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Dans cet article, on montre une équivalence directe entre la classification spectrale et l'ACP à 
noyau, et on montre que les deux sont des cas particuliers d'un problème plus général, celui 
d'apprendre les fonctions propres d'un noyau. Ces fonctions fournissent une base pour un 
espace de Hilbert dont le produit scalaire est défini par rapport à la densité des données. Les 
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In this paper, we show a direct equivalence between spectral clustering and kernel PCA, and 
how both are special cases of a more general learning problem, that of learning the principal 
eigenfunctions of a kernel, when the functions are from a Hilbert space whose inner product 
is defined with respect to a density model. This defines a natural mapping for new data points, 
for methods that only provided an embedding, such as spectral clustering and Laplacian 
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1 Introduction

Clustering and manifold learning are intimately related: clusters and manifold both
are zones of high density. Up to recently, both tasks have been treated quite sepa-
rately with different unsupervised learning procedures, but recent work with kernel
methods, as well as this paper, are changing that perspective.
Spectral clustering can give very impressive results and has attracted much interest
in the last few years (Weiss, 1999; Ng, Jordan and Weiss, 2002). It is based on two
main steps: first embedding the data points in a space in which clusters are more
“obvious” (using the eigenvectors of a Gram matrix), a space in which the structure
of the data is revealed, and then applying a classical clustering algorithm such as
K-means, e.g. as in (Ng, Jordan and Weiss, 2002). What is very interesting is
the way in which sets of points that are on different highly non-linear manifolds
can get mapped (in the above first step) to almost linear subspaces (different for
each of these manifolds), as shown below in Figure 1. The long-term goal of the
research program to which this paper belongs is to better understand such mappings
and take advantage of this understanding to open the door for new unsupervised
learning procedures.

⇒

Fig. 1. Example of the transformation learned as part of spectral clustering. Input
data on the left, transformed data on the right. Colors and cross/circle drawing are
only used to show which points get mapped where: the mapping reveals both the
clusters and the internal structure of the two manifolds.

One problem with spectral clustering is that the procedure is highly sensitive to the
choice of the kernel, for example it is very sensitive to the choice of the spread (vari-
ance) of a Gaussian kernel. Another is that the procedure provides an embedding
for the training points, not for new points. A very similar method for dimensional-
ity reduction has been proposed in (Belkin and Niyogi, 2002a), based on so-called
Laplacian eigenmaps. Belkin and Niyogi propose to use such transformations in a
semi-supervised and transductive setting: the unlabeled test set and the input part
of the training set are used to learn a mapping to a more revealing representation,
and the transformed training set is used with a supervised learning algorithm.
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Kernel PCA is another unsupervised learning method that was proposed earlier
and that is based on the simple idea of performing Principal Components Analysis
in the feature space of a kernel (Schölkopf and Müller, 1996). We will explain this
approach in much more detail in the paper.

We show a direct equivalence between the embedding computed in spectral clustering
and the mapping computed with kernel PCA, and how both are special cases of a
more general learning problem, that of learning the principal eigenfunctions of a
kernel, when the functions are from a Hilbert space whose inner product is defined
with respect to a density model.

A consequence is that a natural mapping is defined, which can be applied to new
points, for methods such as spectral clustering and Laplacian eigenmaps for which
only an embedding of the training points was available.

2 Spectral Manifold Learning Methods

2.1 Kernels and Notation

The methods described here are based on kernels, i.e. symmetric two-argument
functions. We also assume that the linear operator in L2 corresponding to the
kernel is a compact operator, i.e. it maps functions in L2 to a closed and totally
bounded set.
Often a kernel K is assumed to be semi-positive definite, and in that case it can
be written as a dot product in a “feature space” φ(x) (see Mercer theorem and a
review of learning algorithms based on kernels, e.g. (Schölkopf, Burges and Smola,
1999; Wahba, 1990)):

K(x, y) =
∑

i

φi(x)φi(y) = φ(x) · φ(y) (1)

where both x and y are in Rd, while φ(x) ∈ Rr, or to allow r not necessarily finite,
we write φ(x) ∈ l2, the space of bounded sum of squares sequences.
We are given a data set {x1, . . . , xn} with examples xi ∈ Rd. We will associate
a density p(x) to the data generating process, either the empirical density or one
obtained through a smoothing model. We will write E[.] for expectations over that
density, or to make it clear over which variable the integral is performed, we will
write

Ex[f(x)] =
∫

f(x)p(x)dx.

