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Résumé / Abstract 
 

Dans le cadre du modèle d’enchères à valeurs privées et indépendantes, nous dérivons les 
implications empiriques du comportement d'équilibre dans les enchères à enveloppe scellée au  
premier prix, lorsque les incréments sont discrets. Bien que les comportements d'équilibre 
diffèrent lorsque les mises prennent des valeurs discrètes plutôt que continues, ces différences 
disparaissent typiquement comme les incréments tendent vers zéro. En pratique, les mises 
dans les enchères prennent des valeurs discrètes.  De plus, ceci peut simplifier les calculs 
nécessaires pour estimer et tester les modèles d'enchères. Notre approche s’insère dans le 
cadre d’un modèle d'inférence incomplet et nous permet de tester si les données sont 
cohérentes avec un comportement d'équilibre dans le cadre d’un modèle symétrique aussi bien 
qu'asymétrique. Nous démontrons l'utilité de l'approche en l’appliquant à des données 
générées à partir d’expériences en laboratoire.  

 
Mots clés : inférence dans les enchères, mises à valeur discrètes, enchères 
asymétriques. 
 
 

Within the independent private-values paradigm, we derive the equilibrium implications 
of purposeful bidding behaviour at single-unit, first-price, sealed-bid auctions when discrete 
increments are imposed on bidding. While equilibrium purposeful behaviour with discrete bid 
increments is different from that which would obtain were continuous variation in bids 
permitted, these differences typically disappear as the bid increments go to zero. But discrete 
bid increments are a common feature at many real-world auctions. Moreover, their presence 
can simplify computation when estimating and testing auction models. Our approach fits 
within a model of incomplete inference and allows us to test sequentially for symmetric, 
equilibrium purposeful behaviour as well as asymmetric, equilibrium purposeful behaviour. 
We demonstrate the utility of the approach by applying it to data from laboratory 
experiments. 
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1. Introduction

During the last four decades, economists have made considerable progress in under-
standing the theoretical structure of strategic behaviour under market mechanisms,
such as auctions, when a small number of potential participants exists; see Krishna
(2002) for a comprehensive book-length survey of progress. During the last fifteen
years, two distinct empirical strategies designed to take these theoretical models to ei-
ther experimental or field data have been proposed; see Hendricks and Paarsch (1995)
for a review.

One analytic device, commonly used to describe bidder motivation at auctions,
is a continuous random variable which represents individual-specific heterogeneity
in valuations. The conceptual experiment involves each potential bidder’s receiving
an independent draw from a distribution of valuations. Conditional on this random
variable, the economic actors are assumed to act purposefully, maximizing either
expected profit or the expected utility of profit from winning the auction. An
assumption then made for computational parsimony is that agents choose their bids
continuously when maximizing their expected objective function. Of course, this
seemingly innocuous and certainly natural assumption is made so that the calculus
can be used to characterize optimal behaviour. Another frequently-made assumption
is that agents are ex ante symmetric, their independent draws coming from the same
distribution of valuations, an assumption that then allows one to aggregate across all
potential economic actors and to focus on one “representative” first-order condition
when describing optimal behaviour. Finally, researchers typically impose a notion of
equilibrium, such as Bayes-Nash, to close the model.

At many real-world auctions, economic agents are required to submit bids in
discrete increments. In such cases, equilibrium purposeful behaviour is different from
that which would obtain in a continuous-variation model. Also, in many economic
environments, asymmetries in valuations across bidders of different types are often
important, making the assumption of symmetry untenable. Finally, a notion of
equilibrium is often used to identify the data-generating process (DGP) of the model
(in the Hood-Koopmans econometric sense), so it is then impossible to test such a
notion without recourse to additional assumptions; e.g., a functional-form assumption
concerning the distribution from which the valuations are drawn.

