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Résumé / Abstract 

 
 

Dans cet article, nous jetons les bases pour l'apprentissage d'une stratégie de gestion d'un 
portefeuille de biens, de natures variées, et ne s'appuyant sur aucune supposition quant aux 
distributions des données financières. Ce modèle, basé sur l'utilisation d'un réseau de 
neurones, tente de capturer les tendances du marché. De plus, le modèle permet l'introduction 
d'un bruit stochastique au niveau des prix prévus par le réseau afin d'éviter les maxima locaux 
dans l'espace de décision. Dans ces conditions, nous démontrons que notre stratégie 
d'investissement suit un processus de décision markovien qui est presque sûrement lipchitzien 
en ses paramètres. Ainsi, l'estimateur du gradient IPA, obtenu ici par la méthode classique de 
rétropropagation, peut être utilisé pour approcher, par une descente de gradient, un maximum 
local de notre critère d'apprentissage, le Sharpe ratio. 

 
Mots clés : Apprentissage, gestion de portefeuille, estimateur IPA, Sharpe 
ratio. 
 

In this paper, we set the basis for learning a multitype assets portfolio management technique 
relying on no assumptions over the distributions of the financial data. The neural network 
based model tries to capture patterns in the evolution of the market. Furthermore, the model 
allows a stochastic perturbation in the asset pricing from the network to avoid local maxima 
in the decision space.  Under those settings, we prove that our investment decision is a 
Markovian decision process which is Lipschitz continuous almost surely in its parameters. 
Therefore, the IPA gradient estimator, obtained here by the classical backpropagation 
algorithm, can be used in a gradient descent procedure to converge to a local maximum of 
our learning criterion, the Sharpe ratio.  

  
Keywords: Learning, portfolio management, IPA estimator, Sharpe ratio. 
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1 Introduction

Adaptive systems such as neural networks proved to be a reliable tool in portfolio
management (Weigend, Abu-Mostafa, and Refenes 1997). A classical role of
neural networks is to predict chronological series (Weigend and Gershenfeld
1993).

In the past few years, theoretical arguments suggested that directly optimiz-
ing the financial criterion of interest should yield better performance, according
to that same criterion, than optimizing an intermediate prediction criterion
such as the often used mean squared error (Bengio 1997). Consequently, some
experiments were led to confirm or invalidate those hypothesis.

In particular, (Chapados 2000) conducted a thorough comparison between
the forecasting and the decision alternatives, performed within the value-at-risk
control framework, and concluded that the forecasting model produces results
statistically significantly better than those of the decision model. However, it
was also remarked that for some configurations of the hyper-parameters, the
model of decision provides the same performance as the forecasting model.

On the other hand, the decision model doesn’t rely on the same idealist
parametric assumptions on the data. In a portfolio combining stocks and op-
tions, this characteristic may be a major advantage of the new approach on the
traditional models. In this work we try to optimize the Sharpe Ratio criterion
with a stochastic gradient descent, known for being resistant to local minimums.

The main innovation in our framework is that our model let the Sharpe
Ratio be a random variable which takes the future in consideration and that it
is meant to introduce stochastic simulation concepts that, we hope, will help to
get the model more resistant.

2 Suggested Model

The problem considered here is the management of assets in a portfolio . For
simplicity, we will only consider the discrete time scenario, in which a period
(e.g. a day or a month) is elapsed between times t and t + 1, t ∈ N. We refer to
period t as being the period between times t− 1 an t.

Definition 1 A portfolio xt defined with respect to a set of N assets is the
vector of possessed quantity for each asset at a time t given:

xt = (x(0)
t , x

(1)
t , . . . , x

(N)
t )′,

where x
(i)
t ∈ R and −∞ < x

(i)
t <∞.

(We use bold letters for vectors or matrices; the ′ represents the transpose
operation.)
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Figure 1: The Model
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2.1 The Decision

Given an initial portfolio, we will take some allocation decisions, changing our
relative position in the market. To do so, we assume there exists random process{

Ỹt

}∞
t=0

describing the evolution of the market with filtration
{
F̃t : t ≥ 0

}
1. By

letting {Yt}∞t=0 be a random process such that (xk, F̃k) ⊂ Ft,∀k ≤ t, we have

P
(
Yt|Fk, k = 0, . . . , t− 1

)
= P

(
Yt|Ft−1

)
(1)

so that {Yt} is a Markov process (Billingsley 1995) on (Ω, F, P)2. At a given
time t, yt will denote a realization of Yt.

