonlinear rational expectations, option pricing, auc-
tion models,...) characterize observable variables as highly nonlinear functions of some
latent variables. These functions are one-to-one, but they depend on the unknown distri-
bution of the latent variables through the equilibrium of the game or the learning process.
Motivated by the fact that the law of motion of the latent variables is often defined in
a fairly simpler way, simulation-based strategies (e.g., indirect inference, see Gouriéroux,
Monfort and Renault (1993)) have been developed recently. The general latent backfitting
methodology we develop in this paper is well-suited for providing appealing alternative es-
timation procedures based on the latent variables and perform inference directly using the
more tractable latent model. We will call implied state backfitting the latent backfitting
applied to econometric models as described in this section.

3.1 Basic motivations

The vector θ = θ (P ) of the parameters of interest is now defined by the law of motion P
of, say, a stationary and ergodic Markovian of order one process {Y ∗t }.
The components of Y ∗t are considered as state variables which are not directly observed.

The observations, denoted by Yt, are defined through a known function of Y ∗t and λ
0 ∈ Γ,

the true unknown value of some nuisance parameters. That is, we can write

Yt = g(Y
∗
t ,λ

0), t ≥ 1.

What we shall call implied state backfitting applies to versions of the model defined by P
and the mapping above which are specific in two respects. First, according to the focus
of interest of the paper, we consider that the nuisance parameters are defined as a known
function of the parameters of interest, that is λ = λ (θ). Second, we assume that the state
variables have been defined such that the mapping g(·,λ) is one-to-one for any λ ∈ Γ.
Hence,

Yt = g(Y
∗
t ,λ

0)⇐⇒ Y ∗t = g
−1(Yt,λ0), t ≥ 1.

It appears that these two characteristics are shared by many structural econometric
models. A first example is provided by the option pricing literature. As argued by
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Renault (1997), latent state variables such as stochastic volatility, jumps or unobserved
short rates represent a convenient way to introduce pricing errors in arbitrage based
models. Typically, the known functions g(·, ·) and λ (·) are provided by the option pricing
formula. Another class of applications has been proposed recently by the econometrics of
game theoretical models. As stressed by Florens, Protopopescu and Richard (2001), the
observed actions of the agents are typically modeled as a functional transformation g of
unobserved variables (often referred to as signals or types). Moreover, due the equilibrium
form of the game, such transformations (strategies) depend on the distribution of the
unobservables.
As in the examples from the previous section, the nuisance parameters λ will be linked

to the ‘learning problem’: starting from an extremum estimation principle in the latent
world, one has to replace the latent value Y ∗t in the corresponding criterion function by
a guess g−1(Yt,λ) computed from the observation Yt for a given value of λ. However, the
key difference with respect to the previous examples is related to the nature of the loss
of statistical information. Until now this information loss when passing from the latent
‘statistic’ Y ∗t to the observable one Yt was due, essentially, to a genuine missing data
problem, that is the mapping between Y ∗t and Yt was not one-to-one. This time the value
Y ∗t is not really ‘missing’ since it is uniquely defined from the observations as g

−1(Yt,λ0).
The problem is, of course, that this formula depends upon unknown parameters and
therefore the informational contents of the latent and observable worlds are different by
nature.
For illustration purposes, let us compute the statistical information associated with a

set of moment restrictions. Consider H moment conditions in the latent world defined by
the H−dimensional function ψ (Y ∗t , θ), θ ∈ Θ ⊂ Rp, that is

E0 [ψ (Y ∗t , θ)] = 0⇐⇒ θ = θ0 (3.1)

with

RankE0
·
∂ψ

∂θ0
(Y ∗t , θ)

¯̄̄̄
θ=θ0

¸
= p.

If one wants to exploit these moment restrictions to perform inference about θ0 from the
observations Yt, t ≥ 1, one has to define implied states Y ∗t = g−1(Yt,λ

¡
θ0
¢
) and consider

moment conditions of the form

E0 [ϕ (Yt, θ,λ (θ))] = 0, (3.2)

where
ϕ (Yt, θ,λ (θ)) = ψ

¡
g−1(Yt,λ (θ)); θ

¢
.

Pan (2002) termed implied states GMM (IS-GMM) the method of moments estimation
of θ deduced from (3.2). The same approach was previously considered by Florens, Pro-
topopescu and Richard (2001).
First of all, it is important to realize that the identification condition (3.1) does not

imply that θ0 can be automatically recovered from the moment conditions (3.2). To
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emphasize this, one can even imagine extreme examples as below where the probability
distribution of the function ϕ (Yt; θ,λ (θ)) no longer depends on θ. In other words, it may
happen that there is complete information loss when passing from the latent world to the
observable one.

Example 1 (An impossibility example for implied state GMM )
Let

ψ (Y ∗t ; θ) = Y
∗
t − θ = g(Y ∗t ,λ (θ)).

Then
ϕ (Yt; θ,λ (θ)) = g

−1(Yt,λ (θ))− θ = (Yt + θ)− θ = Yt
and

E0 [ϕ (Yt; θ,λ (θ))] = E
0 [Yt] = 0,

for any value of θ.

Another closely related aspect to observe is that there is no general relationship be-
tween the informational contents of the two worlds. In the case of the moment conditions
(3.1) the corresponding semiparametric efficiency bound is the inverse of the matrix

I∗
¡
θ0
¢
= E0

·
∂ψ0

∂θ
(Y ∗t ; θ)

¯̄̄̄
θ=θ0

¸
Ω
¡
θ0
¢−1

E0
·
∂ψ

∂θ0
(Y ∗t ; θ)

¯̄̄̄
θ=θ0

¸
,

where

Ω
¡
θ0
¢
= lim

T→∞
V ar0

"
1√
T

TX
t=1

ψ
¡
Y ∗t ; θ

0
¢#
.

On the other hand, if implied state GMM can be performed, that is θ0 can be identified
from the equations (3.2), the associated semiparametric efficiency bound is the inverse of

I
¡
θ0
¢
= E0 [∂θϕ

0 (Yt; θ,λ (θ))|θ=θ0]Ω
¡
θ0
¢−1

E0 [∂θϕ (Yt; θ,λ (θ))|θ=θ0] , (3.3)

where

∂θϕ
0 = (∂θϕ)

0 =
∂ϕ0

∂θ
+
∂ϕ0

∂λ

∂λ0

∂θ
=
∂ψ0

∂θ
+
∂ϕ0

∂λ

∂λ0

∂θ
.

In view of the form of ∂θϕ, it is clear that there is no predetermined order between I
¡
θ0
¢

and I∗
¡
θ0
¢
. Moreover, one has to remember that the respective roles of the latent world

and the observable one could be swapped, since the mapping linking Yt to Y ∗t is one-to-one.
These ideas are easily supported by the following example.

Example 2 (About the information loss)
Let

ψ (Y ∗t ; θ) = Y
∗
t − θ, Y ∗t ∈ R, θ ∈ R,

and
g(Y ∗t ,λ (θ)) = Y

∗
t − λ (θ)
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with λ (·) some differentiable function. Then we have

ϕ
¡
Yt; θ,λ

¡
θ1
¢¢
= Yt + λ

¡
θ1
¢− θ,

I∗ (θ) = V ar0(Y ∗t )
−1

and
I (θ) = I∗ (θ) [λ0 (θ)− 1]2 ,

where λ0 denotes here the derivative of λ. It is clear that I∗ (θ) > I (θ) if and only if
0 < λ0 (θ) < 2.

To summarize, there is no universally valid argument to prefer the latent “data” to the
observable ones. Nevertheless, a deep motivation behind the data augmentation paradigm
in econometrics is that it allows for characterizations of the probability distributions that
are preferable, both in terms of interpretation and computation, to the ‘observable models’
conceived as direct descriptions of the DGP. This is the reason why, when a one-to-one
relationship between the two statistics exists, one will typically prefer to use this coming
and going vehicle for learning about the state variables Y ∗t and to base inference on this
learning. In the following, two classes of inference methodologies will illustrate this general
principle: generalized method of moments and maximum likelihood. First, we revisit the
implied state GMM as a methodology closely related to our latent backfitting and we
propose an alternative implied state backfitting estimator.

3.2 From IS-GMM to implied state backfitting for GMM

The latent moment restrictions (3.2) define the extremum estimation criterion

QT [θ,λ] = −
"
1

T

TX
t=1

ϕ (Yt; θ,λ)

#
WT

"
1

T

TX
t=1

ϕ (Yt; θ,λ)

#
.

For the sake of expositional simplicity, we will always consider hereafter that WT is a
consistent estimator of the weighting matrix Ω

¡
θ0
¢−1

, the optimal weighting matrix for
the case λ = λ0. Let bθ∗T = argmax

θ∈Θ
QT
£
θ,λ0

¤
define the oracle (infeasible) estimator of θ that would be obtained if latent variables were
observed. Its asymptotic variance is the inverse of the matrix

I∗
¡
θ0
¢
=
∂Q∞
∂θ∂θ0

£
θ,λ0

¤¯̄̄̄
θ=θ0

,

where
Q∞ [θ,λ] = −E0 [ϕ (Yt; θ,λ)]0Ω

¡
θ0
¢−1

E0 [ϕ (Yt; θ,λ)] . (3.4)
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The aforementioned guiding principle leads one to define, as Florens, Protopopescu
and Richard (2001) and Pan (2002) have already done, an implied states GMM estimator

bθIST = argmax
θ∈Θ

QT [θ,λ (θ)] .

Under standard regularity conditions, this estimator is consistent insofar as the mo-
ment conditions (3.2) do identify θ0. In other words, the non-adaptivity problem in its
form (2.5) is not an issue in the GMM setting.

The asymptotic variance of bθIST is given by the inverse of I
¡
θ0
¢
written in (3.3). We

argue that this estimator can be fruitfully interpreted as a particular application of the
general latent backfitting methodology.
As explained in subsection 2.1, a central piece of our inference approach is the function

θ [P 0, ·] defined here as
θ
£
P 0,λ

¤
= argmax

θ∈Θ
Q∞ [θ,λ]

with Q∞ [θ,λ] defined as in (3.4). We will maintain in this subsection the following
additional assumption, a strengthened version of the general Assumption 2.2 stating the
existence of θ [P 0, ·].

Assumption 3.1 For any λ ∈ Γ,
E0
£
ϕ
¡
Yt; θ̄

£
P 0, λ

¤
,λ
¢¤
= E0

£
ψ
¡
g−1(Yt,λ); θ̄

£
P 0, λ

¤¢¤
= 0.

Note that this assumption is innocuous in the case of a just identified GMM estimator
as, for instance, considered in Pan (2002). In view of the Assumption 3.1, the identification
condition imposed by the Assumption 2.3 means

E0
£
ψ
¡
g−1(Yt,λ

¡
θ1
¢
); θ1

¢¤
= 0 =⇒ θ1 = θ0.

This is nothing but the identification condition ensuring that the implied state GMM
estimator makes sense.
Since, for any θ1, we have by definition

E0
£
ϕ
¡
Yt; θ̄

£
P 0, λ

¡
θ1
¢¤
,λ
¡
θ1
¢¢¤

= 0,

assuming the needed regularity conditions, we can derive this identity with respect to θ1.
For θ1 = θ0 this yields

E0
·
∂ϕ

∂θ0
¡
Yt; θ

0,λ
¡
θ0
¢¢¸ ∂θ̄

∂θ10
£
P 0, λ

¡
θ0
¢¤
+ E0

·
∂ϕ

∂θ10
¡
Yt; θ

0,λ
¡
θ0
¢¢¸

= 0. (3.5)

This allows us to interpret the difference between the asymptotic variances I∗−1 and I−1

of the oracle GMM and the implied state GMM, respectively. Since, computed for θ = θ0,

E0 [∂θϕ] = E
0

·
∂ϕ

∂θ0
+
∂ϕ

∂θ10

¸
= E0

·
∂ϕ

∂θ0

¸µ
Ip − ∂θ̄

∂θ10

¶
,
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we have from (3.3)

I−1 =
µ
Ip − ∂θ̄

∂θ10

¶−1
I∗−1

Ã
Ip − ∂θ̄

0

∂θ1

!−1
. (3.6)

Note that in order to get the asymptotic distribution of the IS-GMM estimator, one
needs to assume Rank E0 [∂θϕ] = p, which implies that Ip − ∂θ̄/∂θ10 is a nonsingular
matrix. As already mentioned, this is akin to the unique fixed property of θ̄ [P 0, λ (·)] in
a neighborhood of θ0.
Remark that the interpretation of IS-GMM estimators through the latent backfitting

approach allows also for better understanding of the definition of some estimators of this
type proposed in the literature. Consider a set of H conditional moment restrictions that
are directly formulated in terms of latent variables:

E0
£
Ψc (Y ∗t , θ)

¯̄
Y ∗t−1

¤
= 0.

Thanks to the one-to-one relationship between Y ∗t and Yt, these restrictions are tan-
tamount to H conditional moment restrictions about observable variables:

E0 [ϕc (Yt, θ,λ(θ)) |Yt−1 ] = 0.

To perform efficient GMM estimation, one would like to use a set of optimal instru-
ments the computation of which involves the derivative of ϕc (Yt, θ,λ(θ)) with respect
to both occurrences of θ. However, as already noted by Duan (1994), “it will be bet-
ter to avoid the direct computation of the Jacobian for the inverse transformation”, a
natural idea suggested by the latent backfitting methodology is to compute the optimal
instruments corresponding to the oracle GMM conditions

E0
£
ϕc
¡
Yt, θ,λ(θ

0)
¢ |Yt−1 ¤ = 0

and use them as “almost optimal” instruments for the original moment restrictions

E0 [ϕc (Yt, θ,λ(θ)) |Yt−1 ] = 0.

Pan (2002) acknowledges this tension by noting that “the efficiency loss of this “optimal-
instrument” scheme is limited in that (. . . ) we sacrifice efficiency by ignoring the de-
pendence of λ (θ) on θ”. However, since the above examples 1 and 2 have shown that
informational and related efficiency issues may be highly sensitive to the dependence of
λ (θ) on θ, it is more cautious to keep in mind the two ingredients of the accuracy of any
implied states estimator. As shown in (3.6) , the contracting feature of the mapping θ̄
may matter even more than the semiparametric efficiency bound of the latent model. In
other words, the so-called “limited optimality” that is alleged by reference to the optimal
instruments computed from the latent moment conditions cannot be the only criterion
to assess the accuracy of the implied states estimator. It is worth interpreting it as the
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limit of a backfitting algorithm and to assess its accuracy through the strength of the
contraction at play in this algorithm.

In the context of Assumption 3.1, the IS-GMM estimator bθIST can be interpreted as
the unique fixed point of the finite sample analogue of θ̄ [P 0, λ (·)] , that is

θ̄T
¡
λ
¡
θ1
¢¢
= argmax

θ
QT
£
θ,λ

¡
θ1
¢¤
. (3.7)

Starting from this interpretation, we propose a competitor GMM estimator provided by
the general latent backfitting methodology. Consider ϕ (Yt; θ,λ (θ)) aRH−valued function
defining moment restrictions as in (3.2) and let Q∞ [θ,λ (θ)] be as in (3.4). Moreover,
QT [θ,λ (θ)] denotes its empirical version of the GMM criterion. The implied-state GMM
backfitting estimator we propose is the estimator θp(T )+1 obtained from a finite number
of iterations

θ(p+1) = argmax QT

h
θ,λ(θ(p))

i
= θ̄T

³
λ
³
θ(p)
´´
, p = 1, 2, ...p(T ).