While each of the three maintained assumptions described above is made for com-
putational parsimony and tractability, it is of considerable interest to have a strategy
to decide whether individually and together they are, in fact, an accurate character-
ization of the phenomena they are used to model. This turns out to be extremely
difficult to carry out computationally in the continuous-variation model, except for
very simple examples. In this paper, we hope to make some progress on this problem
by relaxing the assumption of continuous choice, assuming instead that potential par-
ticipants at auctions are constrained to bid in fixed and known discrete increments.
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By focussing on observed market behaviour, specifically non-participation as well as
the bids tendered at single-unit, first-price, sealed-bid auction, we then characterize
the conditions under which the observed actions of potential bidders are consistent
with the notion of symmetric, Bayes-Nash equilibrium behaviour. We then go on
to specify conditions sufficient to test for just Bayes-Nash equilibrium behaviour,
relaxing the symmetry assumption. Finally, we admit the presence of differential
risk aversion among potential bidders. We demonstrate the utility of our proposed
approach by applying it to data from laboratory experiments.

Ours is a model of incomplete inference studied first in the econometrics literature
by Horowitz and Manski (1995) and then used to interpret field data concerning oral,
ascending-price (English) auctions by Haile and Tamer (2003). Haile and Tamer
(2003) concerned themselves with the “continuous button” model of an English
auction, noting that observed data from real-world oral, ascending-price auctions
often occur in jumps, do not vary continously. Our concept of equilibrium, Bayes-
Nash, is different from that of Haile and Tamer (2003) who used the concept of
dominance. Moreover, whereas Haile and Tamer (2003) provide no test of equilibrium
purposeful behaviour, but rather use the theory as an identifying assumption, we
provide explicit tests against different alternatives which may be non-nested. Like
Haile and Tamer (2003), we note that the discrete nature of bidding prevents the
econometrician from recovering an estimate of the “exact” distribution of latent
heterogeneity. And, as in Haile and Tamer (2003), we note that this lack of precision
changes the nature of the optimal mechanism-design problem.

Our research is distinct from that of Athey and Haile (2002) who considered the
identification of standard (continous-variation) models of auctions under alternative
data sampling schemes, but the work is complementary to that of Guerre, Perrigne,
and Vuong (2000) as well as Campo, Guerre, Perrigne, and Vuong (2000) who
investigated non-parametric identification, estimation, and testing in continuous-
variation, symmetric, first-price, sealed-bid auction models within the independent
private-values paradigm (IPVP), without and with risk aversion.

2. Motivating Empirical Example

Consider an empirical worker who has collected a sample of data concerning a se-
quence of T first-price, sealed-bid auctions at which single, identical objects are sold
independently to n potential buyers. The rules of the auction require that bidders
submit sealed tenders from a countable, finite set of discrete bids. The empirical
worker summarizes these bidding data into counts where mi denotes the number of
times a bid ki was observed where i =, 1, . . . , K; m0 denotes the number of times that
a bidder declined to participate, did not bid. Note that m0 equals (nT −

∑K
i=1 mi).

The vector m, which equals (m0,m1, . . . ,mK), collects these.
Now, under the assumption of independence and for some true model, the
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probability of having observed m is given by the multinomial distribution

g(m|π0) =
(nT )!

∏K
i=0 mk!

K
∏

i=0

(π0
i )

mi (2.1)

where the probability of bid ki under the true model is denoted π0
i and where the

vector π0 collects the π0
i s, equalling (π0

0 , π
0
1 , . . . , π

0
K). Given π0, calculating the prob-

ability that the observed datam came from (2.1) is straightforward. We are interested
in deciding whether the true model is “Bayes-Nash consistent” (BNC). Our use of
BNC is closest to the use of “rationalizable” by Campo, Guerre, Perrigne, and Vuong
(2000). The term BNC is different from other ways in which the term “rationaliz-
able” has been used in economics, particularly by theorists; see, for example, Dekel
and Wolinsky (2001), Battigalli and Siniscalchi (2002), and Cho (2002). To appre-
ciate our usage of BNC, we turn next to the specification of a theoretical model in
which the term has content.