We will consider our decision to be a stochastic function

dt(xt,yt) ∼ Pθ

(
· |xt,yt

)
, (2)

where θ are the parameters3 of a neural network and yt the information provided
to it. It’s important to note that even if our decision is such that xt+1 = xt, the
market itself evolved and, therefore, our relative position in the market changed.

Lemma 1 If {Yt} is Markovian, {(xt, Yt)} is a Markovian Decision Process
(MDP)

In this work, the decision is based on the asset pricing

pt(xt,yt) = µ(θ,xt,yt) + Z ∗ σ(θ,xt,yt) (3)

where µ(θ,xt,yt) and σ(θ,xt,yt) are the outputs of the neural network (see
Fig. 2) and Z is a random number from the standard normal distribution. We
consider the µ

(i)
t (θ,xt,yt) output as the expectation of the ith asset price a time

t+1, given Ft , and σ
(i)
t (θ,xt,yt)4 as it uncertainty. The reader must note that

this “gaussian-like” decision is simply a way to introduce noise on the decision.
It’s only meant to help us to explore the decision space more deeply and has no
relation with any model on data.

To make our decision, we also need to consider m
(i)
t ∈ Ft the price of the

ith asset at time t, C0/2 the additive cost and C1 the multiplicative cost on
transactions. Basically, we want to buy if p

(i)
t −m

(i)
t > 05, else we sell.

1Given a sample space Ω, a class F of subsets of Ω is called a field if Ω ⊂ F , A ∈ F ⇒
Ac ∈ F and A, B ∈ F ⇒ A∪B ∈ F . F (X), X a r.v., can be seen as the information needed
for X to be measurable (Billingsley 1995)

2F = {Ft : t ≥ 0}, the natural filtration of the {Yt} process. P a probability measure.
3Actually, θ is a concatenation of the 1) inputs to hidden weights, 2) hidden to outputs

weights, 3) bias on the hidden layer, 4) bias on the output layer and 5) two hardness param-
eters.

4In fact, σ
(i)
t (θ,xt,yt) = sigmoid(2ndoutput), to ensure positivity. The σ

(i)
t (θ,xt,yt)

value is therefore bounded to 1, which is an adequate boundary financially speaking.
5From now on until the end of the decision analysis, we will hide the dependencies on θ,

xt and yt.
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Figure 2: The Neural Network Topology

Definition 2 The direction of our decision is

φ
(i)
t = tanh

(
α(p(i)

t −m
(i)
t )
)

where α is an hardness (free) parameter6.

a continuous and differentiable function with limα→∞ φ
(i)
t = sign(p(i)

t −m
(i)
t ).

Taking a decision in direction φ
(i)
t , we hope for a valorization of our portfolio

proportional to7

∆(i)
t = p

(i)
t (1− C1φ

(i)
t )−m

(i)
t (1 + C1φ

(i)
t ) (4)

Now, let γ be the capital level of the investor8. Then, we could trade a
quantity

d̃
(i)
t = γ ∗∆(i)

t (5)

but the strategy is valid only if the expected benefits are greater than the cost
of the transactions, that is if d̃

(i)
t ∆(i)

t − C0 > 0, so our decision is
6Learned by the neural network.
7considering that we would have to trade the asset again to really benefit from the val-

orization.
8i.e is the the investor interested in investing thousands or millions of dollars, for example.
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d
(i)
t = d̃

(i)
t sigmoid(β(d̃(i)

t ∆(i)
t − C0)) (6)

where β is another hardness (free) parameter such that limβ→∞ d
(i)
t = d̃

(i)
t I{d̃(i)

t ∆
(i)
t −C0>0}

2.2 The Objective Function

Let {Vt} be the random process on (Ω, F, P) describing the value of the portfolio.
At a given time t, Vt is a random variable that can be measured according to
the information at time t, noted Ft . An intuitive way to define the value is

Definition 3 The value of a portfolio at time t is given by

Vt =
∑

i

x
(i)
t m

(i)
t′

where, given t′ ≤ t, m
(i)
t′ is last known9 value of the asset i.

As we introduced above, we will train our learning algorithm according to
the criterion of interest, in this experiment, the Sharpe Ratio over the returns
{Rt} .