For example, in the next two sections (on spectral clustering and on kernel PCA),
we will restrict our attention to the empirical distribution associated with our data
set, so we would have

Ex[f(x)] =
1
n

∑
i

f(xi).
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2.2 Spectral Clustering

Several variants of spectral clustering have been proposed (Weiss, 1999). They
can yield impressively good results where traditional clustering looking for “round
blobs” in the data, such as K-means, would fail miserably. Here we follow the
treatment of (Ng, Jordan and Weiss, 2002) (see the figures in the same paper).
The most commonly used kernel is the Gaussian kernel:

K(x, y) = e−||x−y||/σ2
. (2)

Note that the choice of σ can strongly influence the results, so this hyper-parameter
has to be selected carefully.
Spectral clustering works by first embedding the data points in a space where
clusters are more clearly revealed. An example of such embedding is shown in
Figure 1. The embedding is obtained as follows. First form the symmetric semi-
positive definite Gram matrix M with

Mi,j = K(xi, xj) (3)

and then using the row sums
Di =

∑
j

Mi,j

normalize it as such:
M̃i,j =

Mi,j√
DiDj

.

Note for comparison later in the paper that, equivalently, this divisive normalization
of the Gram matrix corresponds (up to a constant) to defining a normalized kernel
K̃ as follows:

K̃(x, y) =
K(x, y)√

Ex[K(x, y)]Ey[K(x, y)]
(4)

(where the expectations are over the empirical distribution). Finally compute the
m < n principal eigenvectors of M̃ , satisfying

M̃αk = λkαk.

Let A be the m×n matrix of these eigenvectors. The lower-dimensional embedding
associates the point xi in Rd to the i-th column of A, Ai ∈ Rm:

Ai = (α1i, α2i, . . . , αmi). (5)

The coordinates of the examples within the eigenvectors represent an embedding
that has very interesting properties (see Figure 1). Clustering is obtained from these
coordinates. In the illustration of Figure 1, the two clusters correspond to groups
of points that have an approximately constant angle, i.e. they are near one of two
lines that start at the origin. Thus, in (Ng, Jordan and Weiss, 2002) it is proposed
to first project these coordinates onto the unit sphere before performing K-means
clustering. Projection onto the unit sphere maps Ai into Ai/||Ai||. See (Ng, Jordan
and Weiss, 2002; Weiss, 1999) for further justification of this procedure and its
relation to the graph Laplacian and the min-cut problem.
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2.3 Kernel Principal Components Analysis

Kernel PCA is another unsupervised learning technique that maps data points
to a new space. It generalizes the Principal Components Analysis approach to
non-linear transformations using the kernel trick (Schölkopf and Müller, 1996;
Schölkopf, Smola and Müller, 1998; Schölkopf, Burges and Smola, 1999). The al-
gorithm implicitly finds the leading eigenvectors and eigenvalues of the covariance
of the projection φ(x) of the data in “feature space” (see eq. 1):

C = Ex[(φ(x)− Ex[φ(x)])(φ(x)− Ex[φ(x)])′] = Ex[φ̃(x)φ̃(x)′] (6)

where
φ̃(x) def= φ(x)− Ex[φ(x)].

Let us define the eigenvectors of the covariance matrix:

Cvk = λkvk.

Using the notation of the previous section, the kernel PCA algorithm has the
following steps.

– Training:

1. Centering: the kernel K is first “normalized” into K̃ such that the corre-
sponding feature space points φ̃(xi) have zero expected value (under the
data empirical distribution):

K̃(x, y) = K(x, y)− Ex[K(x, y)]− Ey[K(x, y)] + Ex[Ey[K(x, y)]]. (7)

See derivation of this expression in the next subsection. A corresponding
normalized Gram matrix M̃ is formed. Note this additive normalization is
different from normalization 4.

2. Eigen-decomposition: find the principal eigenvectors αk and eigenvalues ak

of the Gram matrix M̃ (M̃i,j = K̃(xi, xj)), i.e. solving

M̃αk = akαk.

