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Résumé / Abstract 
 
 

Dans un cadre du modèle d’enchères avec des valeurs privées indépendantes, 
nous proposons un jeu, ayant une interprétation économique simple, qui permet de 
mettre en oeuvre les enchères optimales même quand le vendeur ignore les 
distributions des volontés à payer des différents soumissionnaires. Dans cette 
procédure robuste (detail-free), une enchère au deuxième prix est organisée et le 
gagnant de cette enchère propose un paiement au vendeur; ce paiement peut alors être 
contesté par un autre soumissionnaire qui connaît la distribution de l'évaluation du 
gagnant. 

 
Mots clés : Enchères, design de mécanismes, doctrine de Wilson. 

 
 
 

In a general framework with independent private values of the bidders, we 
propose a game, with a simple economic interpretation, that allows implementing the 
optimal auction outcome when the seller ignores the distributions of the different 
bidders’ valuations. In this robust or detail-free implementation procedure, a second-
price auction is organized and the winner volunteers a payment to the seller; this 
payment can then be challenged by another bidder who knows the distribution of the 
winner’s valuation.  
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* We have benefited from comments by seminar participants at the Econometric Society North American Winter Meeting and European Meeting, PURC University 

of Florida, University of Wisconsin. The authors also wish to acknowledge the hospitality of IDEI in Toulouse where they started this research. The second author 

acknowledges the financial support of CRSHC, CIRANO and the Bell University Labs. 

† CERAS-ENPC (CNRS), 48 Boulevard Jourdan, 75014 Paris, France, et CEPR, London, United Kingdom. E-mail: caillaud@enpc.fr. 

‡ Service d’enseignement des technologies de l’information, HEC Montréal, 3000 ch. Côte-Ste-Catherine, Montréal, Québec, Canada, H3T 2A7, et CIRANO. E-

mail: jacques.robert@hec.ca. 



1 Introduction

Since the late seventies, the mechanism design literature has been successful is de-

termining the form and properties of desirable institutions in situations where infor-

mational problems arise.1 As a leading example, Myerson [1981] characterizes the

revenue-maximizing auction when potential buyers have private and independent

valuations for the good on sale and are risk-neutral.

The mechanism design approach has however been criticized on the following

grounds. First, optimal institutions, as derived by this approach, are often much

more complex than real-life institutions. For example, the optimal auction mech-

anism with ex ante asymmetric participants or in the non-regular case turns out

to be much more complicated than a simple first or second-price auction. Second

and most importantly, the mechanism design approach is said to be information-

ally demanding: the design of optimal institutions requires an unrealistic degree of

knowledge concerning details of the economic environment. For example, even in

the symmetric and regular framework, the optimal auction requires the appropriate

choice of the reserve price that strongly depends upon the knowledge of the prior dis-

tribution of tastes in the population of potential bidders. In repeated environments,

simulation-based estimation methods can help figure out the objective distribution

of tastes in a stable population,2 although they usually miss the strategic dimension

that is precisely due to this repeated-game setting. But for unusual auction situa-

tions (defense procurement, auction for monopoly franchises...), the crucial data are

missing. The spirit of the so-called Wilson Doctrine has then been to ask for ro-

bustness, that is to try to reach detail-free conclusions within the mechanism design

approach.

In this paper, we take these critiques seriously and we look for a detail-free im-

plementation procedure of the optimal auction in Myerson’s framework. We propose

1See e.g. the recent experiences of spectrum auctions in the US (Cramton [1995], McAfee-
McMillan [1996]) and the UK (Binmore-Klemperer [2002], Klemperer [2002]).

2See among others Laffont-Ossard-Vuong [1995] and Donald-Paarsch [1996]. McAfee-Quan-
Vincent [1996] uses econometric estimations to calculate the optimal reserve prices in housing
auctions.
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and analyze a game that could be designed by an ignorant seller who has no infor-

mation not only on the bidders’ valuations but also on the objective distributions

of these valuations. Assuming that, for each bidder i, there exists one other bidder

who knows the objective distribution of bidder i’s valuation, the game relies on the

possibility of challenges, in the spirit of Moore-Repullo [1988] and Glazer-Ma [1989],

and it provides a way to implement the revenue-maximizing auction with an easy

economic interpretation.

We start from the well-known implemenation of the optimal revenue-maximizing

auction through an ascending-price auction, where the winner is asked to pay a price

according to a pre-specified formula conditional on the winning bid. In the spirit of

Bulow-Roberts [1989], this price can be viewed as a monopolistic pricing decision

against the winner of the auction, where the monopolist’s cost is determined by

the winning bid in the auction. In order to do so, the seller needs to be able to

compute the optimal monopoly price for each participant; but she cannot do so

when she is ignorant, that is, when she has no knowledge of the distribution of

private information.