Rt =
Vt − Vt−1

Vt−1
(7)

and we will consider an empirical10 version of the Sharpe Ratio.

Definition 4 The empirical Sharpe Ratio is defined by

Uθ(ω) =
R(ω)
sR(ω)

where, Rt(ω) being a realization of Rt over the given period t, R(ω) is the sample
mean and sR(ω) the sample standard deviation of the Rt(ω) over the trajectory
ω.

Our goal is to maximize the expectation of that ratio, therefore

Definition 5 Our objective function is

J(θ) = E[Uθ] =
∫
Uθ(ω)P(dω)

9There are days in the database where the values of some assets are not given. However,

note that d
(i)
t =0 whenever m

(i)
t is unknown, therefore x

(i)
t = x

(i)
t′ and the previous value is

considered unchanged.
10Our Sharpe Ratio is, therefore a random variable.
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3 The IPA Estimator

Obviously, our objective function is not available in closed analytical form, but
we can consider each learning epoch as an independent trajectory and use the
“sample average”.

If we want to use a stochastic gradient descent algorithm (Bishop 1995), we
need to know the sensitivity of J(θ) with respect to θ. That is

d

dθ
J(θ) =

d

dθ

∫
Uθ(ω)P(dω) (8)

and one may wonder if

d

dθ

∫
Uθ(ω)P(dω) ?=

∫
d

dθ
Uθ(ω)P(dω) (9)

that is if

lim
∆θ→0

E[Uθ+∆θ]− E[Uθ]
∆θ

?= E

[
lim

∆θ→0

Uθ+∆θ − Uθ

∆θ

]
(10)

Equations 8 and 9 are known as the pathwise analysis approach regrouping IPA
and SPA methods, among others. The pathwise approach for sensitivity analysis
is particularly suitable in our application, because we do not assume knowledge
of the underlying probability measure of the driving process {ỹn}.

The IPA method is simply to take the estimator given by Eq. 9 whenever
the context allows the application of the following theorem.

Theorem 1 (Dominated Convergence (Billingsley 1995)) Let {Ψn, n ∈ N},
and let Ψ and each Ψn be a random variable on (Ω, F, P). If Ψn → Ψ a.s. and
if there is a random variable K such that E[K] < ∞ and |Ψn| ≤ K,∀n ∈ N,
then limn←∞E[Ψn] = E[Ψ].

If we want to apply it in our context, it may be useful to remind ourselves
of the Lipschitz continuity property

Definition 6 A random variable Υθ(ω) on (Ω, F, P) is said to be Lipschitz
continuous a.s. in θ if there is a random variable K < ∞ with E[X] < ∞
such that ∀ω,

sup
θ∈Θ:θ+∆θ∈Θ

‖Υθ+∆θ(ω)−Υθ(ω)‖ ≤ K(ω)∆θ

The reader may note that if Υθ(ω) is differentiable, the above is nothing much
than

d

dθ
Υθ(ω) ≤ K(ω) (11)

6
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Figure 3: Tanh Function (in red) and its Derivative Sech2 (in blue)
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Figure 4: Sigmoid Function (in red) and its Derivative (in blue)

We’ll now argue that it is verified under our assumptions. Indeed, we could
first take a look to the neural network output functions of θ,

fk(θ,xt,yt) =
nH∑
j=1

θkjtanh

(
d∑

i=1

θjiy
(i)
t + θj0

)
+ θk0 (12)

where k=1 stands for µ(θ,xt,yt), k=2 for σ(θ,xt,yt), nH is the number of neu-
rons in the hidden layer and d is the dimension of yt. It’s easy to show that that
the previous are Lipschitz continuous functions of θ. In our model, µ(θ,xt,yt)
and σ(θ,xt,yt) are then use in the computation of a decision function whose
behavior with respect to θ mainly depends on the behavior of the tanh and sig-
moid functions. Well, those functions, as can be seen on Figures 3 and 4, have
bounded derivatives. Therefore, our decision function is Lipschitz continuous
in θ. Finally, the Sharpe ratio is a simple composition of linear functions the
decisions, so we can conclude, from the following lemma, that Uθ is Lipschitz
continuous almost surely in θ.