Typically, if the function θ̄T (λ (·)) admits a unique fixed point, the IS-GMM estimatorbθIST coincides with the limit of the iterations (p(T ) =∞).
We argue that our estimator has some interesting features. It can be easily deduced

from (3.6) and the general asymptotic results below that it has the same asymptotic
variance as the IS-GMM estimator. The IS-GMM estimator is computed by optimization
from a criterion θ → QT [θ,λ(θ)] which may be very flat. Our estimator can be computed
by iteration from objective functions of the form θ→ QT

£
θ,λ(θ1)

¤
, with θ1 fixed, which

can be much easier to work with. Moreover, we only maintain the contraction mapping
property for the limit function θ̄ [P0,λ (·)].
The basic assumption for latent backfitting estimation

°°∂θ̄/∂θ10 £P 0, λ ¡θ0¢¤°° < 1 can
be analyzed through the identity (3.5) which fully characterizes ∂θ̄/∂θ10 since, in general,
it is assumed that the matrix E0

£
∂ϕ/∂θ0(Yt, θ0,λ0)

¤
is of full column-rank. Our basic

assumption means, intuitively, that the moment restrictions are more informative about
θ through its first occurrence than through the second one.
Before closing this subsection let us point out that the interpretation of the IS-GMM

and the definition of our implied state backfitting estimator is valid for any oracle moment
estimator based on oracle moment conditions

E0
£
ϕ
¡
Yt; θ,λ

¡
θ0
¢¢¤

= 0

considered as restrictions about θ unknown (for λ
¡
θ0
¢
given). These restrictions are not

necessarily underpinned by a one-to-one mapping related to a latent data set.

3.3 Implied state backfitting for latent likelihood

Recall that {Y ∗t } ⊂ RJ denotes a sequence of homogeneous Markovian of order one
random vectors. We specify a p−dimensional parametric model for the probability distri-

29



bution of the process {Y ∗t } through the family of transition densities
M∗ = {f∗(· | · ; θ), θ ∈ Θ ⊂ Rp}

defined with respect to the Lebesgue measure on RJ . The model M∗ is such that, for
any θ ∈ Θ, the transition f ∗(· | · ; θ) allows for a unique stationary initial distribution.
Moreover, we assume that the model we consider is correctly specified, that is for some
θ0 ∈ Θ

TY
t=1

f ∗(y∗t | y∗t−1 ; θ0)

is a correct description in terms of densities of the DGP providing the latent data Y ∗t ,
1 ≤ t ≤ T (given that Y ∗0 = y∗0).
The infeasible maximum likelihood estimator in the latent world, denoted by bθ∗T , is:

bθ∗T = argmax
θ∈Θ

TX
t=1

l∗(Y ∗t | Y ∗t−1 ; θ)

where l∗(· | · ; θ) = log f ∗(· | · ; θ), θ ∈ Θ.
As already noted, the particularity of the implied state framework lies in the obser-

vation scheme. The observed data Yt, 1 ≤ t ≤ T are given by a known one-to-one trans-
formation Yt = g(Y ∗t ,λ(θ

0)) depending on the true unknown parameter. The maximum
likelihood procedure in the observable world would maximize the criterion

Q̃T [θ,λ(θ)] =
1

T

TX
t=1

l∗
¡
g−1(Yt,λ(θ)) | g−1(Yt−1,λ(θ)) ; θ

¢
+
1

T

TX
t=1

log
¯̄
Jyg

−1(Yt,λ(θ))
¯̄
.

(3.8)
We denote by |Jyg−1(·,λ(θ))| the absolute value of the Jacobian with respect to y of the
one-to-one mapping y → g−1(y,λ(θ)). We have again in mind, following Duan (1994), the
case where this criterion is very complicated. This happens for instance in stock option
pricing models with stochastic volatility and jump components in the stock dynamics.
In such a framework, Y ∗t represents a vector of unobservable state variables while Yt is
a vector of observed option prices, at time t. The relationship g(·,λ(θ0)) is provided by
arbitrage-based derivative asset pricing à la Harrison and Kreps (1979). The observable
model behind (3.8) was called by Christensen (1992) “the empirical martingale model”.
Renault and Touzi (1996) focused on the at-the-money (ATM) option case. They consid-
ered {Y ∗t } as being the (latent) volatility process of the underlying asset and {Yt} a time
series of prices of ATM European options (with fixed maturity period) written on this
underlying asset. Moreover, they used the Hull and White (1987) option pricing formula
for the passage g(·,λ(θ)) between the two worlds, latent and observable. Typically, the
dynamics of the latent process {Y ∗t } considered by Renault and Touzi can be described by
a simple diffusion process (for instance the exponential of an Ornstein-Uhlenbeck process)
in such a way that the latent log-likelihood is well behaved. Meanwhile, the observable
log-likelihood is cumbersome to maximize, since it involves highly nonlinear functions of
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the unknown parameters. Facing such issues, Renault and Touzi (1996) (see also Renault
(1997)) proposed an iterative estimation procedure which represented the starting point
of this paper.
In this framework, we define

QT [θ,λ(θ
1)] =

1

T

TX
t=1

l∗
¡
g−1(Yt,λ(θ1)) | g−1(Yt−1,λ(θ1)) ; θ

¢
,

the criterion to be used for defining the ML based implied state backfitting estimation.
Its population counterpart is

Q∞[θ,λ(θ1)] = E0
£
l∗
¡
g−1(Y1,λ(θ1)) | g−1(Y0,λ(θ1)) ; θ

¢¤
,

where the expectation is considered with respect to the stationary distribution of (Y1, Y0),
characterized by θ0 and

θ̄
£
P 0,λ(θ1)

¤
= argmax

θ∈Θ
E0
£
l∗
¡
g−1(Y1,λ(θ1)) | g−1(Y0,λ(θ1)) ; θ

¢¤
.

Using the general arguments presented above in a GMM framework, we remark that the
implied state backfitting estimation procedure could not be immediately justified by a
necessary richer information about θ0 contained in the latent variables. However, we
have in mind some structural models written in a simple and informative way in what
concerns the structural parameters θ. Meanwhile, the observable likelihood is clearly more
complicated, even intractable, and intuitively less informative. We can actually interpret
our estimator as

θ̄
£
P 0,λ(θ1)

¤
=argmax

θ∈Θ
E0
£
l∗
¡
g−1(Y1,λ(θ1)) | g−1(Y0,λ(θ1)) ; θ

¢
+ log

¯̄
Jyg

−1(Y1,λ(θ1))
¯̄¤
.

for fixed θ1 while observable maximum likelihood would consist in writing θ1 = θ and
maximizing simultaneously with respect to the four occurrences of θ.
As in the examples of the previous section, let us investigate the relationship between

the unique fixed point property for the function θ̄ [P 0,λ(·)] and the identification in the
observable model

M =
©
f ∗
¡
g−1(·, θ) | g−1(·,λ(θ)) ; θ¢ ¯̄Jyg−1(·,λ(θ))¯̄ , θ ∈ Θª .

The example below shows that, in general, the implied state latent backfitting identifi-
cation condition is not necessary for ensuring the identification in the observable model
(similar to the regression examples of section 2).

Example 3
Consider a family of exponential probability density functions

f ∗(y∗t ; θ) = θ exp(−θy∗t ) 1(0,∞)(y∗t ),
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with θ ∈ Θ = [1/2, 3/2]. Let {Y ∗t } be a sequence of i.i.d. random variables and assume
that the distribution of Y ∗1 is given by f

∗(·; θ0), for some θ0 ∈ Θ. The observable variables
are obtained via the transformation

Yt = g(Y
∗
t ,λ(θ

0)) = Y ∗t + θ
0.

In this case

E0
£
l∗
¡
g−1(Y1,λ(θ1)); θ

¢¤
= log θ − θ

µ
1

θ0
+ θ0 − θ1

¶
,

and

θ̄
£
P 0,λ(θ1)

¤
=

µ
1

θ0
+ θ0 − θ1

¶−1
.

As θ0 and 1/θ0 are both fixed points for θ̄ [P 0,λ(·)], Assumption 2.2 is violated, provided
that θ0 6= 1. However, θ0 is clearly identifiable in the observable world since the support
of the variables {Yt} is [θ0,∞).

The previous example shows that the estimation strategy we propose may not be
applicable, whereas the ML estimation based on the full criterion (3.8) could, theoretically,
provide consistent estimation. However, we argue that there exists an important class
of structural econometric models where the ML estimator based on the full criterion is
practically not computable. Meanwhile, the implied state backfitting we considered above
applies. For example, Renault and Touzi (1996) reported simulations results showing that
the unique fixed point property of θ̄ [P 0,λ(·)] should be satisfied in the Hull and White
(1987) option pricing model.

4 Iterative extremum estimation

In this section we present a general iterative latent backfitting estimator and we study
its asymptotic properties (see also Patilea and Renault (1997) and Renault (1997)). For
this purpose, recall that θT

¡
λ
¡
θ1
¢¢
, T ≥ 1 is defined as the sample counterpart of

θ
£
P 0,λ

¡
θ1
¢¤
, that is the maximizer of the criterion QT

£·,λ ¡θ1¢¤ introduced in section
2.1 (see (3.7)). Note that θT (λ(θ

0)) is nothing else than the oracle extremum (argmax)
estimator defined through the simple criterion QT

£
θ,λ(θ0)

¤
.

Given the criterion QT [·,λ (·)] , T ≥ 1 and a sequence {p(T )} of positive integers such
that p(T )→∞, the corresponding iterative latent backfitting estimator we consider is

bθT = θ(p(T )+1)T , T ≥ 1, (4.1)

where, for any p ≥ 1

θ
(p+1)
T = θT

³
λ(θ

(p)
T )
´

(4.2)

and θ(1)T ∈ Θ is some starting value.
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The iterative latent backfitting estimator represents an extension of the estimator
introduced by Renault and Touzi (1996) in the case of a log-likelihood type criterion and
p(T ) ≡ ∞.

4.1 Consistency

To proving consistency, first we have to ensure the uniform convergence of θT
¡
λ
¡
θ1
¢¢

towards θ
£
P 0,λ

¡
θ1
¢¤
. For this we impose the following uniform convergence assumption

on QT
£
θ,λ

¡
θ1
¢¤
.

Assumption 4.1 If QT [ ·, λ (·)] , T ≥ 1 and Q∞ [ ·, λ (·)] are defined as in section 2.1,
then

sup
θ,θ1∈Θ

¯̄
QT
£
θ,λ

¡
θ1
¢¤−Q∞ £ θ, λ ¡θ1¢¤¯̄ p−→ 0.

Such a uniform convergence property can be obtained under quite general conditions
on the parameter space Θ and the data generating process (see, e.g., Davidson (1994),
Andrews (1994b), van de Geer (2000)). The convergence results of this section rely on
the following proposition which we state for a general parameter space. For the sake of
expositional simplicity, here and in the rest of the paper, we assume there is no problem
of measurability with the quantities we manipulate.

Proposition 4.2 Assume that Θ is a compact subset of a normed space
³eΘ, k·k´. More-

over, θ [P 0,λ (·)] : Θ −→ Θ is continuous. If Assumption 2.1, 2.2 i) and 4.1 hold, then

sup
θ1∈Θ

°°θT ¡λ ¡θ1¢¢− θ £P 0,λ ¡θ1¢¤°° p−→ 0.

Following Patilea and Renault (1997) and Renault (1997) (see also Dominitz and
Sherman (2001)) we impose a contracting assumption on the θ function, a reinforcement
of the unique fixed point condition stated in Assumption 2.3.

Assumption 4.3 The parameter set Θ is a subset of a normed space
³eΘ, k·k´ . The

mapping
θ
£
P 0,λ (·)¤ : Θ −→ Θ

is contracting on Θ, that is there exists a constant c ∈ [0, 1) such that, for any θ1, θ2 ∈ Θ°°θ £P 0,λ ¡θ1¢¤− θ £P 0,λ ¡θ2¢¤°° ≤ c °°θ1 − θ2°° .
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Note that the basic identification condition θ
£
P 0,λ

¡
θ0
¢¤
= θ0 together with the con-

tracting property ensures the unique fixed point property for θ0. We are now able to state
the weak (in probability) consistency result for the iterative estimator we propose.

Proposition 4.4 Assume that Θ is a compact subset of a normed space
³eΘ, k·k´. If

Assumption 2.1, 2.2 i), 4.1 and 4.3 hold, then bθT , T ≥ 1 defined in (4.1)-(4.2) with
P (T )→∞ is weakly consistent.

Let us discuss the particular case of affine mappings θT (λ (·)) , T ≥ 1 and θ̄ [P 0,λ(·)] . For
simplicity, consider the case of Euclidean parameters. If θT

¡
λ
¡
θ1
¢¢
= BTθ

1 + aT , then
the fixed points of this function verify (Ip −BT ) θ = aT . There exists only one fixed
point if Ip − BT is invertible. For a given sample, the iterations in (4.2) converge to
(Ip −BT )−1 aT if and only if BT is convergent. If θ̄

£
P 0,λ(θ1)

¤
= Bθ1 + a, the unique

fixed point property is tantamount to Ip −B invertible and θ0 = (Ip −B)−1 a. Note that
the uniform convergence of θT (λ (·)) to θ̄ [P 0,λ(·)] means here BT → B and aT → a. In
this particular case, the estimator bθT can be defined as a fixed point of θT (λ (·)) that is
with p(T ) = ∞ for given T . It converges to θ0 in probability provided that Assumption
4.1 holds and Ip−B is invertible. For an example where θT (λ (·)) , T ≥ 1 and θ̄ [P 0,λ(·)]
are affine see the classical backfitting in partially parametric models (see section 2.2). We
will discuss in the next subsection the gain in generality in non-linear contexts resulting
from the possibility of choosing p(T ) finite for any given sample size T .

4.2 Asymptotic distribution

In in this section we derive the limit distribution of a latent backfitting estimator as
defined in (4.1). Before stating our results let us introduce some additional hypotheses
(see, e.g., Newey and McFadden (1994), Wooldridge (1994)). The set Θ is assumed to be
a subset of some Euclidean space Rp, p ≥ 1 and θ0 is an interior point of Θ.

Assumption 4.5 If θ0 is the true unknown value of the parameters, then

√
T
∂QT
∂θ

£
θ,λ(θ0)

¤¯̄̄̄
θ=θ0

d−→ Np
¡
0, B(θ0)

¢
,

with

B(θ0) = lim
T→∞

V ar

µ√
T
∂QT
∂θ

£
θ,λ(θ0)

¤¯̄̄̄
θ=θ0

¶
which is supposed to be positive definite.
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The asymptotic normality of the score of the simplified criterion QT [·,λ(θ0)] is an
usual assumption for extremum estimators. Another usual assumption is the uniform
convergence, in probability, of the Hessian matrix of the criterion to be maximized. In
our framework this corresponds to the assumption below.

Assumption 4.6 For any θ1 ∈ Θ, QT [·,λ(θ1)], T ≥ 1 and Q∞[·,λ(θ1)] are twice contin-
uously differentiable. For any θ1, θ ∈ Θ, define the matrix

Σ(θ, θ1) = −∂
2Q∞
∂θ∂θ0

£
θ,λ(θ1)

¤
and assume that Σ(·, ·) is continuous and Σ(θ0, θ0) is positive definite. Moreover,

sup
θ, θ1∈Θ

°°°°∂2QT∂θ∂θ0
£
θ,λ(θ1)

¤
+ Σ(θ, θ1)

°°°° −→ 0 (4.3)

in probability when T →∞.

Note that −Σ(θ0, θ0) is nothing else than the Hessian matrix, considered for θ = θ0,
of the simple limit criterion Q∞[·,λ(θ0)]. This matrix is usually assumed to be negative
definite. The next assumption is more specific to nuisance parameters framework.

Assumption 4.7 The functions Q∞[·,λ(·)] and QT [·,λ(·)], T ≥ 1 are twice continuously
differentiable. Define the matrices

H(θ1) =
∂2Q∞
∂θ∂θ1

0
£
θ0,λ(θ1)

¤
, HT (θ

1) =
∂2QT

∂θ∂θ1
0
£
θ0,λ(θ1)

¤
, T ≥ 1

θ1 ∈ Θ. Then,
sup
θ1∈Θ

°°HT (θ1)−H(θ1)°° −→ 0,

in probability, as T →∞.