So, we look for a mechanism that is independent of the parameters of the prob-

lem, but nevertheless achieves the maximal revenue for the seller. We simply assume

that it is common knowledge that one bidder j 6= i knows the distribution of bid-

der i’s valuation.3 Formally, we are looking for game forms that are independent

of the distribution of types and which induce as an equilibrium the desired optimal

allocation: we call this a universal implementation procedure of the optimal auction.

The game we propose has the following relatively simple structure: (i) an ascending-

price auction is organized and the winner and the winning bid are made public in-

formation; (ii) the winner of this auction then volunteers a payment to the seller

that is also publicly disclosed; (iii) another participant who knows the distribution

of the winner’s type is then allowed to challenge the volunteered price, by making a

3Our strong results enable us to dispense with an explicit Bayesian setting where bidders’ private
information not only concerns their own valuation but also their first-degree beliefs on each others’
valuations (see Harsanyi [1968] and Mertens-Zamir [1985]).
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take-it-or-leave-it offer at a higher price to the ascending-auction winner. This game

admits an equilibrium that generates, for all distributions of bidders’ valuations, the

revenue-maximizing auction outcome. In this equilibrium, instead of charging a mo-

nopolistic price against the winner, the seller delegates this right to another bidder

who has the relevant piece of information in order to solve the monopolistic pricing

problem. The threat of having to face this monopoly price anyway induces the win-

ner of the ascending auction to volunteer this payment, so as to avoid a fee involved

in case of a challenge.

The standard characterization of the revenue-maximizing auction does not re-

quire any knowledge of the model by the bidders, since dominant strategy imple-

mentation is possible (see Mookherjee-Reichelstein [1992]), but it assumes a lot

of knowledge by the seller. Our model reverses this assumption: the seller can

maximize revenues without any knowledge of the distributions of types among the

bidders, by relying on the fact the bidders know the distributions of types of ri-

val bidders. In fact, it is only necessary that one bidder knows the distribution

of another bidder’s type. This alternative information structure seems relevant for

firms within the same sector, whose common experience may have brought some

knowledge about their rivals’ characteristics.

The paper is organized as follows. Section offers a quick review of Myerson’s IPV

model and of the implementation of the optimal auction therein. Section 3 deals

with the case of an ignorant seller and presents our main result in terms of universal

implementation. Section 4 discusses some extensions and limitations of the result.

In particular, it shows how to extend the game in the non-regular framework and it

explains how to strengthen our weak implementation result in order to get unique

implementation of the optimal auction outcome.
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2 Revenue-maximizing auction in the benchmark

model.

We consider the classical auction setting with Independent Private Values (IPV),

as analyzed in Myerson [1981]. A risk-neutral seller wants to maximize her revenue

from the sale of an indivisible good for which her valuation is known and normalized

to 0. There are n risk-neutral potential buyers, each with private information on

his own valuation vi for the good. Valuations vi, i = 1, ...n are independently

drawn from continuously differentiable distributions Fi(.), with densities fi(.) and

full support [vi, v̄i]. Moreover, we will concentrate on the so-called regular case

where each bidder’s virtual valuation function is monotone increasing: formally, we

assume that, for any i,

Ji(vi) ≡ vi −
1− Fi(vi)

fi(vi)

is increasing in vi.
4 These distributions are common knowledge among all agents.

Before addressing the auction design problem, let first consider the corresponding

pricing problem of a monopolist with unit cost b facing demand [1− Fi(p)]. Let first

Pi(b) denote the optimal monopoly price:

Pi(b) ≡ arg max
p

{(p− b) [1− Fi(p)]} . (1)

In our regular framework, Pi(b) is single-valued and invertible and we have: P−1
i (vi) ≡

{b|vi = Pi(b)} = Ji(vi).

The optimal revenue-maximizing auction has been proved to be such that the

good be transferred to bidder i with valuation vi if:

Ji(vi) ≥ sup {sup {Jh(vh), h 6= i} , 0} , (2)

that is to the bidder with the highest non-negative virtual valuation. In case of

4As explained in Section 4, our results can easily be extended to the general, i.e. non-regular,
case.
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equality, any tie-breaking rule can be used.

The outcome of the revenue-maximizing auction can be implemented (in domi-

nant strategies) using a direct revelation mechanism, with the appropriate payment

function: the winner pays the lowest valuation that would have made him win. Al-

though in the symmetric regular case, the revenue equivalence theorem shows that a

first-price, or a second-price, or else an ascending auction, all with reservation price

J−1(0), yield the optimal outcome, it is difficult in more general cases to find a nat-

ural indirect mechanism, such as a standard auction, that implements the optimal

auction.