– Test points projection: to project a test point x on the k-th eigenvector vk

of the (properly centered) covariance matrix, compute

πk(x) = vk · φ̃(x) =
n∑

i=1

αkiK̃(xi, x). (8)

Note that vk =
∑n

i=1 αkiφ̃(xi), as shown in (Schölkopf, Smola and Müller,
1998).
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2.4 Normalization of the Kernel by Centering
It can be shown that the above normalization of the kernel indeed yields to centering
of φ̃(x), as follows. The normalized kernel

K̃(x, y) = φ̃(x) · φ̃(y)

is expanded as follows

K̃(x, y) = (φ(x)− Ex[φ(x)]) · (φ(y)− Ey[φ(y)])
= K(x, y)− Ex[K(x, y)]− Ey[K(x, y)] + Ex[Ey[K(x, y)]] (9)

2.5 Other Spectral Dimensionality Reduction Methods
Several other dimensionality reduction and manifold discovery methods rely on
the solution of an eigen-decomposition problem. For example, Local Linear Em-
bedding (Roweis and Saul, 2000) and Isomap (Tenenbaum, de Silva and Langford,
2000) try to discover a non-linear manifold, while Multidimensional Scaling (Cox
and Cox, 1994) looks for a linear manifold (but starting from a matrix of similar-
ities between pairs of points, whereas Principal Components Analysis starts from
a set of points and the definition of a dot product). An interesting link between
multidimensional scaling and kernel PCA is discussed in (Williams, 2001).
A non-linear manifold discovery method very close to the mapping procedure used
in spectral clustering is that of Laplacian eigenmaps (Belkin and Niyogi, 2002a;
Belkin and Niyogi, 2002b; He and Niyogi, 2002; Belkin and Niyogi, 2002c), which
have been proposed to perform semi-supervised learning: the mapping is obtained
through the eigen-decomposition of an affinity matrix, on the input part of both
labeled and unlabeled data. The mapped inputs from the labeled data set can then
be used to perform supervised learning from a representation that is hoped to be
more meaningful, since only the types of variations of the data that are relevant to
the input distribution would be represented in the transformed data.
Note also that it has already been proposed to use kernel PCA as a preprocessing
step before doing clustering, in (Christianini, Shawe-Taylor and Kandola, 2002).
Note that very interesting links have already been established between kernel PCA
and learning eigenfunctions in (Williams and Seeger, 2000). In particular, the eigen-
values and eigenvectors obtained from the eigen-decomposition of the Gram matrix
converge to the eigenfunctions of the linear operator defined by the Kernel K with
respect to the data density p, as in equation 12 below, as the number of data points
increases.

3 Similarity Kernel Eigenfunctions

In this section we introduce the notion of eigenfunctions of a kernel, which we
will find later to generalize both spectral clustering and kernel PCA. Eigenfunctions
thus defined have already been introduced in (Williams and Seeger, 2000), where
the convergence of the Gram matrix eigenvalues to the kernel operator eigenvalues
is shown. In section 3.2, we discuss how one might learn the eigenfunctions when
the reference density p(x) below is not necessarily the empirical density.
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3.1 Hilbert Space and Kernel Decomposition

Consider a Hilbert space H, a set of real-valued functions in Rd accompanied by
an inner product defined with a density p(x):

〈f, g〉 def=
∫

f(x)g(x)p(x)dx. (10)

This also defines a norm over functions:

||f ||2 def= 〈f, f〉.

As discussed in (Williams and Seeger, 2000), the eigenfunctions of the linear opera-
tor corresponding to a given semi-positive kernel function K(x, y) are thus defined
by the solutions of

Kfk = λkfk (11)

where f ∈ H, λk ∈ R, and we denote Kf the application of the linear operator K
to the function f ,

(Kf)(x) def=
∫

K(x, y)f(y)p(y)dy. (12)

We assume that K and p are such that K has a discrete spectrum (e.g. obtained
with bounded values on a compact support). The kernel K can thus be seen as
a linear operator, and expanded in terms of a basis formed by its eigenfunctions
(Mercer):

K =
∑

k

λkfkf ′k

where by convention |λ1| ≥ |λ2| ≥ . . . This can also be written as follows:

K(x, y) =
∞∑

k=1

λkfk(x)fk(y).