The respective “orders of magnitude” of the two matrices H(θ0) and Σ
¡
θ0, θ0

¢
deter-

mine to what extent the non-adaptivity problem matters, or equivalently, the strength
of the contraction feature of the mapping θ̄ [P 0,λ(·)]. To see this, let us differentiate the
identity:

∂Q∞
∂θ

£
θ,λ(θ1)

¤¯̄̄̄
θ=θ[P 0,λ(θ1)]

= 0, θ1 ∈ Θ,

and deduce:
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∂θ

∂θ10
£
P 0,λ(θ0)

¤
= Σ(θ0, θ0)−1H(θ0) (4.4)

= −
·
∂2Q∞
∂θ∂θ0

£
θ0,λ(θ0)

¤¸−1 ∂2Q∞
∂θ∂λ0

£
θ0,λ0

¤ ∂λ
∂θ10

¡
θ0
¢
.

In other words, our maintained contraction mapping assumption 4.3, which is locally
equivalent to the condition: °°°° ∂θ∂θ10 £P 0,λ(θ0)¤

°°°° < 1 (4.5)

puts an upper bound on the non-adaptivity problem we can be faced with. It is well known
(see, e.g. Wooldridge (1994)) that the case where the cross-derivative matrix ∂2Q∞/∂θ∂λ0

vanishes at (θ0,λ0) is precisely the case where an extremum estimatoreθT = argmax
θ∈Θ

QT
h
θ, eλTi

has an asymptotic probability distribution which does not depend upon the choice of a√
T−consistent estimator eλT of λ0. We are now saying that, perhaps the cross-derivative

matrix is not zero but it is “sufficiently small” to be sure that:¯̄̄¯̄̄
Σ
¡
θ0, θ0

¢−1
H
¡
θ0
¢¯̄̄¯̄̄
< 1 (4.6)

In some sense, this means that the occurrence of θ in the latent model (the transition
equation of the state variables) carries more information about the unknown parameters
of interest than their occurrence in the measurement equation. This is conformable to
the spirit of standard asset pricing models and auction models as well.
Of course, smaller is this matrix, more contracting is the mapping θ̄ [P 0,λ (·)], smaller

is the efficiency loss of our backfitting estimator with respect to the oracle estimator. This
is the main message of proposition 4.8 below:

Proposition 4.8 Assume that θ0, the true unknown value of the parameters, is an inte-
rior point of Θ ⊂ Rp. Consider that Assumptions 2.1, 2.2 i), 4.1, and 4.5 to 4.7 hold.
Moreover, suppose that θ [P 0,λ(·)] is contracting on Θ. If, in addition, the sequence p(T ),
T ≥ 1, considered in (4.1) is such that

√
T
³bθT − θ(p(T ))T

´
=
√
T
³
θ
(p(T )+1)
T − θp(T )T

´
−→ 0, (4.7)

in probability, then bθT is asymptotically normal with asymptotic variance matrix
V (θ0) = A(θ0)−1Σ(θ0, θ0)−1B(θ0)Σ(θ0, θ0)−1A(θ0)0−1, (4.8)

where

A(θ0) = Ip − ∂θ

∂θ10
£
P 0,λ

¡
θ0
¢¤
.
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Proposition 4.8 extends to a general framework a corresponding result of Renault
and Touzi (1996) on maximum likelihood type estimators (see also Renault (1997) and
Dominitz and Sherman (2001) for similar results). Now, let us comment this result and
the assumptions used to obtain it.

Remark 1 (about the asymptotic variance) The asymptotic variance V (θ0) is closely
related to the standard asymptotic variance

W (θ0) = Σ(θ0, θ0)−1B(θ0)Σ(θ0, θ0)−1,

of the hypothetical extremum estimator associated to the criterion QT
£·,λ(θ0)¤. Typi-

cally, we expect that V (θ0) will be larger thanW (θ0) due to the factor [A(θ0)]−1, and one
should not hope for any general result in this respect since we have shown in section 3
that the latent “data” could even be less informative than the observable ones. However,
the superiority of the latent data is implicit in our backfitting strategy, like in any data
augmentation approach. It was clearly the case in our two examples of standard and
latent backfitting considered in section 2. For instance, the matrix ∂θ/∂θ10

£
P 0,λ(θ0)

¤
could be symmetric and positive. Its eigenvalues ρj, j = 1, · · · p are smaller than one.
Then, in a orthonormal basis of eigenvectors, [A(θ0)]−1 is a diagonal matrix with diagonal
coefficients: £

1− ρj
¤−1

> 1+ ρj > 1.

In other words, the backfitting efficiency loss (with respect to the infeasible oracle
estimator), as measured by the eigenvalues ρj, is inversely related to the strength of the
contraction.

Remark 2 (about the EM algorithm)
Proposition 4.8 can be interpreted as a generalization of a result stated by Nielsen

(2000) about simulated EM algorithm. Nielsen (2000) nicely explains that when the E-step
is performed with only one random draw that is reused for each iteration, the simulated
EM algorithm can also be interpreted as looking for a fixed point by the method of
successive substitution. In this case, the asymptotic variance matrix of the SEM estimator
(Nielsen (2000)), theorem 2 p. 273) can be written:£

Ip − F
¡
θ0
¢¤−1

B
¡
θ0
¢−1 £

Ip − F
¡
θ0
¢¤−1

Note that B
¡
θ0
¢−1

= Σ
¡
θ0, θ0

¢
is the Fisher information matrix in the latent model

and F
¡
θ0
¢
is the so-called “fraction of missing information”.

F
¡
θ0
¢
=
£
B
¡
θ0
¢−K ¡θ0¢¤B ¡θ0¢−1

where K(θ0) is the Fisher information matrix in the observable model.
In other words, F

¡
θ0
¢
corresponds to ∂θ̄/∂θ01

£
P 0,λ

¡
θ0
¢¤
as expressed by (4.4).
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Remark 3 (more on non-adaptivity)
Now, let eθT denote the oracle, asymptotically normal estimator of θ0 obtained by

maximizing θ → QT
£
θ,λ(θ0)

¤
. Consider the infeasible estimator

beθT = argmax
θ
QT
h
θ,λ(eθT )i

Then, under suitable regularity conditions, we have

0 =
∂QT
∂θ

·beθT ,λ(eθT )¸
≈ ∂QT

∂θ

heθT ,λ(θ0)i+ ∂2QT
∂θ∂θ0

£
θ0,λ(θ0)

¤µbeθT − eθT¶
+
∂2QT

∂θ∂θ10
£
θ0,λ(θ0)

¤ ³eθT − θ0´
=

∂2QT
∂θ∂θ0

£
θ0,λ(θ0)

¤µbeθT − θ0¶
−∂

2QT
∂θ∂θ0

£
θ0,λ(θ0)

¤µ
Ip +

∂θ

∂θ10
£
P 0,λ

¡
θ1
¢¤¶³eθT − θ0´ ,

and we obtain that
√
T (
beθT − θ0) is asymptotically normal with asymptotic varianceµ

Ip +
∂θ

∂θ10
£
P 0,λ

¡
θ1
¢¤¶

Σ(θ0, θ0)−1B(θ0)Σ(θ0, θ0)−1
Ã
Ip +

∂θ
0

∂θ1
£
P 0,λ

¡
θ1
¢¤!

.

As already observed in Remark 1, at least if the matrix ∂θ/∂θ10
£
P 0,λ(θ0)

¤
is symmetric

and positive, we have:

Ip ¿ Ip +
∂θ

∂θ10
£
P 0,λ(θ0)

¤¿ ·
Ip − ∂θ

∂θ10
£
P 0,λ(θ0)

¤¸−1
While the factor Ip is obtained for the oracle estimator and [Ip−∂θ/∂θ10

£
P 0,λ(θ0)

¤
]−1

corresponds to our latent backfitting estimator, the infeasible estimator beθT is in between
with the factor Ip + ∂θ/∂θ10

£
P 0,λ(θ0)

¤
. This is typical of non-adaptivity. Even if we

have at our disposal the best estimator of the nuisance parameters λ0 = λ
¡
θ0
¢
, we would

get an estimator less accurate than the oracle estimator. Of course, it would be more
accurate than our latent backfitting estimator. In some respect, the backfitting estimator
cumulates two sources of efficiency loss, both inversely related to the strength of the
contraction.

Remark 4 (the contracting property for finite samples) Renault and Touzi (1996)
proved the asymptotic normality of the latent backfitting in the particular case of MLE
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under a stronger hypothesis than (4.8). More precisely, they assumed that, except for a
negligeable set, the norm

°°∂θT/∂θ1 ¡λ(θ0)¢°° becomes smaller than a constant c ∈ [0, 1)
when T → ∞. Then, with probability tending to one as T → ∞, the function θT (λ(·))
has a unique fixed point and the iterative estimator is defined by bθT = θ(∞)T . Dominitz and
Sherman (2001)) weakened Renault and Touzi’s assumption requiring only that θT (λ(·))
is a uniform contracting mapping, which means there exists c ∈ [0, 1) independent of T
and the sample such that, with probability tending to one as T →∞,°°θT (λ(θ0))− θT (λ(θ00))°° ≤ c kθ0 − θ00k , θ0, θ00 ∈ Θ.
Dominitz and Sherman also observed that it suffices to define the iterative estimator using
only a finite number of iterations provided that this number is greater than a power of T.
Indeed, we can write

√
T
³bθT − θ(p(T ))T

´
≤
√
T c
³
θ
(p(T ))
T − θ(p(T )−1)T

´
... ≤

√
Tcp(T )

³
θ
(1)
T − θ(0)T

´
,

given that θT (λ(·)) is contracting, and thus
√
Tcp(T ) → 0 if p(T ) ≥ T δ, δ > 0. This shows

that our Condition (4.8) is implied by the uniform contracting mapping condition for
θT (λ(·)). Even if in the examples the uniform contracting property may appear as more
convenient to check, the condition (4.8) provides a more transparent rule for the choice
of the sequence {p(T )} in practice.
A general additional condition which implies the uniform contracting mapping condi-

tion for θT (λ(·)) is

sup
θ, θ1∈Θ

°°°° ∂2QT∂θ∂θ10
£
θ,λ(θ1)

¤− ∂2Q∞
∂θ∂θ10

£
θ,λ(θ1)

¤°°°° −→ 0,

in probability as T → ∞, which represents a more stringent version of Assumption 4.7.
A quick way to see that this stronger uniform convergence condition implies the uniform
contracting mapping condition for θT (λ(·)) is to consider the identity

∂QT
∂θ

£
θ,λ(θ1)

¤¯̄̄̄
θ=θT (λ(θ

1))

= 0, θ1 ∈ Θ,

and to differentiate it with respect to θ1. This yields

∂

∂θ10
θT (λ(θ

1)) = −
·
∂2QT
∂θ∂θ0

£
θT (λ(θ

1)),λ(θ1)
¤¸−1 ∂2QT

∂θ∂θ10
£
θT (λ(θ

1)),λ(θ1)
¤

and from the uniform convergence in probability of the second-order derivatives ∂2QT/∂θ∂θ
0

and ∂2QT/∂θ∂θ
10 we deduce that°°°° ∂

∂θ10
θT (λ(θ

1))

°°°°− °°°° ∂θ∂θ10 £P 0,λ(θ1)¤
°°°° = oP (1),

uniformly in θ1.
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5 Robbins-Monro type estimators
Now, we focus on the case where the maximization problem characterizing the true values
of the population parameters can be solved through the first order conditions. For this
purpose, let us assume that the sample based criterion QT [θ,λ(θ

1)] defined in section 2.1
is under the form

QT [θ,λ(θ
1)] =

1

T

TX
t=1

qt(θ,λ(θ
1)), (θ, θ1) ∈ Θ×Θ,

with qt(θ,λ(θ
1)) = q(θ,λ(θ1);Yt, Xt). Moreover, denote

M(θ1) =
∂Q∞
∂θ

£
θ,λ(θ1)

¤¯̄̄̄
θ=θ1

. (5.1)

Assuming the necessary regularity, let us restate the latent backfitting identification con-
dition (see Assumption 2.3) in terms of first order conditions.

Assumption 5.1 For any θ1 ∈ Θ, θ £P 0,λ(θ1)¤ is the unique solution of the equation
∂Q∞
∂θ

£
θ,λ(θ1)

¤
= 0.

Moreover, if θ0 is the true unknown value of the parameter, then

M(θ1) = 0 =⇒ θ1 = θ0.

The previous assumption states that θ0 is the unique solution of the just-identified
moment problem defined by the function M(·). In this section we estimate this solution
in a recursive way using stochastic approximation or Robbins-Monro procedures. For
a description and the properties of such procedures see Robbins and Monro (1951) and,
amongst others, Ljung (1977), Kushner and Clark (1978), Kuan andWhite (1994a, b) and
Kushner and Yin (1997). For our purposes, a Robbins-Monro (RM hereafter) procedure
could be presented as follows: consider a population problem M(θ) = 0, defined by some
M : Θ→ Θ and having a unique solution θ0. The set Θ could be a subset of some Hilbert
space, or for simplicity, Θ ⊂ Rp. Define finite sample counterparts of M(·) as

Mt(θ) =M(θ) + Ut(θ), t ≥ 1,
with {Ut(θ)} satisfying some technical conditions. Afterwards, for a sample size T ≥ 1
and starting from some initial value θ1, define an estimator for θ

0 as being the value θT+1
obtained from the recursion

θt+1 = θt + atMt(θt), 1 ≤ t ≤ T, (5.2)
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where {at} is a sequence of positive real numbers decreasing to zero. Basically at should
tend to zero as fast as t−α for some α ∈ (1/2, 1]. For the purposes of this paper at = c t−1,
with c > 0 some scaling factor. This scaling factor does not influence the consistency
results but it might be quite important for ensuring the asymptotic normality assumptions.
The (random) function Mt(·) and the scalar at can be interpreted as a measurement of
M(·) at time t (or ‘learning update function’) and a ‘learning rate’, respectively. Basically,
the technical conditions required for {Ut(θ)} ensure, in general, that the averaged ‘errors’
Ut(θt), t ≥ 1 vanish almost surely, more precisely aT

PT
t=1 Ut(θt)→ 0, a.s.

The convergence results for RM procedures are commonly obtained via the ordinary
differential equation (ODE) method proposed by Ljung (1977). The idea of Ljung was to
show that the sequence {θt} defined in (5.2) asymptotically follow a trajectory (solution)
t→ θ (t) of a deterministic ODE

dθ

dt
(t) =M(θ(t))

associated with the population problemM(θ) = 0. If the ODE satisfies a suitable stability
condition, the trajectories of this ODE converge to θ0 (as t→∞) and thus the consistency
of the recursive estimates is ensured. Basically, the required stability condition is ensured
locally if M(·) is a differentiable function and the matrix ∂M/∂θ0(θ0) is negative stable,
that is if all eigenvalues of this matrix have (strictly) negative real parts (see, e.g., Kuan
and White (1994a), page 40, Horn and Johnson (1991), page 90, or Rouche and Mawhin
(1980), ch. 1). We recall that the Lyapunov theorem (see, e.g., Horn and Johnson (1991),
page 96) tells that a square matrix A, with real elements, is positive stable, i.e., −A is
negative stable, if and only if there exists a positive definite G such that GA + A0G is
positive definite.
In subsection 5.1 we introduce a recursive latent backfitting procedure for which we

prove consistency. The asymptotic normality of this procedure is obtained in subsection
5.2. We will also show that our recursive latent backfitting estimator is, in general,
less efficient than the iterative estimator studied in the previous section. However, the
recursive estimation involve much less computer resources and it may be particularly
appealing for estimating parameters in nonlinear models when large data sets are available.