Bulow-Roberts [1989], however, shows that the seller’s problem is formally equiv-

alent to a third-degree price discriminatory monopoly problem with capacity con-

straint. Facing perfectly identifiable demand functions [1− Fi(p)] for i = 1, 2, ...n,

such a monopolist should optimally sell to the buyers with the highest marginal rev-

enue. In the regular setting, the revenue functions Ri(Q) ≡ QF−1
i (1−Q) are strictly

quasi-concave, or equivalently when the functions Ji(.) are all strictly increasing, the

optimal monopolistic policy is to compare marginal revenues R′
i ([1− Fi(vi)]), that

is Ji(vi) for i = 1, ...n, and to allocate the good to the buyer with highest marginal

revenue.

This interpretation of Bulow-Roberts [1998] translates into a simple implemen-

tation procedure of the optimal outcome. Bidders participate in an ascending-bid

auction with initial bid starting at zero. The winner is the last participant to drop

out (or drawn among the last participants to drop out, with equal probabilities).

The “winning bid” is the highest bid for which the number of active bidders is larger

or equal to 2. If at least one bidder participates and bidder i wins at winning bid

b ≥ 0, he gets the good and pays Pi(b) = J−1
i (b) to the seller; otherwise, the good is

not sold.

The key feature of this procedure is that it is a (weakly) dominant strategy for

each bidder to bid his virtual valuation. For i of type vi it is a dominant strategy

to stay active whenever b is such that vi > Ji(b) and drop out whenever vi < Ji(b),
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i.e. to stay active until the price reaches the value Ji(vi). Moreover, one can easily

check that the payments are identical to the ones specified in Myerson [1981] (page

69, expression (6.8)). We summarize this in the following proposition.

Proposition 1. : (Bulow-Roberts) The optimal auction can be implemented in

dominant strategies through an ascending-bid auction with payments given by the

functions Pi(.).

Game 1 follows a common index procedure, ”a common clock”: the index in-

creases until only one participant remains, thereby determining the winning bid and

the winner. This bid only serves as a basis to determine the actual payment by the

winner, based on the winner’s virtual valuation function. The final allocation and

payment rules can be seen as resulting from a monopoly pricing decision against

the winning bidder where the monopolist’s cost is determined by the winning bid.

This payment could be extracted in a take-it-or leave-it offer game by any interme-

diary facing a cost equal to the winning bid and knowing the prior distribution of

valuations for the winner. We exploit this idea below.

3 Universal implementation in the regular case

The previous implementation game is not informationally demanding for bidders.

The dominant strategy implementation procedure puts no requirement on the knowl-

edge bidders have upon each others and upon the market conditions as a whole. The

auctioneer, however, needs to be able to maximize (p − b) [1− Fi(p)] for all i and

b. Basically, she needs to know the distributions of valuations Fi(.) for each bidder

i. Such a requirement may be unrealistic. In many cases, the auctioneer has little

knowledge about the parameters of the market, at least compared to the knowledge

actual participants in the market have from long years of practice and competition

within the market.

In this section, we propose a “universal”, or detail-free mechanism which the

auction designer can set up independently of her knowledge of the bidders’ tastes.
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Doing so, we completely reverse the informational requirement by assuming that

participants in the auction are better informed than the auction designer upon

the distribution of tastes among bidders. More precisely, we will assume that the

distributions Fi(·) are common knowledge among bidders.5 On the other hand, we

do not need specify what are the seller’s prior, if any, on these distributions, since the

mechanism we present implements the optimal auction whatever the distributions

Fi(.). In this mechanism, competition among participants is used as a device to

induce participants to implicitly reveal the optimal sale price.

It is important to note there are many mechanisms which can force bidders to

reveal to the auctioneer the information necessary to implement the optimal auction.

Clearly, selecting among the possible games raises methodological issues. Following

the seminal work by Maskin [1977], many studies have been done on Bayesian Nash

implementation.6 The basic conclusion of this literature is that information which is

common knowledge among agents can be revealed at no cost to the principal. One

way is to ask agents to reveal simultaneously their joint information and, if they

fail to send the same information, to impose infinite penalties on them. We propose

an easily interpretable procedure where the seller organizes the auction in a rather

conventional fashion and let competitive pressure works in her favor to extract the

maximum expected rents. The game is meant to be intuitive and practical.7

Let us consider the following game Γ:

1. Bidders participate in an ascending-bid auction, starting from bid zero. The

winner i and the winning bid b are determined as in a standard ascending bid

auction and the outcome (i, b) is publicly disclosed.