Because we choose the eigenfunctions to form an orthonormal basis, we have

〈fk, fl〉 = δk,l.

Section 3.2 shows a criterion which can be minimized in order to learn the principal
eigenfunctions.
(Williams and Seeger, 2000) have shown the following when p(x) is the true data
generating density and the unknown function f is estimated with an approximation
g that is a finite linear combination of basis functions: if f is assumed to come from
a zero-mean Gaussian process prior with covariance Ef [f(x)f(y)] = K(x, y), then
the best choices of basis functions, in terms of expected squared error, are (up
to rotation/scaling) the leading eigenfunctions of the linear operator K as defined
above.
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3.2 Learning the Leading Eigenfunctions

Using the Fourier decomposition property, the best approximation of K(x, y) w.r.t.
H’s norm using only m terms is the expansion that uses the first m terms (with
largest eigenvalues):

m∑
k=1

λkfk(x)fk(y) ≈ K(x, y),

in the sense that it minimizes the H-norm of the approximation error. In particu-
lar, let us consider the principal eigenfunction. It is the norm 1 function f which
minimizes

JK(f, λ) =
∫

(K(x, y)− λf(x)f(y))2p(x)p(y)dxdy

i.e.
(f1, λ1) = argminf,λJK(f, λ) (13)

under the constraint ||f || = 1. This is only a generalization to functional spaces of
the results already obtained for principal component analysis.

Proposition 1 The principal eigenfunction of the linear operator (eq. 11) corre-
sponding to kernel K is the norm-1 function f that minimizes the reconstruction
error

JK(f, λ) =
∫

(K(x, y)− λf(x)f(y))2p(x)p(y)dxdy.

The proof can be found in (Bengio, Vincent and Paiement, 2003).
Note that the proof also gives us a criterion in which the norm 1 constraint is
eliminated:

JK(g) =
∫

(K(x, y)− g(x)g(y))2p(x)p(y)dxdy (14)

which gives a solution g from which we can recover λ and f through λ = ||g||2 and
f = g/

√
λ.

Note that the function g that we obtain is actually a component of a “feature
space” φ for K. Indeed, if

K(x, y) =
∑

i

λifi(x)fi(y)

then writing φi(x) =
√

λifi(x) gives rise to a dot product decomposition of K,

K(x, y) = φ(x) · φ(y).

Let us now consider learning not only the first but also the leading m eigenfunctions.

Proposition 2 Given the principal m − 1 eigenfunctions fi of the linear oper-
ator associated with a symmetric function K(x, y) (eq. 11), the m-th one can
be obtained by minimizing w.r.t. g the expected value of (K(x, y) − g(x)g(y) −∑k−1

i=1 λifi(x)fi(y))2 over p(x, y) = p(x)p(y). Then we get the m-th eigenvalue
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λm = ||g||2 and the m-th eigenfunction fm = g/
√

λm.

Proof

Approximate the kernel with g(x)g(y) +
∑m−1

i=1 λifi(x)fi(y):

Jm =
∫

(K(x, y)− g(x)g(y)−
m−1∑
i=1

λifi(x)fi(y))2p(x)p(y)dxdy.

where g(x) can be decomposed into g(x) def= λ′f ′(x) with ||f ′|| = 1, and (fi, λi) are
the first m−1 (eigenfunction,eigenvalue) pairs in order of decreasing absolute value
of λi. We want to prove that g that minimizes Jm is fm.
The minimization of Jm with respect to λ′ gives

∂Jm

∂λ′
= 2

∫
(K(x, y)− λ′f ′(x)f ′(y)−

m−1∑
i=1

λifi(x)fi(y))f ′(x)f ′(y)p(x)p(y)dxdy = 0

which gives rise to

λ′ = 〈f ′,Kf ′〉 −
m−1∑
i=1

∫
λifi(x)fi(y)f ′(x)f ′(y)p(x)p(y)dxdy (15)

We have

Jm = Jm−1 − 2
∫

λ′f ′(x)f ′(y)(K(x, y)−
∑m−1

i=1 λifi(x)fi(y))p(x)p(y)dxdy
+

∫
(λ′f ′(x)f ′(y))2p(x)p(y)dxdy

which, using eq. 15, gives
Jm = Jm−1 − λ′2.