5.1 Recursive latent backfitting: consistency

Let us investigate how the RMmethodology applies to the population problemM(θ1) = 0
with M(·) defined in (5.1). Its unique solution θ0 is assumed to belong to the interior of
Θ. First, we check the negative stable condition. From (4.4), we derive

∂M

∂θ10
(θ0) =

∂2Q∞
∂θ∂θ0

£
θ0,λ(θ0)

¤
+
∂2Q∞
∂θ∂θ10

£
θ0,λ(θ0)

¤
(5.3)

=
∂2Q∞
∂θ∂θ0

£
θ0,λ(θ0)

¤µ
Ip − ∂θ

∂θ1
0
£
P 0,λ(θ1)

¤¶
.
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As previously mentioned , a typical assumption for argmax estimation with limit criterion
θ → Q∞

£
θ,λ(θ0)

¤
is that its Hessian matrix is negative definite. Given this property, the

condition °°°° ∂θ∂θ10 £P 0,λ(θ0)¤
°°°° < 1, (5.4)

guarantees the negative stable condition for ∂M/∂θ10(θ0) (and thus the local stability for
the ODE associated to the population problem defined by M(·)), as it is shown in the
following lemma.

Lemma 5.2 If A1 and A2 are p-dimensional squared matrices with real elements such
that A1 is (symmetric) positive definite and kA2k < 1, then A = A1(Ip − A2) is positive
stable.

Proof We apply Lyapunov theorem for G = A−11 . We have

1

2
(GA+A0G) = Ip − 1

2
(A2 +A

0
2).

Now remark that kA2k = kA02k (see, e.g., Horn and Johnson (1985), exercise 11, p 312).
Thus (A2 + A02)/2 is a symmetric matrix with spectral norm smaller than one. As a
consequence Ip − (A2 +A02)/2 is positive definite.

A simple idea is to consider a RM procedure

θt+1 = θt + ct
−1Mt(θt)

based on the natural measurement of M(·), that is

Mt(θ
1) =

∂qt
∂θ
(θ,λ(θ1))

¯̄̄̄
θ=θ1

=
∂q

∂θ
(θ,λ(θ1);Yt, Xt)

¯̄̄̄
θ=θ1

, t ≥ 1. (5.5)

The asymptotic properties of such a recursive procedure can easily be derived using general
results on RM algorithms (see, e.g., Kuan and White (1994a)). We skip the details here.
Even if such a RM procedure seems quite attractive due to its very simple updating

scheme, it may converge quite slowly (see Kuan and White (1994a), section II.3). A
natural modification to be done in order to improve the speed of convergence is to take an
approximate Newton-Raphson step at each stage. This yields a modified RM procedure,
also called a ‘stochastic Newton method’ (see, e.g., Kuan and White (1994a) or White
(1989)). The basic idea for such a procedure is to replace the p equations M(θ1) = 0 by
the p2 + p restrictions  vec

¡
∂M/∂θ1 0(θ1)−G¢ = 0

G−1M(θ1) = 0
(5.6)
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with variables vec(G) and θ1 and to define the corresponding updating steps (vec(G)
stands for the p2−dimensional vector obtained from the lines of a p× p matrix G).
By simple calculus, it can be noted that the negative stable condition for the derivative

of the function defining a population problem as (5.6) automatically holds. Indeed, the
derivative is a matrix of the form µ −Ip2 C

O −Ip
¶

and it is clearly negative stable. Moreover, extending the arguments of Kuan and White
(1994a) (see also the proof of Proposition 5.4 below), it can be proved that the RM
estimator based on these population conditions has the same asymptotic variance as the
(just-identified) GMM estimator for the restrictions M(θ1) = 0. In view of the equation
(3.6) and the facts discussed in section 4.2, the asymptotic variance of such a GMM
estimator is equal to the asymptotic variance of the iterative latent backfitting estimator
built from Q∞

£
θ,λ(θ1)

¤
. However, the derivative ofM(·) we need for building a recursive

counterpart of the iterative latent backfitting estimator without loosing precision has an
unfriendly form since it involves the second order cross-derivative of Q∞[·,λ(·)]. If one is
ready to give up some precision for more tractability, a natural idea is to use the ’simple’
part of ∂M/∂θ10(θ0), that is the Hessian matrix of the simple limit criterion Q∞

£·,λ(θ0)¤.
This leads us to define a new modified RM procedure, conformable to the general idea of
the latent backfitting. Since, in general, it may happen that the RM steps do not remain
in a given domain for the parameter space, our procedure has to include a truncation
(projection) device (see Kuan and White (1994a), Chen and White (1992)).
Denote

Σ(θ1) = − ∂2Q∞
∂θ∂θ0

£
θ,λ(θ1)

¤¯̄̄̄
θ=θ1

, θ1 ∈ Θ, (5.7)

and let

B
¡
θ0, r

¢
= {θ, kθ − θ0k < r} ⊂ Θ, U(θ0, ρ) = {G, °°vec ¡G− Σ(θ0)¢°° < ρ},

r, ρ > 0 be neighborhoods of θ0 and vec
¡
Σ(θ0)

¢
, respectively. Assume that U(θ0, ρ)

contains only invertible matrices. Consider

θt
¡
λ(θ1); r

¢
= arg max

θ∈B(θ0,r)
QT
£
θ,λ(θ1)

¤
.

By a slight abuse of notation, this maximum is well-defined, at least locally.
Fix c > 0 and define

θt+1 =


θt +

c
t
G−1t+1Mt(θt) on Bt+1

θt (λ(θt); r) on Ω \Bt+1
, t ≥ 1, (5.8)

where

Gt+1 =


Gt − c

t

£
∂2qs/∂θ∂θ

0(θ,λ(θt))|θ=θt
+Gt

¤
on Ct+1

G on Ω \Ct+1
t ≥ 1, (5.9)
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and Mt(·) is defined in (5.5); G is some fixed invertible p × p matrix, for example the
identity matrix if it belongs to U(θ0, ρ). The events Bt+1, Ct+1, t ≥ 1 are defined as

Bt+1 =
©
θt + ct

−1G−1t+1Mt(θt) ∈ B
¡
θ0, r

¢ª
,

Ct+1 =

½
Gt − c

t

·
∂2qs
∂θ∂θ0

(θ,λ(θt))

¯̄̄̄
θ=θt

+Gt

¸
∈ U(θ0, ρ)

¾
,

for some r, ρ > 0. The starting values are some θ1 ∈ B
¡
θ0, r

¢
and G1 invertible ma-

trix with vec(G1) ∈ U
¡
θ0, ρ

¢
. Note that the recursive procedure above depend on the

neighborhoods B
¡
θ0, r

¢
and U

¡
θ0, ρ

¢
through the initial values and the truncation device.

We denote by θRMT , T ≥ 1 the value θT+1 obtained from the last recursive procedure
above, sometimes called a bounded truncated RM procedure with θ−dependent errors.
The population problem is given by the function MRM(δ) = (M1(δ)

0,M2(δ)
0)0 with

δ = (vec(G)0, θ10)0 ∈ Rp2 ×Θ ⊂ Rp2+p

and
M1(δ) = vec

¡
Σ(θ1)−G¢ , M2(δ) = G

−1M(θ1). (5.10)

Under the Assumption 5.1, the unique root of the equation MRM(δ) = 0 is the vector
δ0 = (vec(Σ(θ0))0, θ00)0. The measurements of MRM(δ) are MRM

t (δ) = (M1t(δ)
0,M2t(δ)

0)0,
t ≥ 1 with

M1t(δ) = −vec
·
∂2qt
∂θ∂θ0

(θ,λ(θ1))

¯̄̄̄
θ=θ1

+G

¸
, M2t(δ) = G

−1 ∂qt
∂θ
(θ,λ(θ1))

¯̄̄̄
θ=θ1

.

(5.11)
Simple algebra and the equation (5.3) yield

∂MRM

∂δ
(δ0) =

 −Ip2 ∂vec(Σ(θ0))/∂θ10

0 − ¡Ip − ∂θ/∂θ10 £P 0,λ(θ0)¤¢
 . (5.12)

Clearly, this matrix is negative stable provided that the blocs on the diagonal are negative
stable matrices. This leads us to the following assumption.

Assumption 5.3 The matrix

Ip − ∂θ

∂θ10
£
P 0,λ(θ0)

¤
is positive stable.
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Note that Assumption 5.3 is weaker than the contraction mapping assumption needed
for the convergence of the iterative algorithm.
Also, observe that the positive stable condition implies the invertibility of the ma-

trix Ip − ∂θ/∂θ10
£
P 0,λ(θ0)

¤
. Therefore, the last assumption above ensures, locally, the

uniqueness of θ0 as solution of the equations M(θ1) = 0 (see Assumption 5.1).
The remaining conditions for ensuring the almost sure (strong) convergence of our

recursive latent backfitting can be stated as in Kuan and White (1994a), section II.2 (see
Appendix 7 for a precise description of these conditions). Having all the ingredients, we
can prove the following asymptotic result. In particular, it turns out that, with probability
one, the truncation in the definition of

©
θRMT

ª
is invoked only a finite number of times.

Proposition 5.4 Assume that the function M(·) defined in (5.1) is continuously differ-
entiable on Θ for which θ0 is an interior point. Suppose that Assumptions 5.1 and 5.3
hold. Moreover, assume that Assumption A.0.1 to A.0.3 in Appendix 7 are satisfied. Then
there exist r, ρ > 0 such that, if

©
θRMT

ª
is the corresponding RM sequence obtained from

(5.8)-(5.9) starting from some initial values θ1 and vec(G1), then

θRMT → θ0, almost surely.

5.2 The asymptotic distribution of the recursive latent backfit-
ting estimators

The asymptotic normality of a RM type estimator as proposed above could be obtained
from Theorem 2 of Kushner and Huang (1979) or Theorem II.2.4 of Kuan and White
(1994a). Let us recall the basic facts we use here: consider a population problemM(θ) = 0
defined by some M : Θ ⊂ Rp → Θ and assume that θ0 is the unique solution. Let
{Mt(θ)} be a sequence of stationary measurements ofM(θ) and {θT} be an almost surely
convergent sequence of estimators obtained from a RM procedure as in (5.2) with at =
c t−1, c > 0. Suppose that the matrix

H = c
∂M

∂θ0
(θ0) +

1

2
Ip (5.13)

is negative stable. It can be shown that, under the conditions stated in the Appendix 7,√
T (θT − θ0) converges in distribution to a normal random variable with zero mean and

variance matrix C solution of the equation

HC + CH
0
= −c2R, (5.14)

where

R =
∞X
t=0

Rt +
∞X
t=1

R0t (5.15)
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with Rt = E
£
M1(θ

0)Mt+1(θ
0)0
¤
, t ≥ 0. That is,

C = c2
Z ∞

0

exp(Hu)R exp(H
0
u)du. (5.16)

Recall that an usual condition for the consistency of the RM estimators is that the matrix
∂M/∂θ0(θ0) is negative stable. If the real parts of the eigenvalues of this matrix are
negative but too close to zero in such way that H is not negative stable, a scaling factor
c > 1 in the learning rate may solve the problem. The choice of this factor could be done
after a preliminary estimation of θ0 and of the eigenvalues of ∂M/∂θ0(θ0).
In the case of our recursive latent backfitting estimator the population problem is

given by the function MRM(·) = (M1(·)0,M2(·)0)0 defined in (5.10) and we have

H =

 ¡
1
2
− c¢ Ip2 ∂vec(Σ(θ0))/∂θ10

0
¡
1
2
− c¢ Ip + c∂θ/∂θ10 £P 0,λ(θ0)¤

 .
Proposition 5.5 Suppose that θ0 is an interior point of Θ and that Assumption 5.1 is
satisfied. Let MRM(·) = (M1(·)0,M2(·)0)0 be defined as in (5.10). Assume that Assump-
tions (A.0.1) to (A.0.5) in Appendix 7 hold. Let c > 1/2 such that

F = F (θ0, c) =

µ
1

2
− c
¶
Ip + c

∂θ

∂θ10
£
P 0,λ

¡
θ0
¢¤

is negative stable. Consider U(θ0, ρ) × B ¡θ0, r¢ ⊂ Rp2 × Θ such that the corresponding
RM sequence

©
θRMT

ª
defined in (5.8)-(5.9) with learning rate at = ct−1 converges almost

surely. Then √
T
¡
θRMT − θ0¢ d−→ Np(0, V

RM(θ0)),

where

V RM(θ0) = c2
Z ∞

0

exp (Fu)Σ(θ0)−1B(θ0)Σ(θ0)−1 exp(F 0u) du,

with B(θ0) and Σ(θ0) defined in Assumption 4.5 and equation (5.7), respectively.

We can prove that our RM estimator is generally less efficient than the iterative latent
backfitting estimator analyzed in section 4. Indeed, let

W = Σ(θ0)−1B(θ0)Σ(θ0)−1 and A = Ip − ∂θ

∂θ10
£
P 0,λ

¡
θ1
¢¤
,

where W is assumed positive definite. Recall that the variance of the iterative latent
backfitting estimator is V (θ0) = A−1WA−10 (see Proposition 4.8). On the other hand, the
variance V RM(θ0) of the RM estimator is the solution of the matrix equation

FV + V F 0 = −c2W,
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where F = (1/2)Ip − cA. Since F is supposed to be negative stable, if we prove that
F
¡
V RM(θ0)− V (θ0)¢+ ¡V RM(θ0)− V (θ0)¢F 0

is negative definite, then, using the converse Lyapunov theorem (Horn and Johnson (1991),
Th. 2.2.3, page 98), we can show that V RM(θ0) − V (θ0) is positive definite. By simple
algebra we obtain

F
¡
V RM(θ0)− V (θ0)¢+ ¡V RM(θ0)− V (θ0)¢F 0

= −c2W + cWA−10 + cA−1W − A−1WA−10
= − ¡cIp − A−1¢W ¡

cIp −A−1
¢0
.

Thus, V RM(θ0)−V (θ0) is positive definite except for the case cIp = A−1 when V RM(θ0) =
V (θ0).

6 Empirical implementation issues

6.1 The framework

We focus in this section on the application of the implied state backfitting methodology
to the estimation of asset pricing models. Typically, such a pricing model explains an
observed stationary process Yt of n asset “prices” as a known function of the current
value Xt of K latent state variables and p unknown parameters θ:

Yt = {hi [Xt, θ]}1≤i≤n (6.1)

Note that when one loosely says asset “prices”, one should rather understand “yields”
in the case of bonds or “option premium by unit of spot price” in case of options on equity
or any other transformation well-suited to build a n-dimensional stationary time series
Yt from the observation of time series of asset prices, likely to be non-stationary. In the
context of options on equity, one may also replace (see e.g. Renault and Touzi (1996) and
Pastorello, Renault and Touzi (2000)) option prices by the corresponding Black-Scholes
implied volatilities.
With respect to the most general formulation of empirical asset pricing models pre-

sented in the introduction, we focus here on a more specific approach that is more common
in the arbitrage-free asset pricing literature:
First, the pricing kernel is not explicitly included in the list Y ∗t of latent state variables.