Lemma 2 If Υθ is a Lipschitz continous a.s. random variable and f : R → R
is a function such that ∃f ′(x) ≤ b,∀x, then f(Υθ) is a Lipschitz continous a.s.
random variable.
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Since we have Lipschitz continuity a.s., the dominated convergence theorem
applies and we may, therefore, perform a stochastic gradient descent and use
backpropagation to evaluate the d

dθUθ IPA estimator.
It must be noted that stochastic approximation with non-biased estimators

ensure, under certain conditions, that θ will converge to the set of stability
points of the ODE implicit to the maximization. However, unless we have the
concavity of of the cost function, which is clearly not the case here, those points
are more likely to be local minimums than global.

4 Experimental Setup

At the moment, we have a database containing options and indexes prices (open,
high, low and close prices) for the last 30 years or so. Given those prices, we
try to extract relevant and predictive informations for each option and index.
Once this preprocessing done, we train the network (see Fig. 2) according to to
the Sharpe Ratio criterion.

4.1 Raw Data

The database can be seen as a matrix of trade data having the following form:
raw data[row][column]
where

• There is one row for each (time, asset ticker) pair.

• The columns contain:

– The time.

– The asset ticker

– The asset price

– If the asset is an option:

∗ The expiration date
∗ The strike
∗ The underlying asset ticker

Preprocessing

In a first preprocessing, the raw data are preprocessed to give us a new matrix
structure

8



data[row][column]
where

• There is one row for each (time, option ticker) pair.

• The columns contain:

– The time: t1 (in days since the, chosen, January 2nd 1990)

– The expiration date: T

– The price at t1: c1
11

– The price at t1 − 1: ct1

– The geometric mean of the option between t1 − 2 and t1 − 1: ct2

– The geometric mean of the option between t1 − 5 and t1 − 1: ct5

– The geometric mean of the option between t1 − 10 and t1 − 1: ct10

– The geometric mean of the option between t1 − 20 and t1 − 1: ct20

– The strike: K

– The price of the underlying stock at t1: s1

– The geometric mean of the underlying stock between t1−2 and t1−1:
st2

– The geometric mean of the underlying stock between t1−5 and t1−1:
st5

– The geometric mean of the underlying stock between t1 − 10 and
t1 − 1: st10

– The geometric mean of the underlying stock between t1 − 20 and
t1 − 1: st20

– The price of the underlying stock at T : sT

– The interest rate at t1: r1

– The underlying stock ticker

– The option ticker

and then processed back to get preprocessed form

11which is, in the terminology of section 2.1, m
(i)
t
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preprocessed data[row][column]
where

• There is one row for each (time, option ticker) pair.

• The columns contain:

– t1

– T-t1

– r1

– log(c1/K)

– log(s1/K)

– log(c1/ct1)

– log(c1/ct2)

– log(c1/ct5)

– log(c1/ct10)

– log(c1/ct20)

– log(s1/st1)

– log(s1/st2)

– log(s1/st5)

– log(s1/st10)

– log(s1/st20)

– st5: Will be used as scale factor (see section 2.1)

– c1

– If option is a call, max(0,(s1 −K)), else (put), max(0,(K − s1)): A
lower bound on option price

– The underlying stock ticker

– The option ticker

The second preprocessing is meant to get the informations more predictive
than the first. Before they can be used, data must be scanned to extract some
general informations such as:

• The number of different stocks underlying to the options

• The number of different options in the database

• The columnwise mean and standard deviation of the data matrix

where the mean and standard deviation are used to normalize the columns that
will be inputs of the neural network.

10



Figure 5: The Implementation (see Figures 1 and 2 for explicit dependencies)
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Finally, the data matrix is split in three sub-matrices keeping the first 70% of
the data for the train, letting the following 15% for the validation and the other
15% for the test phase.

4.2 The Implementation

The implementation is done with C++ and uses the powerful tools of the
PLearn12 library, in particular the Var class13. Basically, the Var hierarchy
provides an easy and quite efficient way to establish dependencies between com-
ponent of a complicated mathematical model. Furthermore, it provides tools to
easily propagate to the modification to a source variable to all of its descendant
and backpropagate the gradient in the other way.

With those Vars as building blocks, we construct a Var graph from θ to the
Sharpe Ratio variable, for each of the training, validation and testing phase. As
can be seen on the Fig. 5, there is only one node θ on which depends all time
blocks. As mentioned before, θ is simply a concatenation of the 1) inputs to
hidden weights, 2) hidden to outputs weights, 3) bias on the hidden layer, 4)
bias on the output layer and 5) two hardness parameters.