λ′2 should be maximized for Jm to be minimized (giving rise to the ordering of
the eigenfunctions). Take the derivative of Jm w.r.t. the value of f ′ at z (under
regularity conditions to bring derivatives inside integrals):

∂Jm

∂f ′(z)
= 2

∫
(K(z, y)− λ′f ′(z)f ′(y)

m−1∑
i=1

λifi(z)fi(y))λ′f ′(y)p(y)dy

and set it equal to zero:∫
K(z, y)f ′(y)p(y)dy =

m−1∑
i=1

∫
λifi(z)fi(y)f ′(y)p(y)dy.

Using the constraint ||f ′||2 = 〈f ′, f ′〉 =
∫

f ′(y)2p(y)dy = 1, we obtain:

Kf ′ = λ′f ′ +
m−1∑
i=1

∫
λifi(z)fi(y)f ′(y)p(y)dy. (16)
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Using the assumption that fi are orthogonal for i < m, rewrite eq. 16 as

Kf ′ = λ′f ′ +
m−1∑
i=1

λifi〈f ′, fi〉.

Since we can write the application of K in terms of the eigenfunctions,

Kf ′ =
∞∑

i=1

λifi〈f ′, fi〉,

we obtain

λ′f ′ = λmfm〈f ′, fm〉+
∞∑

i=m+1

λifi〈f ′, fi〉.

Applying Perceval’s theorem to obtain the norm on both sides, we get

λ′2 = λm
2〈f ′, fm〉2 +

∞∑
i=m+1

λi
2〈f ′, fi〉2.

If the eigenvalues are distinct, we have λm > λi for i > m, and the last expression
is maximized when 〈f ′, fm〉 = 1 and 〈f ′, fi〉 = 0 for i > m, which proves that
fm = f ′m is in fact the m-th eigenfunction of the kernel K and thereby λm = λ′m.
If the eigenvalues are not distinct, then the result can be generalized in the sense that
the choice of eigenfunctions is not anymore unique but the eigenfunctions sharing
the same eigenvalue form an orthogonal basis for a subspace.
Then since we have assumed g = λ′f ′, after obtaining g through the minimization
of Jm, since this minimization yields λ′ = λm and f ′ = fm, and since ||fm|| = 1
by definition, we get λm = ||g||2 and fm = g/

√
λm.

Q.E.D.

To simplify notation, let us define the “residual kernel”

Kk(x, y) = K(x, y)−
k∑

i=1

λkfk(x)fk(y), (17)

with K0 = K.
Justified by Proposition 2 above, a general algorithm for learning the first m eigen-
functions (and corresponding eigenvalues) of a linear operator K can thus be writ-
ten as follows:

– For k = 1 to m

(fk, λk) =
argminf,λ

||f ||=1
JKk−1(f, λ).

In practice the minimization would have to be performed on a large class of func-
tions or non-parametrically, i.e. we impose some restrictions on the class of func-
tions. A special case of interest is that in which the density p(x) is the empirical
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density. In that case the minimization of J can be done with numerical analysis
methods for finding the eigenvectors of a matrix. However, it might be interesting
to consider smooth or otherwise constrained classes of functions (which can only
approximate the above minimization).
Following the reasoning exposed for online learning of the principal components (Dia-
mantras and Kung, 1996), a simpler implementation would not have to wait for
the first m − 1 eigenfunctions before beginning to learn the m-th one. They can
all be learned in parallel, using the algorithm to learn the m-th one that assumes
that the first m − 1 are learned: convergence will simply be faster for the leading
eigenfunctions. Note that convergence also depends on the ratios of eigenvalues,
as usual for PCA and iterative eigen-decomposition algorithms (Diamantras and
Kung, 1996).

4 Links between the Methods

In this section we show that finding the eigenfunctions of the kernel function in-
cludes as a special case both the embedding found in spectral clustering and that
found by Kernel PCA.

Proposition 3 If we choose for p(x) (the weighing function in the Hilbert space
inner product of eq. 10) the empirical distribution of the data, then the embedding
Aik obtained with spectral clustering (see eq. 5) is equivalent to values of the eigen-
functions: Aik = fk(xi) where fk is the k-th principal eigenfunction of the kernel.