Instead, it is defined as a known function of a collection Xt of relevant risk factors as
instantaneous risk free rate, diffusive return shocks, volatility shocks and jump events as
well as a collection of risk premium parameters θ2 that define the compensation for the
various risk factors. Typically, we will view Xt as a subset of the relevant vector Y ∗t of
state variables. Then, the dynamics of the latent risk factors Xt only identify a set θ1 of
unknown “statistical” parameters while the risk premium parameters θ2 must be added
to define the complete vector θ of structural parameters of interest for asset pricing:
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θ = [θ01, θ
0
2]
0 (6.2)

For empirical option pricing on equity, the above approach is typically the one followed
by Heston (1993), Bates (2000), Chernov and Ghysels (2000), and Pan(2002) among oth-
ers. For term structure modeling, this approach is particularly well-suited to capture
through K explanatory latent factors of the yield curve the relationships between n ob-
served yields in cross-section. A large strand of literature, initiated in particular by Chen
and Scott (1993), Pearson and Sun (1994) and Duan (1994), uses this indirect empirical
modeling of bond yields through underlying latent factors. In contrast, explicit dynamic
modeling of the joint stochastic process of asset returns and pricing kernel can be found
in the consumption-based equilibrium asset pricing literature (see e.g. Aït-Sahalia and Lo
(2000), Jackwerth (2000), Rosenberg and Engle (2000) for applications to option pricing)
or, in an even more general way in Constantinides (1992) and Garcia, Luger and Renault
(2002).
The second important difference between the asset pricing model (6.1) and the general

framework appearing in the introduction is the fact that we do not maintain at this stage
the assumption of a one-to-one relationship between the vector Yt of observed prices and
the vector Xt of structural latent state variables.We even do not consider that the two
dimensions n and K of these two vectors should necessarily coincide.
Of course, the simplest approach to estimating a K factors model is to select n = K

asset prices in the cross section and to exploit the one-to-one relationship between prices
and factors to get either the exact likelihood (Chen and Scott (1993), Pearson and Sun
(1994), Duan (1994)) or an expansion of it (Aït-Sahalia and Kimmel (2002)) or implied
moments (Pan(2002)) or a simulated score (Dai and Singleton(2000)). This approach
leads unmistakably to neglect the potentially useful information conveyed by a number of
observed related prices in the cross section. For instance Pan (2002) estimates a stochastic
volatility model for option pricing on the S&P 500 index from the joint time series of the
index and one near-the-money short dated option on it. One option price is sufficient to
get a one-to-one relationship with the volatility factor, yet (see e.g. Dumas, Fleming and
Whaley (1998)), by taking into account the various possible moneynesses and maturities,
the number of fairly liquid option prices on S&P 500 that can be observed at any given
date may be about ten or even more. Similarly, while common models of the yield curve
involve K = 1, 2 or 3 factors, the number n of available maturities in the cross section (
see e.g. the McCullogh and Kwon data set used in the empirical part of this section) is
about thirty or even more.
Since asset pricing based on ten, twenty or more structural factors is not very appeal-

ing, the only way to reconcile an orthodox view of statistical information (the n cross
sectional observations must be used in the inference process) and structural asset pricing
with a reduced number K of latent structural factors is to include (n −K) error terms.
In other words, the price to pay to incorporate all the available statistical information is
to assume that, due to some frictions in the financial markets, some degrees of freedom
remains possible around the theoretical no-arbitrage based prices. Therefore, the retained
empirical specification of the asset pricing model (6.1) will be:
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Zt = (Yit)1≤i≤K = h[Xt, θ] = [hi(Xt, θ)]1≤i≤K
Vt = (Yit)K+1≤i≤n = e[Xt, θ] + ut = [hi(Xt, θ)]K+1≤i≤n + [uit]K+1≤i≤n. (6.3)

Note that we consider at this stage that the n assets prices have been relabeled in order
to get zero pricing errors for the K first ones while the (n − K) other ones differ from
their theoretical values by error terms uit. Hence, we do not really maintain the arbitrary
assumption that exactly K prices coincide with their theoretical values while error terms
may be added to the other ones. We just say that, since the structural model already
involves K latent factors, there is no reason to introduce more than (n−K) error terms,
while at least K independent linear combinations should be observed without error. Of
course, such a specification needs to know a priori what are the K prices ( or the K
linear combinations of prices) that are observed without error. This empirical issue will
be discussed below.
For sake of expositional simplicity, we limit the comparison of the implied state back-

fitting methodology with competitors for inference on (6.3) to the context of maximum
likelihood-based inference strategies. A maintained assumption will be that the error
terms uit have a zero unconditional mean and that the first K equations provide a one-
to-one relationship between the vector Zt of the K prices observed without error and the
vector Xt of structural state variables:

Zt = (Yit)1≤i≤K = h[Xt, θ]⇔ Xt = h
−1[Zt, θ] (6.4)

6.2 Maximum Likelihood based inference

The conditional likelihood associated to a data set {Yt, t = 1, . . . , T} (and an initial con-
ditioning value Y0 ) must be derived, through the Jacobian formula, from the latent one
associated with the “latent data” set {Y ∗t , t = 1, . . . , T} produced by the latent realiza-
tions of a Markov process Y ∗ one-to-one function of Y :

Yt = g[Y
∗
t , θ]⇔ Y ∗t = g

−1[Yt, θ] (6.5)

Typically, (6.5) must be defined by n equations, thanks to (n − K) equations that
complete the K equations (6.4). A natural idea would be to define the state vector Y ∗t
by augmenting the vector Xt of K structural factors with the vector ut of (n−K) error
terms. However, we certainly do not want to do this for two reasons.
First, the parameters η that would define the probability distribution of the error term

ut are not the focus of interest. Of course, their consistent estimation may be useful for
improving the accuracy of the estimation of the parameters of interest θ. We do want
to ensure, however, that even if η is not consistently estimated, we obtain a consistent
estimator of θ. Typically, in case of Gaussian errors, the vector of nuisance parameters
η consists of the unconditional covariance matrix Ω of the (n − K) error terms ut and
possibly the parameters defining the conditional mean and variance dynamics. The mere

49



fact that these error terms are added ex post and not rationalized within a structural
asset pricing model with additional state variables implies that we have no structural
information about their dynamics. Since from (6.3) we note that the estimation of the
dynamics of the error terms may contaminate the estimation of the dynamics of the
structural factors, it is important to define a backfitting procedure that focuses only on
the structural parameters θ and not on the augmented vector (θ, η).
Second, the backfitting identification condition for θ would not be fulfilled is we defined

the latent state vector Y ∗t as Y
∗
t = (Xt, ut). The empirical asset pricing model (6.3)

provides a one-to-one relationship between observed prices Yt and latent variables (Xt, ut)
but the risk premium parameters θ2 are identified only by the relationship itself and
not by the probability distribution of the latent process (Xt, ut). In other words, by
defining Y ∗t = (Xt, ut), we would be faced with the exact opposite situation of the one
described in the comments following Assumption 4.7. As it was stressed at this earlier
stage, the philosophy of our backfitting methodology is precisely to assume that the latent
model (the transition equation of the state variables) carries more information about the
unknown parameters of interest than their occurrence in the measurement equation. To
remain true to this philosophy, a better strategy is to define the latent vector Y ∗t and the
associated function g[Y ∗t , θ] in the following way:

Y ∗t = [X 0
t, V

0
t ]
0, Yt = [Z 0t, V

0
t ]
0

with: (6.6)

Yt = g[Xt, Vt, θ] = [h
0(Xt, θ), V 0t ]

0.

Note that (n − K) among the n so-called latent variables Y ∗t are actually observed
but this does not prevent us from applying the general backfitting methodology. In this
context, the transition density function of the Markov process Y ∗t :

l[Y ∗t
¯̄
Y ∗t−1] = l[Xt

¯̄
Y ∗t−1] l[Vt

¯̄
Xt, Y

∗
t−1] (6.7)

will be specified under the maintained common assumption that error terms do not cause
structural factors, neither in the Granger sense nor instantaneously. This assumption is
natural since, if one imagines its violation, one implicitly endows the error terms with
some structural interpretation. Then, by the no-Granger causality assumption:

l[Xt
¯̄
Y ∗t−1] = l[Xt |Xt−1] = l[Xt |Xt−1, θ1] (6.8)

where the last expression stresses the fact that this density function depends on the
value of the unknown parameters only through θ1. By the no instantaneous causality
assumption, l[Vt

¯̄
Xt, Y

∗
t−1] is simply obtained by a translation of size e[Xt, θ] applied to

the conditional probability distribution l[ut
¯̄
Y ∗t−1, η] of the error terms given the past.

This probability density function depends on the value of the unknown parameters only
through the nuisance parameters η.
Since we maintain the assumption that all the structural content of the model is

captured by the factors Xt, we do not really want to specify the dynamics of the error
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terms and we will carry out inference about structural parameters through a latent quasi-
likelihood, written as the likelihood of a latent model where the error terms would be
i.i.d. Gaussian with a covariance matrix specified as a function Ω(η):

l[ut
¯̄
Y ∗t−1, η ] = l[ut |η ] = (2π)−(n−K)/2[detΩ(η)]−1/2exp[−

1

2
u0tΩ

−1(η)ut] (6.9)

Several remarks are in order about the use of this quasi-likelihood. First, it is well-
suited only if the scale Yt used to measure asset prices is consistent with conditional
normality like for instance log-returns or log-implied volatilities. Second, we should not
forget that the quasi-likelihood may differ from the true likelihood and that we just
want to plug it into (6.7) to get a consistent estimator of the structural parameters of
interest θ. The nuisance parameters η are likely to be poorly defined and not consistently
estimated. However, a general specification of the covariance matrix Ω(η) should at least
allow us to take into account the obvious strong cross sectional patterns of correlation
and heteroskedasticity among error terms (see Renault (1997) for a general discussion).
A third important remark is that, in contrast with standard estimation/filtering strate-

gies, the inference approach must take the hierarchy between θ and η into account and, in
particular, it does not make sense to filter on an equal basis simultaneously the artificial
state variables ut and the state variable of interest Xt. Besides the gain in computing
time (we will document below a significant difference between computing times for implied
states backfitting and Kalman filtering), the hierarchy of the two filtering issues should
avoid to contaminate the filtered current values of essential pricing factors like Xt with
the noise caused by error terms. This contamination at the filtering level has been avoided
by imposing a priori the nullity of a subset of K error terms, rather than specifying a
more general model:

Yt = (Yit)1≤i≤n = [hi(Xt, θ)]1≤i≤n + Σ[εit]K+1≤i≤n, (6.10)

with Σ matrix of size n × (n − K) to be estimated. Our trials of estimation/filtering
procedures on general specifications like (6.10) of term structure models lead us to the
conclusion that the resulting filtered factors Xt are highly unstable, due the instability of
the error terms. In contrast, by imposing the specification like (6.3) that the first K rows
of the matrix Σ are zero, we get satisfactory estimation and filtering results, conditionally
to a preliminary statistical procedure (see discussion in subsection 6.3. below) to decide
what are the K zero rows (to be relabeled as the first K rows). At the estimation level,
the hierarchy is ensured by computing first an estimator

ΩT = Ω(ηT )

of Ω(η), and then, plugging it into (6.7) to define the latent criterion for extremum
estimation of the structural parameters θ:

Q∗T (θ) = Σ
T
t=2 Log l [Xt |Xt−1, θ1 ]−

1

2
ΣTt=1[Vt − e(Xt, θ)]0Ω−1T [Vt − e(Xt, θ)] (6.11)
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Up to recursive refinements, the backfitting methodology amounts defining a sequence
θ(p) of estimators in the following way:
a) Start from an estimator θ(1) provided by a quick procedure.
b) For θ(p) given, replace in (6.11) the unknown factor values Xt by Xt(θ

(p)) =
h−1[Zt, θ(p)]. This defines a sample based criterion QT (θ, θ(p)).
c) Compute the estimator θ(p+1) as arg maxθQT (θ, θ(p)).
Since the nuisance parameters η have been introduced in a way that preserves adaptiv-

ity, the resulting asymptotic probability distribution of the backfitting estimator of θ will
only depend upon the probability limit of ΩT and not upon its accuracy as estimator of
the (pseudo) true unknown value of Ω(η). However, at least in case where the conditional
distribution of the error terms would be well-specified, the most accurate backfitting es-
timator would be obtained when ΩT is a consistent estimator of the true value of Ω(η).
This is the reason why it is natural to think to a “quasi-generalized” version of backfitting
in the following way.
Start from an arbitrary ΩT (e.g. the identity matrix) and compute the corresponding

backfitting estimator θT of θ. Then, use it to compute “estimated error terms”:

ut(θT ) = Vt − e[Xt(θT ), θT ] (6.12)

and to derive a consistent estimator η(θT ) of the pseudo true value of η and in turn, a
consistent estimator Ω∗T = Ω[η(θT )] of the pseudo true value of Ω. Then, perform a second
backfitting estimation of θ based on the criterion (6.11) where ΩT has been replaced by
W ∗
T . Of course, such a procedure is costly since it implies several backfittiting estimations.

Fortunately, there exists a much faster procedure that is, in terms of estimation of θ,
asymptotically equivalent to quasi-generalized backfitting, but in terms of computing
time, equivalent to a simple backfitting.
This procedure, that we term “extended backfitting” amounts to using each step θ(p)

of the backfitting iteration to compute a new estimator Ω[η(θ(p))] of the matrix Ω and to
plug it into (6.11) in place of ΩT to derive the next step estimator θ

(p+1) of θ. At first
sight, extended backfitting is similar to standard backfitting applied to the augmented
vector (θ, η) of unknown parameters. However, we do not refer to our general backfitting
theory (in terms of an augmented vector of parameters) to justify this procedure. There
is little hope to get a sequence that is contracting with respect to the nuisance parameters
η and this is the reason why the convergence criterion of the approximation sequence that
we will use in applications will only be based on the norm ||θ(p+1) − θ(p)||.
The relevant argument is the following. Irrespective of the choice of the weighting

matrixΩT in (6.11), the backfitting estimator is a consistent estimator of the true unknown
value of θ. Therefore, it is clear that the limit of the sequence θ(p) produced by the
extended backfitting algorithm also provides a consistent estimator of θ and, in turn, the
limit of the sequence Ω[η(θ(p))] provides a consistent estimator of the true unknown value
of Ω[η]. Since the asymptotic probability distribution of the backfitting estimator of θ
only depends on the probability limit of ΩT , it is then clear that we get an estimator
asymptotically equivalent to the quasi-generalized backfitting. This procedure will be
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illustrated in subsection 6.3 below for the estimation of an affine term structure model of
interest rates.
Before going into the details of an application, let us first briefly sketch a comparison

with the maximum likelihood based competitors also well-suited for inference on such
empirical asset pricing models with latent factors.
A first competitor is the Kalman filter based quasi maximum likelihood. The most

popular strategy is to introduce n error terms instead of (n−K) to avoid the instability
properties already mentioned about (6.10). This has been first proposed in the context
of affine models of the yield curve by Duan and Simonato (1999) and systematically
developed by De Jong (2000). Of course, severe nonlinearities or non-normality of the
structural model are likely to alter the validity of the Kalman filter. Generally speaking,
the Kalman filter should not be used for highly nonlinear models and our backfitting fil-
tering strategy should be much better suited. However, in the context of return dynamics
that are not too far to be linear as in the case of affine models of the yield curve, the
two approaches may be competitors and we are going to compare their performance in
the empirical application below. Roughly speaking, the Kalman filtering approach can be
seen as a quick and dirty procedure to check the validity of our possibly more accurate but
also more risky approach. Typically, the backfitting approach seeks to get more efficient
estimators and filters by taking the risk to specify exact nonlinear relationships between
prices and factors with K zero error terms.
Another quasi maximum likelihood approach for factor models of the yield curve has

been applied by Fisher and Gilles (1996) and Duffee (2002). Their idea is quite sim-
ple. Even though the latent model is conceived to be simpler than the observable one,
the hard part of the latent log-likelihood (6.11) is the transition density function of the
structural factors Xt. This function is in general produced by a continuous time model
and may be hard to compute or simply unknown. However, consistent (albeit inefficient)
estimates can still be obtained if we substitute the true theoretical transition density
with a Gaussian one, provided that the first two conditional moments of Xt are correctly
specified. Besides its potential inefficiency, this alternative QML approach also suffers
from a risk of mispecification bias in case of a nonlinear mapping g between the latent
variables and the observables. In such a case, the Jacobian formula applied to a latent
Gaussian quasi-likelihood may not yield a correct quasi-likelihood for observables. This
drawback is not detrimental in the case of affine (Fisher and Gilles (1996)) or essentially
affine (Duffee (2002)) term structure models but would be an issue in the case of option
prices on equity with stochastic volatility.
Moreover, as neatly put forward by Duffee (2002), “another advantage of QML (which

it shares with maximum likelihood and related techniques) is that (· · · ) a model estimated
with QML will guarantee that the time-t state vector implied by time-t yields is in the
state vector’s admissible space (to avoid a likelihood zero). By contrast, (· · · ) techniques
such as EMM (· · · ) do not require that the estimated term structure model be sufficiently
flexible to reproduce the term structure shapes in the data. The parameters of the model
in Dai and Singleton (2000), which were estimated with EMM, illustrate this point.”
This point is actually our main motivation to focus on implied-states based likelihood
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methodologies. Besides the Kalman filter approach, two likelihood based methodologies
will be empirically compared in subsection 6.3 below. For a fair comparison between our
backfitting approach and its two main competitors, we focus on the class of affine term
structure models since it gives a chance to Kalman based strategies and also to exact
likelihood strategies that are not too cumbersome in this case.