2. If i wins, he volunteers a price p which is also publicly disclosed.

5As will appear, we could simply assume that it is common knowledge that for each i, there is
another bidder c(i) 6= i who knows Fi(.).

6See Moore [1992] for a survey on implementation under complete information and Palfrey
[1992] for a survey on Bayesian implementation.

7Pursuing a similar quest for simple implementation procedures, Glazer-Ma [1989] have analyzed
implementation with the possibility of challenges. The procedure we propose also incorporates the
possibility of challenges.
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3. If i has won at winning price b and has volunteered a price p, another agent

is randomly designated and can challenge p by proposing a take-it-or-leave-it

offer at a higher price q > p, which i can accept or refuse; payments are as

follows:

• if p is unchallenged, then i receives the unit and pays p to the seller.

• if a challenge q > p is accepted by i, then i receives the unit, pays a fee

∆ to the seller and pays q to the challenger. The challenger pays p to the

seller.

• if a challenge q > p is rejected, the seller keeps the good, receives a fee ∆

from i and a payment p− b from the challenger.

In contrast with the ascending-bid auction with pre-specified payments described

in Proposition 1, the winner is asked to volunteer a payment and the game is designed

so that the winner has indeed an incentive to volunteer the optimal auction payment.

He is disciplined in doing so by the possibility of challenges from an informed outside

agent, who is able to compute the optimal auction payment based on his knowledge

of the prior distribution of the winner’s valuation and on the public information

about the winner and the winning bid.

More precisely, we have the following central result:

Theorem 1. : Game Γ universally implements the optimal auction outcome. That

is, the following strategies and beliefs form a perfect Bayesian equilibrium of Γ in

which the seller obtains the same revenues as if she knew the distribution Fi(.):

• bidder i of type vi exits at bid Ji(vi);

• when winning at bid b, bidder i volunteers p = Pi(b);

• after he has won at winning bid b and volunteered price p, bidder i of types vi

accepts all challenges such that q ≤ vi and refuses others; challengers update

their prior Fi(.) conditional on the event {vi ≥ Pi(b)}, they propose a price

q = Pi(b) if and only if p < Pi(b) and abstain otherwise.
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Proof. After winning at b, bidder i should accept a challenge if and only vi−q−∆ ≥

−∆, hence if and only if q ≤ vi.

A challenger looks for the challenge price q that maximizes his expected profit,

where the expectation is taken with respect to his posteriors on the winner’s type

vi after observing that i wins at winning bid b and volunteers price p. Suppose

that the challenger’s posteriors are given by the Bayesian updating of his priors,

conditional on the event {vi ≥ Pi(b)}.8 In this case, if indeed b < v̄i,
9 the program

for the optimal challenging price is given by:

max
q≥0

[
−(p− b) + (q − b) inf

{
1− Fi(q)

1− Fi(Pi(b))
; 1

}]
. (3)

where the infimum corresponds to the challenger’s probability assessment that the

challenge q will be accepted. The optimum challenge price then corresponds to:

q = Pi(b). This is indeed the challenge price if it is strictly larger than p; otherwise,

the value of the program above is strictly negative when restricted to q > p, and p

is not challenged.

Suppose that bidder i wins at winning bid b. Proposing a price p < Pi(b)

generates a challenge q = Pi(b). It cannot be an equilibrium strategy for bidder

i to encourage a challenge that he will accept, since he could have immediately

proposed p = Pi(b), thereby avoiding to pay the fee ∆. Therefore, the maximal

profits that bidder i of type vi can obtain after winning at winning bid b are equal

to: sup {vi − Pi(b);−∆}. These profits are non-negative if and only if b ≤ Ji(vi) or

vi ≥ Pi(b). It follows that by dropping out in the ascending auction precisely at bid

Ji(vi) and by proposing the unchallengeable price p = Pi(b) when he wins, bidder i

of type vi maximizes his expected gains.

Finally, the beliefs that have been posited are actually Bayesian consistent. They

8Note that posteriors do not depend upon the price proposal p, although this proposal could
serve as a signalling device for the winner.

9If b > v̄i, the beliefs proposed in the text are not compatible with the history of the game.
One can fix beliefs to be concentrated on {vi = v̄i}, resulting in q = v̄i. The same challenge price
should be considered if b = v̄i.
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are deduced from Bayes rule after history (i, b). The fact that p does not induce a

further updating is consistent with the fact that among all types vi ≥ Pi(b), it is a

full pooling equilibrium to volunteer the same price p = Pi(b); therefore, p does not

convey any additional information about the winner’s type.