Proof

As shown in Proposition 1, finding function f and scalar λ minimizing∫
(K̃(x, y)− λf(x)f(y))2p(x)p(y)dxdy

such that ||f || = 1 yields a solution that satisfies the eigenfunction equation∫
K̃(x, y)f(y)p(y)dy = λf(x)

with λ the (possibly repeated) maximum norm eigenvalue, i.e. we obtain f = f1 and
λ = λ1 respectively the principal eigenfunction (or one of them if the maximum
eigenvalue is repeated) and its corresponding eigenvalue.
Here K̃ refers to a possibly normalized kernel, e.g. such as may be defined in eq. 4
for spectral clustering.
Using the empirical density and considering the values of x at the data points xi,
the above equation becomes (for all xi):

1
n

∑
j

K̃(xi, xj)f(xj) = λf(xi).
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Let us write uj = f(xj) and M̃ij = K̃(xi, xj), then the above can be written

M̃u = nλu.

The spectral clustering method thus solves the same eigenvalue problem (up to scal-
ing the eigenvalue by n) and we obtain for the principal eigenvector:

Ai1 = f1(xi).

To obtain the result for the other coordinates, i.e. other eigenvalues, simply consider
the “residual kernel” Kk as in eq. 17 and recursively apply the same reasoning to
obtain that Ai2 = f2(xi), Ai3 = f3(xi), etc... Q.E.D.
Discussion

What do we learn from this proposition? Firstly, there is an equivalence between
the principal eigenvectors of the Gram matrix and the principal eigenfunctions of
a the kernel, when the Hilbert space is defined with an inner product of the form
of eq. 10, and the density in the inner product is the empirical density. Why is
this interesting? This suggests generalizations of the transformation performed for
spectral clustering in which one uses a smoother density p(x), e.g. obtained through
a parametric or non-parametric model.

Proposition 4 Let πk(x) be the test point projection (eq. 8) on the k-th principal
component obtained by kernel PCA with normalized kernel K̃(x, y). Then

πk(x) = λkfk(x)

where λk and fk(x) are respectively the k-th leading eigenvalue and eigenfunction
of K̃, and the Hilbert space inner product weighing function p(x) is the empirical
density.

Proof

Let us start from the eigenfunction equation 11 on kernel K̃ and apply the linear
operator K̃ on both sides:

K̃K̃fk = λkK̃fk.

which can be written∫
K̃(x, y)

∫
K̃(y, z)fk(z)p(z)p(y)dzdy = λk

∫
K̃(x, y)fk(y)p(y)dy

or changing the order of integrals on the left-hand side:∫
fk(z)

(∫
K̃(x, y)K̃(y, z)p(y)dy

)
p(z)dz = λk

∫
K̃(x, y)fk(y)p(y)dy

Let us now plug-in the definition of K̃(x, y) =
∑

i φ̃i(x)φ̃i(y):∫
fk(z)

∫ ∑
i

φ̃i(x)φ̃i(y)
∑

j

φ̃j(y)φ̃j(z)p(y)dy

 p(z)dz = λk

∫ ∑
i

φ̃i(x)φ̃i(y)fk(y)p(y)dy.
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In this expression we can see the element (i, j) of the feature space covariance
matrix C (eq. 6):

Cij =
∫

φ̃i(y)φ̃j(y)p(y)dy

and we obtain (plugging this definition on the left hand side and pulling sums out
of integrals)∑

i

φ̃i(x)
∑

j

Cij

∫
φ̃j(z)fk(z)p(z)dz = λk

∑
i

φ̃i(x)
∫

fk(y)φ̃i(y)p(y)dy

or
φ̃(x) · (C〈fk, φ̃〉) = φ̃(x) · (λk〈fk, φ̃〉)

where 〈fk, φ̃〉 is the feature space vector with elements
∫

fk(y)φ̃i(y)p(y)dy. Since
this is true for all x, it must be that in the region where φ̃(x) takes its values,

Cvk = λkvk

where vk = 〈fk, φ̃〉 and it is also the k-th eigenvector of the covariance matrix C.
Finally, the kernel PCA test projection on that eigenvector is

πk(x) = vk · φ̃(x)