6.3 An application to one-factor affine models of the yield curve

In this subsection, we will outline the results of the estimation of two one-factor affine
term structure models on a widely used data set of U.S. zero coupon yields. By doing
this, our goal is definitely not to prove that an affine model with only one factor is able
to capture all the relevant empirical features of the yield curve. We just want to exploit
the analytical tractability of this model to make more explicit our comparison between
competing maximum likelihood based approaches. We will be in particular able to show
that an additional advantage of the backfitting strategy of working directly on the latent
likelihood rather than on the observable one is to allow us to apply the Aït-Sahalia (2002)
closed-form likelihood expansions. By contrast, when one wants to work directly on such
expansions about the likelihood associated to observed bond prices as proposed recently
by Aït-Sahalia and Kimmel (2002), the maximization of such expansion will be shown to
be highly misleading.
Of course, the comparison of several competing methodologies on a given data set may

be flawed by some misspecification of the structural model. Such a misspecification is even
more likely when using a very simple model as we do. An extensive Monte Carlo study
that allows to control for misspecification bias in our conclusions is work in progress.
However, we can already assert that the proposed implied states extended backfitting
approach will not be contaminated by specification errors on the ad hoc model of pricing
errors. This is clearly not the case with direct likelihood strategies on observed asset
prices since, for instance, some omitted dynamics in the error terms is likely to bias the
maximum likelihood estimation of factor dynamics.

Models and data
Our database is the extended McCulloch dataset (see McCulloch (1975), (1990) and

Kwon (1992)). The whole dataset consists of monthly zero-coupon rates that were calcu-
lated using McCulloch’s interpolation method.
Following De Jong (2000), we use a restricted sample starting in January 1970 and

ending in February 1991, for a total of T = 254 observation dates.
There are 56 fixed maturities available, ranging from 1 month to 40 years (the number

of maturities actually available at each date depends on the number of outstanding bonds).
However, the estimation of longer maturity yields is based on very few coupon bonds,
and hence they are usually dropped from the sample. The same is usually done with the
shortest maturity yields (1 and 2 months), as they exhibit some extremely large variations
over short intervals.
For sake of comparability with the Kalman approach of De Jong (2000), we estimate
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the various models by using only n = 4 maturities: 3 months, 1, 5 and 10 years. But, by
contrast with the Kalman approach, our model (6.3) stipulates thatK = 1 among the four
yields is observed without error. However, we are going to show that the estimation results
about the structural parameters θ are highly sensitive to the choice of the component
supposed to be observed without error. This leads us to follow Collin-Dufresne, Goldstein
and Jones (2002) to consider that it might be preferable to work on the time series of
the principal components of the observed yields, instead of directly on the time series
of the yields. The first principal component is defined by the following four weights (in
increasing order of maturities of the underlying zero yields): (0.5488, 0.5436, 0.4687,
0.4285). We obtain our most reliable estimation results by assuming that it is precisely
this first estimated principal component that is observed without error.
In affine term structure models, zero coupon yields are affine functions of the unob-

servable factor Xt. By taking log of the price Pt(τ ) in t of a zero coupon bond with
maturity t+ τ and dividing by (−τ), we get:

yt (τ) = −α (τ) + β (τ)Xt + ut (τ ) (6.13)

where:

α (τ ) =
A (τ )

τ
, β (τ) =

B (τ)

τ
,

A (τ) and B (τ ) are model specific known functions of τ and θ, and ut (τ) is the error
term on the observation of the zero coupon rate yt (τ ). In matrix notation:

Yt = −α+ β Xt + ut (6.14)

where:

Yt = [yt (τ 1) , · · · , yt (τn)]0
α = [α (τ1) , · · · ,α (τn)]0
β = [β (τ1) , · · · , β (τn)]0

We consider the estimation of a one-factor term structure model, when the short term
interest rate Xt follows either an Ornstein-Uhlenbeck process (Vasicek model) or a square
root process (CIR model). In the two cases, the vector θ1 of parameters about the factor
dynamics can be written θ1 = (k, c, σ)0, but with two different interpretations for the
volatility parameter σ:

Vasicek model :

dXt = k (c−Xt) dt+ σdWt (6.15)

CIR model :

dXt = k (c−Xt) dt+ σ
p
XtdWt (6.16)
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In the two cases, there is one risk premium parameter θ2 = λ which allows to compute
the coefficients A(τ)/τ and B(τ )/τ of the column matrices α and β as known functions
of θ:
(i) Vasicek model  A (τ) = x∞ [β (τ )− τ ]− σ

2

4k
B2(τ )

B (τ) =
1− exp(−kτ)

k

(6.17)

where:

x∞ = c− λ
k
− σ2

2k2

(ii) CIR model:

A (τ) =
2kc

σ2
ln

2γ exp

·
1

2
(k + λ + γ) τ

¸
(k + λ+ γ) [exp (γτ)− 1] + 2γ

B (τ) =
2 [exp (γτ )− 1]

(k + λ+ γ) [exp (γτ)− 1] + 2γ
γ =

q
(k + λ)2 + 2σ2

Empirical Results
We first apply the Kalman filter approach of De Jong (2000), by considering that the

covariance matrix Ω of the vector ut of four Gaussian error terms is unconstrained, and
defined by a vector η of ten parameters (specification 3 in Tables 1 and 2 below). We also
apply the Kalman estimation technique to two models of constrained matrices Ω:

• In a first model (specification 1), we exclude any cross-correlation or heteroskedas-
ticity of the error terms, then defining Ω by the common value η of the diagonal
coefficients.

• In a second model (specification2), we allow for heteroskedasticity but still exclude
any cross correlation. Then Ω is a diagonal matrix defined by a vector η of four
diagonal coefficients.

Tables 1 and 2 respectively give the Kalman-based estimation results for the Vacisek
and CIR one-factor term structure model.
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Table 1. Kalman estimation results of the Vacisek model
Parameter Specification of Ω

1 2 3
k 0.0612 0.0303 0.0213

(0.0098) (0.0046) (0.0031)
c 0.0699 0.0741 0.0686

(0.0048) (0.0031) (0.0025)
σ 0.0162 0.0153 0.0124

(0.0015) (0.0011) (0.0011)
λ -0.0070 -0.0082 -0.0074

(0.0008) (0.0010) (0.0013)
`K 4378.72 4568.94 5004.32
dim η 1 4 10

Note: This table reports Kalman-based QML estimates and standard errors for the parameters of one-
factor term structure model with short rate process dXt = k (c−Xt) dt+ σdWt. The table also reports

the log-likelihood value and the dimension of the vector η of free parameters defining the observation
errors covariance matrix Ω.

Table 2. Kalman estimation results of the CIR model
Parameter Specification of Ω

1 2 3
k 0.1162 0.0640 0.0422

(0.0140) (0.0151) (0.0092)
c 0.0634 0.0559 0.0587

(0.0080) (0.0136) (0.0131)
σ 0.0646 0.0652 0.0462

(0.0055) (0.0044) (0.0024)
λ -0.0694 -0.0526 -0.0308

(0.0143) (0.0158) (0.0091)
`K 4414.76 4645.71 5030.30
dim η 1 4 10

Note: This table reports Kalman-based QML estimates and standard errors for the parameters of
one-factor term structure model with short rate process dXt = k (c−Xt) dt + σ

√
XtdWt. The table

also reports the log-likelihood value and the dimension of the vector η of free parameters defining the
observation errors covariance matrix Ω.

Columns 3 of Tables 1 and 2 replicate almost exactly the results reported by De Jong
(2000) in Table 3, p. 305. It is worth noting that he uses a slightly different parameteriza-
tion from the one adopted here and the observed discrepancy between estimation results
may be due to numerical roundoff errors. By comparison, columns 1 and 2 of Tables 1
and 2 show that, as expected, the specification of the observation errors covariance matrix
Ω does matter in term of estimation of the structural parameters θ. While the results are
not that much different between cases 1, 2 and 3 for estimation of c, σ and λ, the mean
reversion parameter k is highly sensitive to the specification of Ω. Less Ω is restricted,
less mean reverting appears to be the short rate process.
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Maximum Likelihood with (n− 1) measurement errors
We focus here on the exact maximum likelihood estimation of the structural parame-

ters θ when a zero yield or a linear combination of zero yields is observed without error.
Let us assume that the zero yield with maturity τ1 is observed without error. In this case,
(6.14) can be decomposed in two equations, up to a slight change in notations:

Zt = −α1 + β1Xt
Vt = −α2 + β2Xt + ut (6.18)

where ut is now a (n− 1) × 1 random measurement error assumed to be i.i.d N (0,Ω).
Since the specification of Ωmatters for the estimation of θ, we explore the same three cases
previously encountered. Note that the number (dim η) of free parameters in η is now
smaller since Ω has lost a row and a column. Namely, under case 1 of homoskedastic and
uncorrelated measurement errors, dim η = 1; under case 2 of heteroskedastic uncorrelated
errors dim η = 3; and, finally, under case 3 of heteroskedastic and correlated errors, dim
η = 6.
Then, the aforementioned non-causality assumptions from error terms to the short

rate process give rise to a loglikelihood function which is made up of two terms:
(i) The log-likelihood of the latent factor computed using the first zero yield, evaluated

using the Jacobian formula
(ii) The log-likelihood of the (n− 1) measurement errors.
More precisely, let us denote with `x [Xt|Xt−1; θ1] the transition density function be-

tween consecutive observations of the short rate deduced from the continuous time model
(Vacisek or CIR). The total sample loglikelihood is given by:

QT (θ, η) = Q1T (θ) +Q2T (θ, η)

where:

Q1T (θ) =
TX
t=1

log `x
£
β−11 (Zt + α1) |β−11 (Zt−1 + α1) ; θ1

¤− T log β1 (6.19)

is the sample loglikelihood of the latent factor, and:

Q2T (θ, η) = −T (n− 1)
2

log (2Π)− T
2
log (det (Ω)) (6.20)

−1
2

TX
t=1

£
Vt + α2 − β2β−11 (Zt + α1)

¤0
Ω−1

£
Vt + α2 − β2β−11 (Zt + α1)

¤
is the sample loglikelihood of the measurement errors.
The transition density function `x [Xt|Xt−1, θ1] is Gaussian for the Vasicek model and

non central chi square for the CIR model. In the latter case, it is also possible to compute
a proxy of `x using a high order Aït-Sahalia (2002) analytical approximation technique.
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The resulting expression is extremely precise and much faster to evaluate than the
true theoretical non central chi square density.
However, in the present context of implied states, a few warnings are in order here.

The approximation is not reliable for values of both the backward variable Xt−1 and the
forward one Xt that are close to the boundary of the admissible space. To some extent,
this is acknowledged by Aït-Sahalia (2002), footnote 17, by considering more generally a
time interval ∆ between two consecutive discrete time observations: “[...] The expansion
is known to deliver an approximation of the density function x −→ pX (∆, x |x0; θ ) for
a fixed value of the backward (conditioning) variable x0. Therefore, except in the limit
where ∆ becomes infinitely small, it is not designed to reproduce the limiting behavior of
pX in the limit where x0 tends to the boundaries.[...]”.
To better understand what this means, it is useful to inspect the loglikelihood expan-

sion of the CIR model (see also Aït-Sahalia and Kimmel (2002) for a two factors case).
The fundamental difference with the Gaussian case is that the square root term leads
to an expansion of log pX (∆, xx0; θ) where the coefficients of ∆,∆2 and ∆3 have powers
of x and x0 in the denominator. When either one of these variables tend to zero (the
boundary), the approximation diverges either to plus or minus infinity.
If the factor realizations are available, and thus fixed in the expanded loglikelihood

maximization, this is not an issue. In contrast, when Xt and Xt−1 are not observable and
are obtained as a function of the observable variable Zt and Zt−1 and of the unknown
parameters θ, this feature is devastating. Inevitably, any serious maximization algorithm
will end up with an infinite value of the approximate log-likelihood for a value θ which
sets to zero one or more implied values of the factors. The latent backfitting algorithm,
however, will deliver implied values Xt

³
θ(p)
´
and Xt−1

³
θ(p)
´
for a given value θ(p) of the

structural parameters and allow to maximize with respect to θ the expansion of the latent
log-likelihood obtained from the expansion of log pX

h
∆, Xt

³
θ(p)
´
|Xt−1

³
θ(p)
´
, θ
i
. There

is no more problem with boundary values of Xt or Xt−1.
We first apply the standard maximum likelihood using (6.19) and (6.20). We get rid

of the large number of local maxima by choosing the best maximization results obtained
among 25 trials associated with different starting values of the parameters. These starting
points where random draws from a multivariate uniform distribution with plausible upper
and lower bounds.
Tables 3 and 4 report respectively the maximum estimation results for the Vasicek

and CIR one factor term structure model. The first four columns (denoted with y (τ i),
i = 1, 2, 3, 4) assume that zero yields with maturity τ i are observed without error. Column
PC assumes that the first principal component (in descending order of the corresponding
eigenvalues) computed on the yields with the usual four maturities is observed without
error. Specifications 1,2,3 of the errors covariance matrix Ω, corresponding respectively to
1,3 and 6 free parameters η, give rise to the three sets of maximum likelihood estimation
results.
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Table 3. Maximum likelihood estimation results for the Vasicek model

Yield (or combination of yields) without error
Parameter y(τ1) y(τ2) y(τ3) y(τ4) PC

Specification 1, dim η = 1
k 0.1047 0.0780 0.0304 0.0168 0.0584

(0.0126) (0.0090) (0.0102) (0.0089) (0.0094)
c 0.0678 0.0706 0.0746 0.0990 0.0710

(0.0546) (0.0804) (0.0658) (0.2943) (0.0816)
σ 0.0270 0.0263 0.0196 0.0150 0.0219

(0.0028) (0.0026) (0.0015) (0.0011) (0.0021)
λ -0.0065 -0.0050 -0.0041 -0.0026 -0.0046

(0.0059) (0.0064) (0.0020) (0.0050) (0.0048)

`ML

³
θ̂ML

´
4247.39 4428.02 4395.21 4329.32 4420.55

Specification 2, dim η = 3
k 0.1105 0.0801 0.0294 0.0219 0.0278

(0.0145) (0.0096) (0.0044) (0.0045) (0.0030)
c 0.0682 0.0708 0.0771 0.0984 0.0651

(0.0525) (0.0869) (0.1124) (0.2037) (0.2428)
σ 0.0276 0.0268 0.0206 0.0160 0.0207

(0.0030) (0.0028) (0.0016) (0.0011) (0.0018)
λ -0.0068 -0.0051 -0.0031 -0.0019 -0.0033

(0.0059) (0.0070) (0.0033) (0.0045) (0.0069)

`ML

³
θ̂ML

´
4302.34 4443.22 4629.00 4574.34 4929.85

Specification 3, dim η = 6
k 0.0329 0.0319 0.0277 0.0292

(0.0030) (0.0037) (0.0028) (0.0030)
c 0.0505 0.0579 0.0784 0.0676

(0.3540) (2.3778) (0.3647) (0.0809)
σ 0.0258 0.0248 0.0185 0.0204

(0.0021) (0.0020) (0.0012) (0.0017)
λ -0.0048 -0.0044 -0.0024 -0.0031

(0.0114) (0.0759) (0.0101) (0.0024)