Each of those time blocks consists in a Decision Network, which implements
mathematical dependencies of section. Given an info variable yt and the current
portfolio xt, it computes a decision dt from the outputs of a neural network.
The values of yt and xt also allows us to compute the value vt according to
Def. 3. The block t + 1 depends on the block t in the fact that xt+1 is a binary
variable of xt and dt(xt,yt), in fact xt+1 = xt+1 + dt(xt,yt).

Once the time dependencies are build, the following statistics can be com-
puted:

12http://plearn.sourceforge.net/
13http://plearn.sourceforge.net/LibraryReference/html/Variable h-source.html
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Rt =
Vt − Vt−1

Vt−1
(13)

R(ω) =
1
N

N∑
t=1

Rt; sR(ω) =

[(
1
N

N∑
t=1

Rt
2

)
−R(ω)

2

]1/2

(14)

Uθ(ω) =
R(ω)
sR(ω)

(15)

The reader may wonder why the settings involve an instantiation of neural
network for each yt in the dataset, which approach is quite unusual. The thing
is that the objective function depends on values of the portfolio computed at
each time step and the backpropagation on those variables enforce the need to
keep the network in memory. This presently causes a problem which will be
discussed in §5.2.

5 Results and discussion

Figure 6 shows the results obtained with different learning rates, in terms of
improvement in the Sharpe Ratio (vertical axis). The horizontal axis is the
number of training epochs.

5.1 Gradient Descent

We explored stochastic gradient descent and observed that it increases the
Sharpe ratio value very slowly even with the best found learning rate. There-
fore, we are currently exploring the conjugate gradient descent and waiting for
results. At the moment, it seems to get caught very rapidly in local minimums
and the code must be deeply reviewed to find a way to avoid it. A simple omis-
sion in the propagation path could cause the function to vary abnormally (or
not to vary).

However, once those practical issues solved, theoretical issues hold. That
is, both algorithm proceed by first finding the propagation path from θ to Uθ

and then build the IPA estimator d
dθUθ of the gradient (chain rule on the

propagation path). Then we can update the gradient:

13



Figure 6: First Learning Rate Selection With 100 Hidden Units and 10−6 as
Weight Decay
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θ ← θ + η
d

dθ
Uθ (16)

and hope to converge to

θ∗ s.t. E [Uθ∗ ] = max
θ

E [Uθ] (17)

where η may be the learning rate of the stochastic gradient descent or the step
found by the conjugate gradient algorithm.

5.2 The Memory Limit

One of the major problems in that model is the cost of the time dependencies.
Indeed, giving a brief look at the implementation Fig. 5, one can see that each
time block needs the results of the previous one in entry. The thing is that, θ
being common to all the networks, all blocks must be kept in memory to prop-
agate their values and to be backpropagated on. Obviously, that construction
increases rapidly the need of RAM memory with the number of entry.

It is well know that predictions on options related to few underlying assets
are less likely to provide good results than predictions on a large set of spots.
Under the current settings, we are not able to train on more than 1164 options
related to 5 underlying stocks since the 1G of RAM of the machines are exceeded
with more data. Previous models, without time dependencies, could easily train
over 60 different stocks underlying nearly 50000 options.

6 Conclusion

On the whole, the project as produced no concrete results, but as it is part of a
master project, the effort wasn’t vain and the work will continue. In particular,
the costful time dependencies may be reengineered. At first glance, a solution
could be to implement a time windows structure, that is to break to dependencies
after a certain time. There would be some adjustment to do on our way to
perform the gradient descent, but this is one of the avenue we will explore in
the next months.

Another way to reduce the RAM needed can be to develop specific Var tools
for the project. The reader should remind himself that the current implementa-
tion uses the existing tools of the PLearn library. The thing is that those tools
were not designed specifically for our problem and we must often use a combi-
nation of many of those tools to perform some operation on the data. Writing
specific Var could help reduce the need in memory, but that hypothesis has to
be confirmed.

Finally, a challenging avenue we would also like to explore in the next months
is the possibility to initialize the weights (θ) of the neural networks with values
learned on a simpler model which already gave interesting results.
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