3. Theoretical Model

We consider a theoretical model in which n potential bidders vie for the right to buy a
single object at a first-price, sealed-bid auction. At this auction, agents must submit
bids in discrete increments. Let K, equal {k0, k1, k2, . . . , kK , kK+1}, denote the set of
possible bids submitted. Here ki+1 equals (ki + ∆i) for positive increments ∆i and
all i = 1, . . . , K. We denote the lowest admissible bid, the reserve price, by k1 and
the highest observed bid, but not necessarily the highest admissible one, by kK . In
principle, a bidder could submit kK+1 which equals (kK +∆K). For non-participants,
we denote the null bid by k0 which, without loss of generality, we normalize to be
zero. When the increments are the same, we suppress the subscript and just refer to
the increment as ∆. In the event of ties, the object is allocated at random to one of
the tied bidders. Specifically, if ` bidders each submit the same highest bid kj , then
one is chosen at random to be the winner with probability (1/`).

Within our model, potential bidders have valuations that are assumed initially to
be independently and identically distributed draws of a continuous random variable
V having cumulative distribution function F (v), probability density function f(v),
and support on the interval [v, v̄]; i.e., we work within the IPVP.

Our theoretical model is developed in terms of observables; viz., the number
of potential bidders n as well as the distributions of non-participation and observed
bids. To this end, we denote the probability of observing bid ki by πi; π0 denotes
the probability of not participating at the auction. We collect the πis in the vector
π which equals (π0, π1, . . . , πK); π denotes the probability distribution over K where
∑K

i=0 πi equals one. We assume that, like n and F (v), π is common knowledge to
the potential bidders. We introduce Πi, the cumulative distribution function, which
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equals
∑i

j=0 πj , the probability that a bidder bids ki or less, and collect all of these
in the vector Π which equals (π0,Π1, . . . ,ΠK−1, 1).

We assume that a representative potential bidder of type v seeks to maximize
the expected profit from winning the auction; i.e.,

max
<kt∈K>

(v − kt) Pr(winning|kt).

For a representative bidder, we denote by Γi the equilibrium probability of winning
if ki is submitted; these probabilities are collected in Γ equal (Γ0,Γ1, . . . ,ΓK ,ΓK+1).
Using π, we seek to calculate the elements of the vector Γ. We know some of the
Γis already. For example, if some one does not participate at the auction, then the
probability of his winning is zero, so Γ0 equals zero. Also, if some one bids more than
the observed maximum, then he is sure to win, so ΓK+1 equals one. For the remaining
Γis, one can verify directly that the following constitutes a symmetric, Bayes-Nash
equilibrium of the auction game:

Γi =
(Πi)

n − (Πi−1)
n

n(Πi − Πi−1)
∀ i = 1, 2, . . . , K. (3.1)

The numerator of (3.1) is the probability that the highest bid is exactly equal to ki,
while the denominator is the expected number of potential bidders submitting bid ki.

We now consider a representative bidder’s best response when confronted by Γ.
For valuation v, it is optimal to bid ki when the following inequalities hold:

(v − ki)Γi ≥ (v − kj)Γj ∀ j 6= i. (3.2)

In words, the expected profit from bid ki weakly exceeds that for any alternative
bid kj . Of course, this is just the definition of ki’s being optimal. Obviously, this
set of inequalities is the discrete analogue to the equilibrium first-order condition for
expected-profit maximization in the continuous-variation model which takes the form
of the following ordinary differential equation in the strategy function σ(v):

σ′(v) + σ(v)
(n− 1)f(v)

F (v)
= v

(n− 1)f(v)

F (v)
. (3.3)

When the reserve price is r, (3.3) has the following convenient solution:

σ(v) = v −

∫ v
r F (u)n−1 du

F (v)n−1
(3.4)

which, except perhaps for the integral in the numerator of the right-most term on the
right-hand side of (3.4), is much more compact to deal with computationally than
the set of inequalities presented by (3.2).
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4. Bayes-Nash Consistent Behaviour

Given the expected-profit maximizing, Bayes-Nash equilibrium behaviour character-
ized in the previous section, what restrictions does this behaviour impose on the
DGP? We introduce the notion of BNC behaviour, a term whose usage is similar
to the way in which Campo et al. (2000) use the term “rationalizable” within the
continuous-variation model. Since our theoretical framework is slightly different from
Campo et al., we state separately our definition below.