`ML

³
θ̂ML

´
4871.18 4882.30 4957.89 4934.30

Note: This table reports maximum likelihood estimations and asymptotic robust standard errors for
the parameters of one-factor term structure model with short rate process dXt = k (c−Xt) dt + σdWt.
The table also reports the log likelihood value and the dimension of the vector η of free parameters defining
the observation errors covariance matrix Ω. The first four columns (denoted with y(τ i), i = 1, 2, 3, 4)
assume respectively that zero yields with maturity τ = 3 months, 1, 5 or 10 years are observed without
error. Column PC assumes instead that the first principal component among the yields with these four
maturities is observed without error.
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Table 4. Maximum likelihood estimation results for the CIR model

Yield (or combination of yields) without error
Parameter y(τ1) y(τ2) y(τ3) y(τ4) PC

Specification 1, dim η = 1
k 0.1711 0.1185 0.0714 0.0403 0.1012

(0.0504) (0.0227) (0.1313) (0.0480) (0.0248)
c 0.0711 0.0740 0.0776 0.0872 0.0742

(0.0216) (0.0130) (0.1394) (0.1042) (0.0165)
σ 0.0871 0.0834 0.0650 0.0507 0.0707

(0.0074) (0.0064) (0.0044) (0.0034) (0.0053)
λ -0.0809 -0.0575 -0.0498 -0.0314 -0.0550

(0.0532) (0.0199) (0.1287) (0.0486) (0.0214)

`ML

³
θ̂ML

´
4046.11 4222.04 4180.02 4114.13 4213.85

Specification 2, dim η = 3
k 0.1831 0.1234 0.0451 0.0326 0.0406

(0.0316) (0.0156) (0.0230) (0.0182) (0.0148)
c 0.0714 0.0742 0.0792 0.0927 0.0704

(0.0104) (0.0071) (0.0414) (0.0498) (0.0248)
σ 0.0885 0.0846 0.0649 0.0520 0.0638

(0.0077) (0.0066) (0.0043) (0.0031) (0.0042)
λ -0.0853 -0.0595 -0.0036 -0.0220 -0.0345

(0.0248) (0.0104) (0.0234) (0.0171) (0.0126)

`ML

³
θ̂ML

´
4100.32 4236.86 4410.79 4358.00 4716.35

Specification 3, dim η = 6
k 0.0533 0.0479 0.0262 0.0420

(0.1919) (0.0200) (0.0262) (0.0040)
c 0.0603 0.0655 0.0873 0.0708

(0.2167) (0.0413) (0.0237) (0.0067)
σ 0.0787 0.0753 0.0495 0.0631

(0.0050) (0.0046) (0.0026) (0.0042)
λ -0.0527 -0.0456 -0.0154 -0.0035

(0.1894) (0.0313) (0.0064) (0.0025)

`ML

³
θ̂ML

´
4653.22 4664.11 4777.18 4720.97

Note: This table reports maximum likelihood estimations and asymptotic robust standard errors for
the parameters of one-factor term structure model with short rate process dXt = k (c−Xt) dt+σ

√
XtdWt.

The table also reports the log likelihood value and the dimension of the vector η of free parameters defining
the observation errors covariance matrix Ω. The first four columns (denoted with y(τ i), i = 1, 2, 3, 4)
assume respectively that zero yields with maturity τ = 3 months, 1, 5 or 10 years are observed without
error. Column PC assumes instead that the first principal component among the yields with these four
maturities is observed without error.

In two cases it has not been possible to obtain acceptable results in terms of multiple
trials converging to the same estimates. These cases are left empty in the tables. These
cases correspond to the assumption that the yield without measurement error has maturity
either 5 or 10 years and to the richest structure of the observation errors covariance matrix
Ω (dim η = 6). It is possible that by augmenting the number of starting points, or by
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changing the way they are chosen, an acceptable solution can be found even in those cases.
However, it is clear that these specifications lend themselves to numerical instability, at
least compared with those stemming from simpler models (i.e. with a simpler structure
for Ω) and/or based on the assumption that the yields observed without measurement
error are associated with the shortest maturities.
In all the tables, the results depend clearly on the yield assumed to be observed without

error.
If we denote with τ ∗ its maturity, a clear pattern emerges: k, σ and λ decrease monot-

ically with τ∗, whereas c increases. To decide what are the most plausible values, it is
useful to compare the results with the corresponding ones obtained with the Kalman fil-
ter. As a matter of fact, since the Kalman filter does not impose any zero error term,
its results may be considered as more robust. A striking result for the three specifica-
tions of Ω and the two models is that the maximum likelihood estimates the closest to
Kalman results are obtained in the column PC. In other words, it appears to be sensible
to assume that the combination of yields observed without error is the one provided by
the first principal component. Note that in both Tables 3 and 4, the column PC follows
closely the pattern highlighted above, that is its results are placed somewhere between
those in columns y(τ2) and y(τ3) (respectively corresponding to maturities 1 and 5 years)
while the weighted average maturity for the principal component is 3.67 years.
Overall, the relationship between estimates and maturity of the yield without error is

strongest with the most parsimonious specifications of Ω (specifications 1 and 2), and is
weaker when no restrictions are placed on Ω (specification 3). This last case is also clearly
to be preferred on the basis of the value of the maximized loglikelihood.
Generally speaking, the maximum likelihood estimation results with the principal com-

ponent assumed to be observed without pricing error are quite close to the estimates based
on Kalman filter. Not surprisingly, the maximum likelihood standard errors are rather
smaller, particularly in the case of the mean reversion parameter k. The challenge for the
implied states backfitting methodology is then, besides its computational advantages, to
deliver estimators with an accuracy similar to maximum likelihood.
Tables 5 and 6 respectively report the extended backfitting estimation results for the

Vasicek and CIR one-factor term structure model. The definition of columns and rows
of these tables mimics the one used for Tables 3 and 4. However, when the longest
maturity (10 years) yield is assumed to be free of measurement error, it has not been
possible to obtain acceptable results in terms of multiple trials converging to the same
estimates. Of course, increasing the number of trials would may be solve the problem.
Following the same strategy as for maximum likelihood, we have preferred not to give
results in this case. This is the reason why Tables 5 and 6 do not include the column
y(τ4). The results obtained are very similar to maximum likelihood and we follow the
same argument to consider that the most reliable estimation results are obtained when
the principal component is assumed to be free of measurement error.
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Table 5. Extended backfitting estimation results for the Vasicek model

Yield (or combination of yields) without error
Parameter y(τ1) y(τ2) y(τ3) PC

Specification 1, dim η = 1
k 0.1052 0.0790 0.0301 0.0573

(0.0128) (0.0088) (0.0032) (0.0096)
c 0.0680 0.0711 0.0796 0.0712

(0.0490) (0.0722) (0.1660) (0.0960)
σ 0.0272 0.0253 0.0177 0.0219

(0.0028) (0.0024) (0.0012) (0.0021)
λ -0.0065 -0.0047 -0.0022 -0.0045

(0.0053) (0.0058) (0.0050) (0.0055)
Specification 2, dim η = 3

k 0.1122 0.0812 0.0292 0.0278
(0.0153) (0.0092) (0.0053) (0.0031)

c 0.0684 0.0713 0.0869 0.0696
(0.0478) (0.0658) (0.3334) (0.1212)

σ 0.0281 0.0252 0.0178 0.0207
(0.0032) (0.0023) (0.0012) (0.0018)

λ -0.0070 -0.0047 -0.0022 -0.0031
(0.0055) (0.0054) (0.0097) (0.0035)

Specification 3, dim η = 6
k 0.0327 0.0362 0.0259 0.0294

(0.0030) (0.0034) (0.0027) (0.0030)
c 0.0572 0.0643 0.0955 0.0667

(0.1542) (0.3061) (0.3075) (0.0067)
σ 0.0267 0.0223 0.0186 0.0204

(0.0022) (0.0016) (0.0014) (0.0017)
λ -0.0249 -0.0035 -0.0020 -0.0031

(0.0053) (0.0112) (0.0080) (0.0087)

Note: This table reports extended backfitting estimations and asymptotic robust standard errors for
the parameters of one-factor term structure model with short rate process dXt = k (c−Xt) dt + σdWt.

The table also reports the dimension of the vector η of free parameters defining the observation errors
covariance matrix Ω. The first three columns (denoted with y(τ i), i = 1, 2, 3) assume respectively that
zero yields with maturity τ = 3 months, 1 or 5 years are observed without error. Column PC assumes
instead that the first principal component among the four yields is observed without error.

Table 6. Extended backfitting estimation results for the CIR model

Yield (or combination of yields) without error
Parameter y(τ1) y(τ2) y(τ3) PC

Specification 1, dim η = 1
k 0.1722 0.1175 0.0378 0.0992

(0.0116) (0.0722) (0.0055) (0.0352)
c 0.0711 0.0739 0.0800 0.0741

(0.0468) (0.0463) (0.0126) (0.0278)
σ 0.0876 0.0806 0.0566 0.0706

(0.0076) (0.0558) (0.0033) (0.0054)
λ -0.0816 -0.0550 -0.0243 -0.0548

(0.1150) (0.0743) (0.0054) (0.0381)
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Specification 2, dim η = 3
k 0.1870 0.1206 0.0410 0.0406

(0.0427) (0.0100) (0.0134) (0.0061)
c 0.0715 0.0741 0.0796 0.0705

(0.0172) (0.0062) (0.0256) (0.0103)
σ 0.0896 0.0804 0.0570 0.0636

(0.0081) (0.0057) (0.0034) (0.0042)
λ -0.0872 -0.0051 -0.0271 -0.0343

(0.0460) (0.0096) (0.0130) (0.0044)
Specification 3, dim η = 6

k 0.0531 0.0522 0.0332 0.0419
(0.8427) (0.0083) (0.0038) (0.0074)

c 0.0604 0.0670 0.0793 0.0709
(0.9546) (0.0108) (0.0087) (0.0123)

σ 0.0805 0.0682 0.0592 0.0629
(0.0051) (0.0037) (0.0039) (0.0041)

λ -0.0543 -0.0391 -0.0267 -0.0031
(0.8427) (0.0071) (0.0033) (0.0062)

Note: This table reports extended backfitting estimations and asymptotic robust standard errors for
the parameters of one-factor term structure model with short rate process dXt = k (c−Xt) dt+σ

√
XtdWt.

The table also reports the dimension of the vector η of free parameters defining the observation errors
covariance matrix Ω. The first three columns (denoted with y(τ i), i = 1, 2, 3) assume respectively that
zero yields with maturity τ = 3 months, 1 or 5 years are observed without error. Column PC assumes
instead that the first principal component among the four yields is observed without error.

About the content of Tables 5 and 6, a couple of comments are in order.
First, as in Tables 3 and 4, each estimated parameter vector is chosen among 25

different trials corresponding to an equal number of starting points. Contrary to the
maximum likelihood strategy, however, the backfitting approach does not provide an
easy way to discriminate between two or more alternative sample fixed points, which are
sometimes observed in these explorations. After all, even if the uniqueness of the fixed
point of the asymptotic map θ̄ [P 0,λ (·)] is guaranteed by assumption 2.3., it may very
well be the case that for finite T the sample map exhibits multiple fixed points, each
one associated with plausible estimates for θ. The results outlined in the Tables 5 and 6
correspond to those with highest value of the latent criterion.
Second, to detect convergence to a fixed point, we used the following criterion:°°°θ(p+1) − θ(p)°°°
= Max

n¯̄
k(p+1) − k(p)¯̄ , ¯̄c(p+1) − c(p)¯̄ , ¯̄σ(p+1) − σ(p)¯̄ , ¯̄̄λ(p+1) − λ(p) ¯̄̄o < 10−5.

Note that, following the philosophy of extended backfitting, this criterion does not
check the convergence of η. As already explained, there is no reason to assume that the
contraction mapping property remains fulfilled when η is included in the list of structural
parameters. We repeatedly observed that convergence was significantly slowed down by
including η in the criterion, although θ had already settled down to a constant between
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iterations. Also, note that the critical threshold (10−5) is rather probing, since it is equal to
the critical threshold used to detect convergence in the estimation step of the backfitting
approach. Stated otherwise, θ(p) is itself precise to the fifth decimal. Moreover, each
estimation step is started at the previous estimated parameter values. In other words, to
estimate θ(p+1), iterations are started at θ(p).

6.4 Lessons from the application

The first striking conclusion of the empirical results reported above is that the efficiency
loss resulting from the replacement of genuine maximum likelihood estimation by ex-
tended backfitting is negligible. Moreover, it is worthwhile to realize that the backfitting
procedure is more robust than its competitors with respect to specification errors in the
pricing errors dynamics and with respect to boundary problems in the domain of state
variables.
Note also that one could even push the backfitting principle further by including

the principal components strategy (to decide the combination of yields that is free of
measurement errors) inside the backfitting iteration. In other words, for a given value
θ(p) of the structural parameters, one could look for the most negligible combination of
pricing errors. This extension is left for future research.
As far as computing times are concerned, several comments are in order.
First, we have chosen the affine model to allow for a sensible comparison between

backfitting and Kalman filtering. Of course, the computational advantages of the back-
fitting strategy would be much more striking in more severely nonlinear asset pricing
models like models of options on equity with stochastic volatility. As explained in sec-
tion 3, these computational advantages explain that Pan (2002) had chosen an IS-GMM
approach asymptotically equivalent to implied state backfitting.
Second, we have renounced to report in the tables of results above any consideration

about the relative and absolute speed, in terms of number of iterations and time to
convergence, or about the number of trials which actually converged of the estimation
strategies. Yet, we did observe that simple applications of the backfitting strategy are a
matter of seconds while even the Kalman filter approach needs a computing time several
times larger.

7 Concluding remarks
In this article, we have developed a new inference method, called latent backfitting. We
argued that it is in general much more efficient, both on computational and statistical
grounds, than standard filtering or simulation-based methods, when applied to asset pric-
ing models with latent state variables. The main reason of this efficiency gain is that the
implied-states methodology fully takes advantage of the one-to-one relationship between
latent state variables and observed asset prices.
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Moreover, we have shown how the performance assessment of such implied-states in-
ference must disentangle the two key ingredients of the inference strategy: informational
content of the latent model on the one hand, contracting feature of the backfitting map-
ping on the other hand. In a very simple empirical example, we report some evidence of
the practical advantages of the latent backfitting method with respect to more common
likelihood based methods.
However, a lot of work remains to be done to fully exploit the advantages of approach

we propose. The two main directions for future empirical research are the following.
First, the Jacobian matrix ∂θ̄/∂θ10 of the backfitting function is the crucial ingredient of
any rigorous statistical inference based on our iterative or recursive theories. The role of
this matrix has been overlooked in the literature when people think that we are allowed
to use the implied state variables in the estimation as if they were directly observable.
On the other hand, this is precisely because we consider that it will be better to avoid
the direct computation of the Jacobian for the inverse transformation that we propose
the backfitting approach. Therefore, it is the spirit of our approach to look for the
value of this matrix only in a second stage, when estimation has been performed. A
numerical assessment of this Jacobian matrix is a byproduct of our iterative algorithm.
An additional issue to address would be a performance assessment of various possible
extended backfitting strategies that may lead to rather different contracting properties of
the backfitting function.
The second direction for future research is the definition of practical guidelines for

implementation of the recursive approach. While the iterative approach is largely sufficient
for a simple affine one-factor model as considered in section 6, the recursive approach
should be tremendously advantagous in less user-friendly models. The basic idea is that
it does not make sense to filter all the state values as long as the estimation algorithm
has not reached sensible values. While the Kalman filter has proven its usefulness in
Gaussian linear state-space models, the recursive strategies we propose here should be
the best approaches to non-linear state space structural models of asset pricing. However,
people familiar with Robbins-Monro type algorithms know that the empirical performance
of such algorithms are highly dependent on key parameters like the learning rate, the
Newton-Raphson type devices and the truncation scheme. Therefore, there is still a need
of work regarding recursive approaches in asset pricing to get user-friendly methodologies
that are fully reliable in practice.
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Appendix
A.1 Identifiability in binary response models

Let us note that, typically, the identification conditionC2’ (see subsection 2.3) amounts
to the identification of θ from the observed variables. Let us consider, for example, a
general binary response model without any specific assumption on the latent regression
function h(Xt, θ1). We have

E
£
ut | Yt,Xt; θ1

¤
= YtE

£
ut | ut > −h(Xt, θ1), Xt

¤
+ (1− Yt)E

£
ut | ut ≤ −h(Xt, θ1), Xt

¤
,

where

E
£
ut | ut > −h(Xt, θ1), Xt
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=
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£
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ª | Xt¤ not
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1
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1
¢

1− p ¡Xt; θ1¢ .
Since, by definition
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¡
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we obtain

E
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Thus, condition C2’ is equivalent to the observable model identification condition

p
¡
Xt; θ

1
¢
= p

¡
Xt; θ

0
¢

=⇒ θ1 = θ0,

provided that, for any θ1 ∈ Θ, the range of h(Xt, θ1) is contained in the interior of the
support of ut and thus Ψ

¡
Xt; θ

1
¢ 6= 0.