To summarize, Game Γ admits a perfect Bayesian equilibrium that implements

the optimal auction outcome whatever the actual distribution of types Fi(.). In

this equilibrium, bidders drop out at their virtual valuation Ji(vi), the winning

bid therefore coincides with the highest second virtual valuation. When they win,

bidders submit the lowest unchallengeable price to avoid paying the fee ∆; this price

corresponds to the highest valuation that would have still enabled them to win the

ascending auction, Pi(b), i.e. the corresponding optimal auction payment.

The challenger’s program (3) can be viewed as the program of a monopolist

facing demand Q = 1 − Fi(q) and unit cost b (for q ∈ [Pi(b), v̄i]). So, the game

relies on the existence of other agents who have priors Fi(.) on i’s valuation and can

challenge the volunteered payment when it is lower than the corresponding monopoly

price. The seller in fact delegates the monopoly pricing decision discussed in the

previous section to one better informed intermediary as an off-equilibrium threat

that serves as a disciplining device to induce the correct price proposal by the winner.

Note that for the system to work, the challenging agent need not be interested in

purchasing the good for himself, he need only be motivated by the possibility of a

profitable arbitrage. Note also that the challenge could alternatively be organized as

a competition game between potential challengers where only the largest challenge

price is considered, or as a (common value) auction between potential challengers

so as to win the right to make a take-it-or-leave-it offer to the winner of the first

auction.

11



4 Extensions and discussion

4.1 Implementation in the non-regular case

The analysis is more technical when the functions Ji(.) are not monotone increasing

and we only sketch it here. (1) now defines a set of optimal monopoly prices. Let

ti(b) and ri(b) denote respectively the lowest and the largest elements in Pi(b) and

let Hi(vi) be the (unique) value b such that vi ∈ [ti(b), ri(b)].
10 The function Hi(.)

is obtained by ironing out the function Ji(.) so that it is weakly increasing. The

optimal revenue-maximizing auction now requires to transfer the good to bidder i

with valuation vi if:

Hi(vi) ≥ sup {sup {Hh(vh), h 6= i} , 0} . (4)

The maximal revenue can be obtained via an ascending bid auction, as in Propo-

sition 1, except for the exact form of the payment function: if bidder i wins at

winning bid b, he must now pay a weighted average of ti(b) and ri(b) whose weights

depend upon the number of ties at the winning bid.11

The game form Γ, consisting of an ascending-bid auction followed by a challenge

stage, provides a universal implementation of the revenue-maximizing auction in

this case provided it is modified so as to mimic the more complex structure of the

payments in the revenue-maximizing auction. Formally, a winner of the ascending-

bid auction is now required to volunteer two prices p1 and p2, with.p2 ≥ p1, among

which the seller randomizes so that the expected price corresponds to the appropriate

weighted average price where p1 and p2 are treated as ti(b) and ri(b) respectively.

Another bidder can then challenge the price randomly drawn with a strictly higher

price.

10Under the assumption that Fi(.) is continuously differentiable, if b < b′, then ri(b) < ti(b′) and
limb′↓b ti(b′) = ri(b). Hence the expression Hi(vi) is well-defined.

11The precise form of the payments in case of simultaneous exits by several bidders at the winning
bid can be found in Myerson [1981]. If i is the sole winner and m bidders dropped out at b, bidder
i must pay p = 1

m+1 ti(b) + m
m+1ri(b). If i wins as the result of a random draw among several

bidders, he must pay ti(b).
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In this modified game Γ, bidder i of type vi participates up to the point where

the ascending price reaches Hi(vi); when he wins at bid b, bidder i proposes p1 =

ti(b) and p2 = ri(b); these price levels are also the appropriate challenge prices.

This equilibrium induces the same expected profit for the seller as if she knew the

distributions Fi(.) and had organized the optimal auction in the more usual way.

Again, this mechanism provides a universal, or detail-free implementation pro-

cedure of the revenue maximizing auction outcome in a detail-free manner.12 The

appendix sketches the formal and technical analysis.

4.2 Strong implementation

Let us come back to the analysis of the regular case. Take any strictly increasing

function bi(.) such that for all vi, bi(vi) ≤ Ji(vi). Consider the following strategies:

bidder i of type vi drops out in the ascending auction at bid bi(vi); if he wins at

b, he volunteers a price p = b−1
i (b) (if b > bi(vi), and vi otherwise) and beliefs on

i’s type following history (i, b, p) correspond to the updating of priors conditional

on the event
{
vi ≥ b−1

i (b)
}
. It is easy to see that Program (3) is still valid after

replacing Pi(b) by b−1
i (b). Under the regularity assumption and since Pi(b) ≤ b−1

i (b),

the optimal challenge price is then obtained as a corner solution at q = b−1
i (b) (or

vi). The argument is then similar to the one developed above.