Definition 1: A vector π over K is Bayes-Nash consistent if there exists a
(Bayes-Nash) equilibrium that generates π as an equilibrium distribution of bids.

Theorem 1: A vector π over K is Bayes-Nash consistent, if and only if, for all
i such that πi > 0,

kiΓi − ktΓt

Γi − Γt
≤
kiΓi − ksΓs

Γi − Γs
∀ 1 ≤ t < i < s ≤ K + 1 (4.1)

where Γi is defined in terms of π by (3.1).

Proof: The expression

vt,i ≡
kiΓi − ktΓt

Γi − Γt

corresponds to the type which is indifferent between bidding ki and kt. Denote

vi ≡ max
t<i

[

kiΓi − ktΓt

Γi − Γt

]

v̄i ≡ min
s>i

[

kiΓi − ksΓs

Γi − Γs

]

When the conditions of Theorem 4.1 hold, vi is less than or equal to v̄i for all i
such that πi is strictly positive. All types v that are greater than or equal to vi

will prefer to bid ki rather than any lower price; all types v that are less than
or equal to v̄i will prefer to bid ki rather than any higher price. It follows that,
for all v ∈ [vi, v̄i], it is optimal to bid ki. We need to assign a probability that
v lies in [vi, v̄i], equal πi. If vi equals v̄i, then we assume a mass point at v̄i in
the distribution of valuations. The corresponding F (·) is constructed so that the
observed distribution of bids is consistent with the strategy of the bidder and
the distribution of types. Each participant bids optimally, given the distribution
of others’ bids. Now, when the conditions of Theorem 4.1 fail to hold and vi
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exceeds v̄i, then no v exists for which it is optimal to bid ki. Hence, we must
have πi equal to zero.

Verifying that the vector of sample bid proportions p̂, which equals (m/T/n), is
BNC simply involves verifying that the Γ̂is, the estimated Γis which are calculated
using p̂ in place of π according to equation (3.1), satisfy the inequalities in (4.1) of
Theorem 1. This step is equivalent to verifying that the estimated ξ(v) function,
in the notation of Guerre et al. (2000), is a monotonically increasing function of the
valuation v. In our model, this step requires less computational effort because the bids
come in discrete increments, which happen to be a reality in many problems.1 Note
that when p̂ is BNC, one strategy for estimating the p-value, at least asymptotically
under the null, simply involves simulating draws S−0 from the multivariate normal
distribution; i.e.,

S−0 ∼ N
[

p̂−0,Σ(p̂−0)
]

where p̂−0 is p̂ without p̂0 and

Σ(p̂−0) =















p̂1(1− p̂1) −p̂1p̂2 . . . −p̂1p̂K

−p̂1p̂2 p̂2(1− p̂2) . . . −p̂2p̂K

...
...

. . .
...

−p̂1πK −p̂2p̂K . . . p̂K(1− p̂K)















(4.2)

and then keeping track of the proportion of rejections according to (4.1) when s,

which is s−0 augmented by s0 which equals (1−
∑K

i=1 si) is used instead of π.
Note that π lives in the simplex SK . In that simplex, we denote the set of all

points that are BNC by C (for “consistent”) which is a subset of SK . Of course, the
reader might ask: Can C be empty? No. A uniform distribution on π, the point in
the middle of SK which equals ([1/(K+1)], [1/(K+1)], . . . , [1/(K+1)]), will always
be BNC. For a given distribution F (v) and under the sort of equilibrium purposeful
behaviour assumed in section 3, the “true” model π0 will live in C. Note too that
other candidate πs can also live in C.