A.2 About minimizing the squares of the generalized residuals

Let us note that the binary choice model provides an example of criterion QT [θ,λ (θ)]
which has not to be maximized with respect to both occurrences of θ. Indeed,

Q∞[θ,λ
¡
θ1
¢
] = −E

h£
Y ∗t (θ

1)− h(Xt, θ)
¤2i

= −E
h£
h(Xt, θ

1)− h(Xt, θ)
¤2i− E hE £ut | Yt, Xt; θ1¤2i

= −E
h£
h(Xt, θ

1)− h(Xt, θ)
¤2i− E hũt ¡θ1¢2i .
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Since for θ = θ1 the first term after the second equality vanishes, it remains to check that
θ1 = θ0 does not necessarily yield the smaller value for E

h
ũt
¡
θ1
¢2i
. Recall that we have
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Let p0 = E [Yt | Xt] , p1 = p
¡
Xt; θ
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¢
and Ψ1 = Ψ
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. Then,

E
h
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¡
θ1
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= E

·
Ψ21

µ
p0
p21
+

1− p0
(1− p1)2

¶¸
and there is no reason to believe that the last expectation is minimized for θ1 = θ0.

A.3 A matrix algebra lemma

Lemma A.1 Let A and B symmetric matrices such that AÀ B À 0 and A is invertible.
Then,
a) the eigenvalues of A−1B lie in [0, 1]; if A−B is positive definite, then the eigenvalues

are smaller than one.
b) if, in addition, A2 −B2 is positive definite, then kA−1Bk < 1.

Proof a) For any λ > 1, λA−B is positive definite and thus
det

¡
λI − A−1B¢ = det ¡A−1¢ det (λA−B) > 0.

If A−B is positive definite the inequality still holds for λ = 1. On the other hand,
det

¡
λI − A−1B¢ = det ¡A−1¢det (λA−B) = det ¡λI −A−1/2BA−1/2¢ .

In other words, the eigenvalue of A−1B coincide with those of the positive semidefinite
matrix A−1/2BA−1/2.We can conclude that the eigenvalues of A−1B lie in [0, 1] if AÀ B
and they are certainly smaller than one if A−B is positive definite.
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b) The square of the norm of A−1B is the largest eigenvalue of BA−2B. Since A2−B2
positive definite implies B−2 − A−2 positive definite, for any λ ≥ 1 we have λB−2 −
A−2 positive definite and therefore we can write

det
¡
λI −BA−2B¢ = det (B)2 det ¡λB−2 − A−2¢ > 0.

That is, all the eigenvalues of BA−2B lie in [0, 1).

A.4 Consistency of the latent backfitting

Proof of Proposition 4.2 The proof follows the steps of the usual weak consistency
proof for argmax estimators (see, e.g., Newey and McFadden (1994), page 2121). If
θ1 ∈ Θ, then
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£
θ
£
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¤
, λ(θ1)

¤ ≤ QT £ θT (λ(θ1)),λ(θ1)¤ . (.1)

Let η > 0. Then,

lim
T→∞

P

Ã
sup
θ1∈Θ

©
QT
£
θT (λ(θ

1)), λ(θ1)
¤−Q∞ £ θT (λ(θ1)),λ(θ1)¤ª < η/2! = 1 (.2)

and

lim
T→∞

P

Ã
sup
θ1∈Θ

©
Q∞

£
θ
£
P 0,λ(θ1)

¤
,λ(θ1)

¤−QT £ θ £P 0,λ(θ1)¤ ,λ(θ1)¤ª < η/2! = 1 (.3)

(see Assumption 4.1). From (.1) to (.3) we obtain that, for any η > 0
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¤−Q∞ £θ, λ(θ1)¤ª , V ⊂ Θ2 = Θ×Θ,

and, for ε > 0, define the set
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©
(θ, θ1) ∈ Θ2; °°θ − θ £P 0,λ(θ1)¤°° < εª

which is supposed not to be empty. The continuity of θ [P 0,λ (·)] implies that Θ2 \Nε is
a compact set. Moreover, since the function¡

θ, θ1
¢→ Q∞
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Now, define the set

AT =
©¡
θT (λ(θ

1)), θ1
¢
; θ1 ∈ Θª ⊂ Θ2.

Note that the uniform convergence in probability of θT (λ(·)) is equivalent to
P (AT ⊂ Nε)→ 1, T →∞, (.6)

for any ε > 0. If, for some ε0 > 0, AT is not included in Nε0, then there exists θ1T ∈ Θ
(depending on ε0 and the sample) such that
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with η depending only on ε0. Consequently,
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Therefore, assuming that (.6) fails is contradicted by (.4) and thus, the proof is complete.

Proof of Proposition 4.4 From the contracting property stated in Assumption 4.3 we
get, for any T ≥ 1

°°°bθT − θ0°°° ≤ °°°θT ³λ(θ(p(T ))T )
´
− θ

h
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Finally, use Proposition 4.2, k ∈ (0, 1), p(T ) → ∞ and the fact that Θ is a bounded set
in order to complete the proof.

A.5 Asymptotic normality for the latent backfitting

Proof of Proposition 4.8 For simpler writings denote

ST (θ, θ
1) =

∂QT
∂θ

£
θ,λ

¡
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¢¤

θ, θ1 ∈ Θ.
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Let i ∈ {1, ..., p} and consider a Taylor expansion of the ith component of ST (·, θ(p(T ))T ) in
a convex neighborhood of θ0. We obtain
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We can derive
√
T (bθT − θ0) = £Σ(θ0, θ0)−H(θ0)¤−1√TST (θ0, θ0) + oP (1)

which implies √
T (bθT − θ0) d−→ Np(0, V (θ

0)),

with V (θ0) as in (4.8).

A.6 Consistency of the recursive latent backfitting

Kuan and White (1994a) (see also Kuan and White (1994b)) provide a set of general as-
sumptions for proving the almost sure convergence of stochastic approximation (Robbins-
Monro) procedures; see their Assumptions A.1 to A.5. Assumption A.1 introduces the
data generating process denoted by {Zt} and taking values in Rs, s ≥ 1, while the As-
sumption A.4 automatically hold for a learning rate at = ct−1, t = 1, 2, ... with c a positive
constant. Let us recall the remaining three assumptions of Kuan and White (1994a). The
general RM procedure they consider is

bθt+1 = bθt + atψ ³Zt,bθt´ , t = 1, 2, ..., (.7)

and it approximates θ0, the zero of a function Ψ (θ) defined on a compact set Θ ⊂ Rk

with values in Rk.
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The Euclidean spaces Rk, k ≥ 1 are endowed with the Borel σ−fields and the function
ψ : Rs×Θ→ Rp is measurable. The following three assumptions correspond, respectively,
to Assumption A.2, A.3 and A.5 of Kuan and White (1994a). For our purposes {Zt} =
{Yt, Xt} , θ becomes

¡
vec(G)0, θ10

¢0
, θ0 is transformed in

¡
vec(Σ

¡
θ0
¢
)0, θ00

¢0
, while the

parameters set Θ is replaced by Θ× U, where U = {vec(G), G non singular} ⊂ Rp2+p is
a compact set including vec(Σ(θ0)). Moreover,

ψ
³
Zt,
¡
vec(G)0, θ10

¢0´
=MRM

t

³¡
vec(G)0, θ10

¢0´
,

Ψ
³¡
vec(G)0, θ10

¢0´
=MRM

³¡
vec(G)0, θ10

¢0´
with MRM

t and MRM defined in (5.11) and (5.10), respectively.

Assumption A.0.1 i) There exist functions b : Θ→ R+ continuous and hi : Rs → R+,
i = 1, 2 measurables such that

kψ(z, θ)k ≤ b (θ) h1(z) + h2(z), (z, θ) ∈ Rs ×Θ.

ii) There exist functions ρ1 : R+ → R+ and h3 : Rs → R+ such that ρ1 (u) → 0 as
u→ 0, h3 is measurable, and for each (z, θ1, θ2) in Rs ×Θ×Θ

kψ(z, θ1)− ψ(z, θ2)k ≤ ρ1 (kθ1 − θ2k)h3(z).
Assumption A.0.2 E [ψ(Zt, θ)] < ∞ for each θ ∈ Θ, and Ψ(θ) = limt→∞E [ψ(Zt, θ)] .
Moreover, Ψ(·) is continuous on Θ.
Assumption A.0.3 a) For each θ ∈ Θ, PT

t=1 at (ψ(Zt, θ)− E [ψ(Zt, θ)]) converges al-
most surely.
b) For j = 1, 2, 3, there exist bounded non-stochastic sequences

©
ηjt
ª
such that the

sum
PT

t=1 at
¡
hj(Zt)− ηjt

¢
converges almost surely.

Assumption A.0.1 imposes some mild restrictions on the growth and smoothness prop-
erties of the measurement function ψ, while Assumption A.0.2 imposes a mild stationary
requirement. As proved by Kuan and White, there exists a large class of data generating
processes satisfying Assumption A.0.3, in particular the class of mixingales.

Proof of Proposition 5.4 Under the stated assumptions, there exists a convex neigh-
borhood of δ0 = (vec(Σ(θ0))0, θ00)0 on which MRM (·) is continuously differentiable. Con-
sequently, we can write

MRM (δ) =
∂MRM

∂δ0
¡
δ0
¢ ¡
δ − δ0¢+R (δ) ,

72



with
¡
∂MRM/∂δ0

¢ ¡
δ0
¢
negative stable and R (δ) /

°°δ − δ0°°→ 0 as
°°δ − δ0°°→ 0. Classi-

cal results from ODE theory show that this is sufficient to ensure the (local) asymptotic
stability of δ0 for the ODE corresponding to our recursive procedure, that is

∂δ

∂t
(t) =MRM (δ (t)) ,

(see, e.g., Rouche and Mahwin (1980), ch. 1). Now, we can apply Theorem II.2.1 (b) of
Kuan and White (1994a).

A.7 Asymptotic normality for the recursive latent backfitting

Below, we present a set of general conditions ensuring the asymptotic normality of an
almost sure convergent RM estimator defined as (.7) with at = ct−1, t = 1, 2, ..., c > 0.
See Theorem II.2.4 of Kuan and White (1994a) (KW hereafter) and their Assumptions
B1 to B3 and B5. See also Assumptions (A1)-(A5) and Theorem 2 of Kushner and
Huang (1979). The notation is that used in the previous appendix and the function
ψ : Rs × Θ → Rp is still supposed measurable. Moreover, θ0, the zero of Ψ (θ) , is an
interior point of Θ.

Assumption A.0.1 {Zt} = {Z1, Z2, ...} is stationary process and Ψ (θ) = E [ψ (Zt, θ)] .

Assumption A.0.2 For each z ∈ Rs, ψ (z, ·) is continuously differentiable such there
exists functions ρ2 : R+ → R+ and h4 : Rs → R+ such that ρ2 (u) → 0 as u → 0, h4 is
measurable, and for each θ in an open neighborhood in Θ of θ0 and z ∈ Rs,°°°°∂ψ∂θ (z, θ)− ∂ψ∂θ (z, θ0)

°°°° ≤ ρ2 ¡°°θ − θ0°°¢h4(z).
Assumption A.0.3 E

h°°ψ ¡Zt, θ0¢°°6i <∞ and E
h°° ∂ψ

∂θ0
¡
Zt, θ

0
¢°°2i <∞.

Assumption A.0.4 i) E [h4 (Zt)] <∞ and

TX
t=1

1

t
(h4(Zt)− E [h4 (Zt)]) ,

converges almost surely.
ii) Let H∗ = E

£
∂ψ
∂θ0
¡
Zt, θ

0
¢¤
and h∗ = E

£°° ∂ψ
∂θ0
¡
Zt, θ

0
¢°°¤ . Then

TX
t=1

1

t

·
∂ψ

∂θ0
¡
Zt, θ

0
¢−H∗

¸
,

TX
t=1

1

t

·°°°°∂ψ∂θ0 ¡Zt, θ0¢
°°°°− h∗¸

converge almost surely.
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Assumption A.0.5 i) If κt = E
h°°E £ψ ¡Zt, θ0¢ | Z1¤°°2i1/2, t ≥ 1, then

P∞
t=1 κ

1/2
t <

∞.
ii)
P∞

t=1 ξ
1/2
t <∞, where

ξ2t = sup
j≥0

E

·°°°E ³ψ ¡Zt, θ0¢ψ ¡Zt+j, θ0¢0 | Z1´− σj°°°2¸
and σj = E

³
ψ
¡
Zt, θ

0
¢
ψ
¡
Zt+j, θ

0
¢0´
.

KW and Kushner and Huang (1979) provide detailed remarks on these conditions. It
is shown that such kind of assumptions are far less restrictive than it may seem at the
first sight. Note that the previous assumptions imply, in particular, that ∂Ψ/∂θ(θ) =
E [∂ψ/∂θ (Zt, θ)] and thus H∗ = ∂Ψ/∂θ(θ0).

Proof of Proposition 5.5 For the application of the general result of KW to our recursive
procedure, the same identifications as in the previous appendix have to be done ({Zt} =
{Yt, Xt} , the parameters are

¡
vec(G)0, θ10

¢0
, ...).

By simple algebra we obtain

H̄ = c
∂MRM

∂δ0
(δ0) +

1

2
Ip2+p =

 ¡−c+ 1
2

¢
Ip2 c ∂vec(Σ(θ0))/∂θ10

0 F (θ0, c)

 ,
which is negative stable under the stated assumptions. The lower-right p× p bloc of the
matrix R defined in (5.15) is

R =
X
t≥0
E
£
M21(δ

0)M2t+1(δ
0)0
¤
+
X
t≥1
E
£
M2t+1(δ

0)M21(δ
0)0
¤

=
X
t≥0
E
£
(Σ(θ0)−1M1(θ

0) ) (Σ(θ0)−1Mt+1(θ
0) )0

¤
+
X
t≥1
E
£
(Σ(θ0)−1Mt+1(θ

0) ) (Σ(θ0)−1M1(θ
0) )0

¤
= Σ(θ0)−1

ÃX
t≥0
E
£
M1(θ

0)Mt+1(θ
0)0
¤
+
X
t≥1
E
£
Mt+1(θ

0)M1(θ
0)0
¤!
Σ(θ0)−1

= Σ(θ0)−1B(θ0)Σ(θ0)−1,

with Mt(·), t ≥ 1, defined in (5.5). Due to the block triangularity of H̄, the lower right
p × p bloc of the corresponding matrix (5.16) is exactly V RM(θ0). It remains to invoke
Theorem II.2.4 of KW.
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