The proposed strategies and beliefs therefore constitute another perfect Bayesian

equilibrium of Game Γ. Game Γ has indeed a continuum of equilibria. All the

equilibria rely on a less aggressive behavior from bidders in the ascending auction

compared to the equilibrium that implements the optimal auction; the challenging

stage then induces higher prices, for a given winning bid b. Multiplicity of perfect

Bayesian equilibria should not be a surprise. One can construct “unreasonable”

equilibria by allowing potential challengers to have unreasonable out-of-equilibrium

beliefs leading to high challenges q.

12The mechanism is less appealing because it is less simple than in the regular case. But the
payment structure in the optimal auction is itself quite complex, so that one should not expect to
find a simpler implementation procedure.
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Theorem 1 is therefore a weak implementation result, but we can exploit the

specific properties of the various equilibria to strengthen our point. A first point that

can be made is that the equilibrium that implements the revenue-maximizing auction

is not any equilibrium. As a limit equilibrium, it has a focal point property; moreover

it is the unique equilibrium where beliefs on and off equilibrium are concentrated

on {vi, such that vi ≥ p}.

To go one step further, we will restrict beliefs out-of-the-equilibrium path and

impose a refinement of the perfect Bayesian equilibrium concept that generates a

unique equilibrium; then, we can argue that the equilibrium in Theorem 1 can be

interpreted as the only reasonable equilibrium in Game Γ. For this purpose, we

apply here the concept of explicable equilibrium due to Reny [1992].

The idea underlying the notion of “explicable” equilibrium is that when a devia-

tion is detected, the other participants must interpret this deviation not necessarily

as an irrational move on the part of the deviator but, whenever possible, as the

result of some confusion over which equilibrium is being played. Whenever possi-

ble, a deviation should be interpreted as a best-response to some other equilibrium.

Formally, let B be some common standard of behavior and let π be some strategy

profile in B. Now suppose that for i 6= j, (a) an information set, h, for j is inconsis-

tent with i’s strategy profile; (b) h is both consistent with i using the distinct pure

strategies s and s′; (c) s is a best response relative to B while s′ is not, where s is a

best response to B if there exists an element γ ∈ coB such that s is a best response

against γ. Then, according to the notion of explicable equilibrium, if h is reached,

j’s reference about i’s strategy should put zero probability on s′ being played.

In the context of our game, the notion of explicable equilibrium has sufficient

bite if we set B to be the set of Perfect Bayesian Equilibria. It can eliminate all

equilibria characterized by a bi(.) function such that b−1
i (b) > Pi(b) with strictly

positive measure. Consider such an equilibrium and suppose an information h is

reached where i wins the auction at some price b and, as in the previous sub-

section, offer p = Pi(b) < b−1
i (b). We know that the strategy s used by bidder i in
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the implementation equilibrium consists of bidding according to Ji(.) and offering

p = Pi(b), and it is a best-response to the set of perfect Bayesian equilibria. However,

any strategy s′ for i that consists of bidding according to a bi(.) function such that

b−1
i (b) > Pi(b) with positive probability, and of offering p(b) = Pi(b) is not a best-

response relative to the set of perfect Bayesian equilibria: p(b) = Pi(b) lies off the

equilibrium path and either this price is challenged, in which case i could have

profitably proposed a higher p, or it is not challenged, in which case i did not

followed an optimal bidding strategy since only types in
{
vi ≥ b−1

i (b)
}

bid up to b

and may win at price b while it would have been profitable for vi ∈
(
Pi(b), b

−1
i (b)

)
to win at price p. Hence, the challengers’ inference about i’s play must put zero

probability on all strategies where i bids up to b only if vi ≥ b−1
i (b) > Pi(b), for any

candidate bi(.)-function. Since offering p = Pi(b) is a strictly dominated strategy

if vi < Pi(b), the challengers’ inference must then be that vi ≥ p = Pi(b). This

again nails down beliefs off-the-equilibrium path. Following the discussion in the

previous subsection, it selects a unique perfect Bayesian equilibrium outcome, the

equilibrium that implements the optimal auction outcome.

The conclusion of this analysis is that the equilibrium that leads to the opti-

mal auction outcome has very special features that suggest that it constitutes a

reasonable outcome of our simple implementation procedure.

5 Conclusion

We have proposed a game form that implements the optimal auction in a relatively

simple way without requiring extensive knowledge on the part of the auctioneer. The

key features of Game Γ are that the winner of the auction does not pay the winning

price of the auction; she pays some price that is determined afterwards through

some well-defined bargaining process. This is not very different from some current

practices. Often the competitive process is meant only to identify a winner, the

actual price and contract conditions are bargained afterwards between the interested

15



parties.

The result of this paper has many limitations. We have restricted our attention

to the case of private and independent values and the case of risk-neutral bidders.