When p̂ strays out of C, two reasons can exist: first, sampling error or, second,
agents are not behaving according to theory, for whatever cause. We need to assess
the relative importance of these two explanations and then provide a strategy to
disentangle the potential reasons why agents are not behaving according to the theory.
Obviously, without additional information, we cannot ascertain what the unknown
π

0 is; we can only try to estimate it.

1 Using the Guerre et al. (2000) approach, one would first find the optimal bandwith, next
kernel-smooth the bid distribution, then construct an estimate of ξ(v), and finally check to see
that ξ̂(v), the estimate of ξ(v), is monotonically increasing in v.
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Now, the statistical sampling theory for the multinomial distribution is extremely
well developed, so we can deal with sampling variation in a straightforward manner,
provided we can calculate the probability of observing a p̂ not contained in C, given
a π contained in C.

To this end, we seek some of C’s properties. First, the set C is quite large,
relatively speaking. For example, when K is small, one can derive, by brute-force
calculation, a set of inequalities that characterizes C. If n is two and K is three, then
the following defines C:

(2− π1 − 2π2 − 2π3)

(π1 + π2)

(π2 + π3)

2
≤ 1 (4.3)

in the simplex S3. (The reader should note that when n is two and K is two, the
set C equals the simplex S2. This obtains because any behaviour can be rationalized
at either of the endpoints and, with a K of two, basically, only endpoints exist so
no other constraints on the process exist.) In dimensions for K that are higher than
three, characterizing C is computationally arduous. Also, trying to bound C is difficult
because the set can be non-convex.2 Thus, the approximation error associated with
any bounding strategy is potentially quite large. What to do?

5. Testing BNC Behaviour

From a computational perspective, characterizing C is extremely difficult. But we
need C because, when p̂ is not BNC, we want to estimate the probability of getting
p̂, given the “nearest” BNC point. This forms the basis of our testing procedure.
Now, the problems of characterizing C and finding a point in C closest to p̂ are
obviously related. However, because these are conceptually distinct problems, we
break up discussing them, examining each in series.

5.1. Distance from p̂ to C

How does one calculate distance in SK to define the nearest point? One possibility is
just the Euclidean distance ‖p̂ − π‖2. Estimating this distance involves solving the
following constrained optimization problem:

min
<π>

‖p̂− π‖2 subject to π ∈ C ⊂ SK .

2 To see this, impose equality in (4.3) and write π1 as a function of π2 and π3. Straightforward
differentiation reveals that the derivatives can change sign, when either π2 (or π3) are held
constant while π3 (or π2) are varied, implying that the set is non-convex.
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Now, the variance of p̂i depends on the relative value of πi. To adjust for this, one
might use a second possibility; viz., minimizing the Mahalanobis norm (see Rao 1973,
p. 542), which involves solving the following constrained optimization problem:

min
<π−0>

(p̂−0 − π−0)
>[Σ(π−0)]

−1(p̂−0 − π−0) subject to π ∈ C ⊂ SK

where Σ(π−0) is defined in (4.2). We propose a third alternative, seeking instead to
maximize the empirical likelihood of having observed m subject to π’s being in C:

max
<π>

g(π|m) subject to π ∈ C ⊂ SK

or, alternatively, under a monotonic (logarithmic) transformation, ignoring the con-
stant term,

max
<π>

K
∑

i=0

mi log(πi) subject to π ∈ C ⊂ SK . (5.1)

We chose this objective function because we want to use the likelihood-ratio test to
decide whether p̂ is “significantly” different from a BNC outcome and because (5.1)
is related to the Kullback-Leibler distance. We hope to exploit this relationship and
to integrate our model-testing work with that of Vuong (1989).

To see that (5.1) is related to the Kullback-Leibler distance, transform

K
∑

i=0

mi log(πi), (5.2)

linearly, by multiplying it by (1/nT ) and then subtracting
∑K

i=0 p̂i log p̂i to get

K
∑

i=0

mi

nT
log(πi)−

K
∑

i=0

p̂i log p̂i =
K
∑

i=0

p̂i log

(

πi

p̂i

)

.