= (
∫

fk(y)φ̃(y)p(y)dy) · φ̃(x)

=
∫

fk(y)φ̃(y) · φ̃(x)p(y)dy

=
∫

fk(y)K(x, y)p(y)dy

= λkfk(x) (18)

Q.E.D.
Discussion

What do we learn from this second proposition? We find an equivalence between
the eigenfunctions of the kernel (in an appropriate Hilbert space) and the map-
ping computed through kernel PCA. By combining this with the first proposition,
we trivially obtain an equivalence between the mappings computed for spectral
clustering and for kernel PCA, up to scaling by the eigenvalues and to a different
normalization of the kernel.
A nice fallout of this analysis is that it provides for methods such as spectral
clustering and Laplacian eigenmaps a simple way to generalize the embedding
to a mapping: whereas these methods only give the transformed coordinates of
training points (i.e. an embedding of the training points), it is easy to obtain the
transformed coordinates of a new point, once it is realized that the transformed
coordinates are simply the values of the principal eigenfunctions. Let us first con-
sider the easiest case, where p(x) is the empirical distribution. Then Proposition 4
allows us to write

fk(x) =
∑

i

αkiK̃(xi, x)
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where αk is the k-th principal eigenvector of the normalized Gram matrix M̃ ,
with M̃ij = K̃(xi, xj). When p(x) is not the empirical distribution, Propositions 1
and 2 provide a criterion that can be minimized in order to learn the principal
eigenfunctions fk.
In addition, we again find the possibility of generalizing from kernel PCA to the
case when the density defining the inner product of the Hilbert space is not the
empirical density but a smoother density. Finally, by stating the problem in terms
of eigenfunctions, we open the door to other generalizations which future work will
investigate, in which the eigenfunctions are only approximately estimated (allowing
to impose further smoothness constraints or other domain-specific constraints), and
the possibility of estimating the eigenfunctions through a stochastic minimization
process that does not require to explicitly compute and store the Gram matrix.
The links thus discovered leave open other questions. For example, is there a “ge-
ometric” meaning to the divisive normalization of the kernel used with spectral
clustering (equation 4)? This normalization comes out of the justification of spec-
tral clustering as a relaxed statement of the min-cut problem (Chung, 1997; Spiel-
man and Teng, 1996) (to divide the examples into two groups such as to minimize
the sum of the “similarities” between pairs of points straddling the two groups).
The additive normalization performed with kernel PCA (equation 7) makes sense
geometrically as a centering in feature space. Both normalization procedures make
use of the kernel row/column average Ex[K(x, y)].

5 Conclusion

Spectral methods discussed in this paper provide a data-dependent mapping that
can be applied not only to training points but also to new points. They empirically
appear to allow capturing such salient features of a data set as its main clusters
and submanifolds. This is unlike previous manifold learning methods like LLE and
Isomap, which compute an embedding for the training points and which assume a
single manifold (but may work with more).
However, there is much that remains to be understood about these methods. For
example, what is the role of normalization? How should the kernel be chosen?
More fundamentally, why are these algorithms doing what they are doing? To this
question there are already partial answers, and this paper may have contributed a
little bit to this understanding, but the picture is far from clear.
Future work will investigate specific algorithms for performing the minimization of
the quadratic criterion of eq. 14. In particular, importance sampling and stochas-
tic gradient descent could be used to iteratively minimize it, even in an on-line
setting or where it is not feasible to store a Gram matrix or compute the leading
eigenvectors of a huge (even if sparse) matrix.
Finally, a better understanding of these methods opens the door to new and po-
tentially much more powerful unsupervised learning algorithms. Several directions
remain to be explored:

1. Using a smoother distribution than the empirical distribution to define the
inner product. But why, fundamentally, might this be helpful?
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2. Learning a density function from the mapping in order to compute likelihoods.
This could be achieved by learning a reconstruction from the eigenfunction
space back to the original space, and using a noise model to obtain (through a
convolution) the mathematical form of the input density.

3. Learning higher-level abstractions on top of lower-level abstractions by iterating
the unsupervised learning process in multiple “layers”. Preliminary experiments
on toy data suggests that this idea works, but why should it work? that remains
to be shown.

4. Using the data to define the kernel. Another paper is in preparation that at-
tempts to answer that question.
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