We also assume that one and only one unit is on sale, we do not consider how

the logic here applies to multi-auctions with multi-unit demands. Our last concern

relates to the repetition of these auctions. The presumption that participants are

well-informed about the distributions of valuations of other participants reflects the

notion that they all share a common experience and that these auctions are often

repeated. If this is true, then collusion may arise: as a rule buyers may agree never

to challenge each other. So, we view this paper as a first step in the pursuit of

finding practical implementation procedures for optimal auctions.
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A Appendix: the general case

In the non-regular case, we consider the following game:

1. Bidders participate in an ascending-price auction as in Game 2, with public

disclosure of the winner and the winning bid (i, b).

2. If i wins, he volunteers two prices p1 and p2, with p2 ≥ p1. If i dropped

out at the winning bid (tie between potential winners), the seller sets p =

p1. Otherwise, the seller sets p = p1 with probability 1
m+1

and p = p2 with

probability m
m+1

, if m bidders simultaneously dropped out at b.

3. The price p is publicly disclosed, as well as whether p is equal to p1 or p2.

Another agent can then challenge p as in Game Γ.

We provide a sketch of the formal proof of the following result:

Theorem 2. : Each Perfect Bayesian equilibrium outcome of the game in this

Appendix is characterized by a profile of left-continuous non-decreasing functions

µi(.) such that for all b ≥ 0,

µi(b) ∈ arg max
q≥µi(b)

[(q − b)[1− Fi(q)]] ,

and of non-decreasing functions ηi(.) defined by: ηi(b) = lim
b′↓b

µi(b
′), such that:

(i) in the ascending auction, bidder i bids up to bi(vi) defined as the value of b

such that vi ∈ [µi(b), ηi(b)], if it is not smaller than 0, or drops out immediately at

0 otherwise;

(ii) when he wins at winning bid b, bidder i submits prices p1 = µi(b) and p2 =

ηi(b);

(iii) there is no challenge.

For every such profile, there exists an equilibrium that yields the corresponding out-

come.
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Note that ti(.) and ri(.) satisfy the conditions in the theorem; moreover, the

expected price is equal to the price in the optimal auction for p1 = ti(b) and p2 =

ri(b). Hence the general implementation result.

A.1 Sufficiency

We first prove that for any profile of left-continuous increasing functions µi(.) and

associated profile of functions ηi(.), the following strategies sustain the corresponding

outcome as an equilibrium. Bidder i bids up to b such that vi ∈ [µi(b), ηi(b)]. If i

wins the initial auction at value b, he volunteers payments p1 = µi(b) and p2 = ηi(b).

These prices are unchallenged. However, if p = p1 < µi(b), it is challenged and the

challenger offers q = µi(b), and if p = p2 < ηi(b), the challenger offers q = ηi(b).

Consider the challenger’s beliefs when i wins at winning bid b and m bidders

apart from i dropped out at b. If p = p1, it must be that either i also dropped out at

b and was randomly selected with probability 1
m+1

or that i dropped out above b but

p = p1 was announced, which had probability 1
m+1

. The posterior beliefs therefore

coincide with the Bayesian updating of prior beliefs conditional on {vi ≥ µi(b)}. If

p = p2 is announced, posterior beliefs must be the Bayesian updating of prior beliefs

conditional on {vi > ηi(b)}.

Given these posterior beliefs, whenever p = p1, it is sequentially rational to

challenge p if p < µi(b) and offer q = µi(b) since µi(b) ∈ arg maxq≥µi(b)(q − b)[1 −

Fi(q)]. The case p = p2 is similar..

Given the response of potential challengers, if i wins the initial auction at price

b, his best strategy is to offer p1 = µi(b) and p2 = ηi(b) unless vi < µi(b) − ∆ in

which case he offers a challengeable price, pays ∆ and ends up not receiving the

good. So let b̂ be the value at which the last of all other participants drops out.

Bidder i gets negative payoffs if he wins and vi < µi(b̂) and he gets positive payoffs

if he wins and vi > ηi(b̂) or if he drops out exactly at b̂ and µi(b̂) < v < ηi(b̂). His

best-response is indeed to bid up to the value b such that vi ∈ [µi(b), ηi(b)].
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A.2 Necessity

Consider an equilibrium with bi(.) the bid (or exit price) functions, pi1(b, vi) and

pi2(b, vi) the price proposals, and a decision rule which specifies whether to challenge

i and, if so, at which price qi(b, p, {p = pk}). Let Yi = {x|∃v such that bi(v) = x}

denote the support of i’s bids and Y−i = ∪j 6=iYj. Let dGi(b) denotes the equilibrium

measure corresponding to the probability that i wins at the winning bid b.