Now,
K
∑

i=0

p̂i log

(

p̂i

πi

)

= −
K
∑

i=0

p̂i log

(

πi

p̂i

)

(5.3)

is the Kullback-Leibler distance, so maximizing (5.2) is equivalent to minimizing
(5.3).3

3 Yet at fourth alternative would be the following:

min
<π>

−
K
∑

i=0

πi log

(

p̂i

πi

)

subject to π ∈ C ⊂ SK .
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5.2. An Alternative Representation of C

Under any of the above distance alternatives, even if characterizing C could be done
quickly, the fact that C is typically non-convex makes the above constrained opti-
mization problem difficult to solve accurately. In an effort to reduce computational
problems, we adopt an heuristic made popular by Murtagh and Saunders (1983).
In particular, we seek a transformation of the above problem in which the difficul-
ties in characterizing C are embedded in the objective function, leaving the newly-
transformed, contrained-optimization problem with a choice set that is “easy” to deal
with computationally, in our case, convex. Of course, such a transformation can often
take a well-behaved objective function (as the logarithm of the likelihood function is
in the multinomial case, being a strictly concave function of the relevant πs) and in-
troduce local optima. This complication can potentially affect the size of our testing
procedure, but we shall discuss this later. Below, we describe the reasoning behind
the particular transformation we use as well as the specifics of implementing it.

Since V is a continuous random variable, we know that an interval will exist in
which it will be optimal to bid ki. Because bids are monotonic, the interval, which
can be empty, is connected.4 When πi is strictly positive, we know that the interval
of “type”s for which the best response is to bid ki must be non-empty, otherwise
one could not justify the bid ki having obtained with positive probability in the first
place.

For a representative bidder, let vi denote the type which is indifferent between
bidding ki and ki+1. We define v0 to be that bidder type who is indifferent between
not participating and bidding the reserve price at the auction. Hence v0 equals k1,
the reserve price. We introduce V(K) as the set of all vectors v equal (v0, v1, . . . , vK)
which satisfy the following constraints:

k1 = v0

ki+1 ≤ vi i = 1, . . . , K

v0 ≤ v1 ≤ v2 ≤ . . . ≤ vK

vK ≤ v̄.

For a given K one can see, by direct inspection, that the set V(K) is compact and
convex. Moreover, any v ∈ V(K) gives rise to a unique π ∈ C.

5.3. Mechanics of Computation

We start by assuming no complications, which are typically introduced by the presence
of πis that equal zero, and then introduce additional elements of numerical subtlety.

4 We assert this without proof; a proof will be supplied later.
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For a candidate ṽ ∈ V(K), one can calculate the Γ̃ consistent with ṽ as follows: first,
consider the equal-expected-proft condition between adjacent pairs of ki and ki+1

which must hold if ṽi is to be an indifference point. Thus,

(ṽi − ki)Γ̃i = (ṽi − ki+1)Γ̃i+1 i = K,K − 1, . . . , 1,

so

Γ̃i =
(ṽi − ki+1)

(ṽi − ki)
Γ̃i+1 i = K,K − 1, . . . , 1

where Γ̃K+1 equals one and Γ̃0 equals zero. In general, however, one must also
entertain the possibility of alternative bids above ki+1 being optimal, so

Γ̃i = max
j>i

[

(ṽi − kj)

(ṽi − ki)
Γ̃j

]

.

Now, for a symmetric game, π̃ is defined implicitly by

Γ̃i =
(Π̃i)

n − (Π̃i−1)
n

n(Π̃i − Π̃i−1)
∀ i = K,K − 1, . . . , 1.

But ΠK equals one while the above expression is strictly monotonic in Π̃i−1 for all
Π̃i−1 between zero and Π̃i when Π̃i is strictly positive. Hence, for all Γ̃i such that

(Π̃i)
n

n
< Γ̃i < (Π̃i)

n−1,

a unique Π̃i−1 exists and is contained in [0, Π̃i] which equals [0, Π̃i−1 + π̃i] where π̃i

is non-negative. Obviously, once one has Π̃ calculating π̃ is trivial.