Claim (i): For dGi-almost all b ∈ Y−i, define the following: µi(b) ≡ sup{vi, bi(vi) <

b} and ηi(b) ≡ sup{vi, bi(vi) ≤ b}; then, in equilibrium bi(vi) < b if vi < µi(b),

bi(vi) = b if µi(b) < vi < ηi(b), and bi(vi) > b if vi > ηi(b).

The claim asserts that in equilibrium, bid functions must necessarily be increasing

when they are relevant.

Proof of Claim (i). Let Ui(vi, bi) denote the expected payoffs of bidder i of type vi

who bids up to bi. Consider two possible bids bi and b′i, with bi > b′i and bi ∈ intY−i.

If Ui(vi, bi) ≥ Ui(vi, b
′
i), we can write:

0 ≤
bi∫

b′
i

ui (vi, p1(b, vi), p2(b, vi), b) dGi(b),

where the index ui(vi, p1, p2, b) stands for bidder i’s expected payoff (in equilib-

rium) when he is of type vi, wins at winning bid b and proposes prices (p1, p2).

ui(vi, p1, p2, b) may coincide with one of i’s two equilibrium proposals, vi − p1 or

vi − p2, or with an accepted challenge, vi − qi(b, p, {p = pk}) − ∆, or else with a

rejected challenge, −∆; it is strictly increasing in vi when it is non-negative. The

inequality above implies that within (b′i, bi), the integrand is non-negative on a set

of positive dGi-measure on which it is then strictly increasing in vi. Therefore, for

all v′i > vi, if Ui(vi, bi) ≥ Ui(vi, b
′
i),

0 <

bi∫
b′
i

ui (v
′
i, p1(b, vi), p2(b, vi), b) dGi(b)
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and then Ui(v
′
i, bi) > Ui(v

′
i, b

′
i). The result follows.

Claim (ii): Suppose that i wins at winning bid b ∈ Y−i, then along the equilib-

rium path, i offers p1(b, vi) = µi(b) and p2(b, vi) = ηi(b) which are almost never

challenged, for dGi-almost all b ∈ Y−i.

Proof of Claim (ii). For b ∈ intY−i, let k1(b, vi, i) (a similar argument exists for

k2(b, vi, i) corresponding to p2) denote the effective price paid by i along the equi-

librium path whenever he wins at bid b and p = p1.

Let k∗1(b, i) ≡ inf{vi≥µi(b)} k1(b, vi, i). We show that k∗1(b, i) = µi(b) almost always,

in the sense of dGi. Suppose that k∗1(b, i) < µi(b), i.e. there exists one vi ≥ µi(b)

for which the effective price along the equilibrium path is less than µi(b). It cannot

correspond to a rejected challenge since vi + ∆ > µi(b); it cannot correspond to an

accepted challenge or to an unchallenged price either, since the challenger would

strictly benefit from challenging at a price q such that k1(b, vi, i) < q < µi(b), which

would surely be accepted given posterior beliefs concentrated on {vi ≥ µi(b)}.

Suppose now that there exists an interval (b0, b0 + ε) ⊂ Y−i and δ > 0 such that:

∀vi ∈ (µi(b0), µi(b0) + δ),∀b ∈ [b0, b0 + ε), k∗1(b, i) > vi.

A bidder i of type vi in this right-neighborhood of µi(b0) would have been strictly

better off by submitting a bid strictly lower than b0, which contradicts the definition

of µi(.). Hence k∗1(b, i) = µi(b).

From this, it follows that if there is a challenge in equilibrium, it must be accepted

and must occur at price q = µi(b)−∆. But this price cannot correspond to a rational

challenge since a challenger knows that the winner i must have valuation vi ≥ µi(b)

and would therefore accept a slightly higher challenge price with probability 1. So it

is necessary that i winning at b volunteers p1 = µi(b) and that there is no challenge

whatever her type vi ≥ µi(b).

Claim (iii): Along the equilibrium path, when i wins the auction at b for dGi-
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almost every b ∈ Y−i, then µi(b) must be such that:

µi(b) ∈ arg max
q≥µi(b)

(q − b)[1− Fi(q)] (5)

Proof of Claim (iii). Given Claim (i), when a challenger faces the winner i at

winning bid b and with p = p1, he should have beliefs corresponding to the updating

of prior beliefs conditional on {vi ≥ µi(b)} and should not find any profitable chal-

lenge. If there were a q > µi(b) such that (q−b)[1−Fi(q)] > (µi(b)−b)[1−Fi(µi(b))],

there would exist such a strictly profitable challenge against p1. The same holds for

ηi(b). Hence the Claim.

This completes the proof of the theorem.
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