The constrained optimization we solve has the following, relatively simple struc-
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ture:

min
<v>

−
K
∑

i=0

p̂i log[πi(v)/p̂i] subject to
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where a candidate ṽ induces a candidate π̃ which we denote implicitly by

log π̃ = h(ṽ).

Thus, we summarize the mathematical programme in the following notation:

min
<v>

c>h(v) subject to b ≤ Av ≤ u and v ∈ [v, v̄]K+1. (5.4)

Note that the sparse nature of the constraint matrix A makes this problem partic-
ularly amenable to solution using the methods of Murtagh and Saunders (1978). In
fact, in applications, we use the programme SNOPT to solve this problem numeri-
cally; see Gill, Murray and Saunders (1997).5 SNOPT uses a sequential quadratic
programming algorithm that obtains search directions from a sequence of quadratic
programming subproblems. Each quadratic-programme subproblem is solved by min-
imizing a quadratic form of a certain Lagrangian function subject to linear constraints.
An augmented Lagrangian merit function is reduced along each search direction to
ensure convergence from any starting point. SNOPT is most efficient when only some

5 One could also use MINOS as documented by Murtagh and Saunders (1983). We chose SNOPT
because it was available while MINOS was not.
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of the variables enter nonlinearly, which is not our case as all do, or when the number
of active constraints (including simple bounds) is nearly as large as the number of
variables, which is our case.

Of course, not all candidate ṽs are consistent with π̃’s being strictly positive for
all elements. This will manifest itself by some

Γ̃i ≥ (Π̃i)
n−1 (5.5)

or

Γ̃i ≤
(Π̃i)

n

n
. (5.6)

When (5.5) obtains, we know that π̃i must be zero, so we set Γ̃i to (Π̃i)
n−1 and Π̃i−1

to Π̃i. When (5.6) obtains, we set Γ̃i to [(Π̃i)
n/n] and Π̃i−1 to zero, so π̃i equals Π̃i.

Note that in this case all π̃js are zero for j less than i.
One final check must be completed in order to complete our procedure. Let `

equal the index i for which π̃i is currently being solved. Denote by k` the lowest price
submitted in the proposed equilibrium. Using only the Π̃is calculated thus far, verify
that

(ṽ`+1 − k`+1)
(Π̃`+1)

n − (Π̃`)
n

n(Π̃`+1 − Π̃`)
≥ (ṽ`+1 − k`)

(Π̃`)
n−1

n
.

If this is true, then one is done; otherwise one must find the smallest j which exceeds
(i+ 1) such that

(ṽj − kj)
(Π̃j)

n − (Π̃j−1)
n

n(Π̃j − Π̃j−1)
≥ max

[

(ṽj − k`)
(Π̃`)

n−1

n
, (ṽj − k`+1)(Π̃j−1)

n−1

]

.

Under these conditions, π̃i is zero for all i ∈ {`+1, . . . , j−1} and π̃` equals (Π̃j − π̃j)
which is, of course, Π̃j−1.

5.4. Advice concerning Starting Values

If p̂ is strictly positive for all elements, then whenever a candidate π̃i equals zero the
Kullback-Leibler distance becomes unbounded, which is a numerical complication.
All of the special cases described above are devoted to dealing with such occasions
and may seem like a lot of work. Certainly, these cases are tedious to code. However,
a good constrained hill-climbing algorithm, like the one coded in SNOPT, can often
avoid suboptimal candidates that yield inadmissible π̃s, provided “good” starting
values are used as inputs. How can one provide “good” starting values? One strategy
is to find the centre of the simplex SK , which we know is BNC, and then to calculate
the v̇ consistent with it. Use this v̇ as the starting point for the numerical search.
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To calculate the v̇ consistent with π̇ equal ([1/(K +1)], . . . , [1/(K +1)]) or a Π̇
of ([1/(K + 1)], [2/(K + 1)], . . . , 1), do the following: first, calculate

Γ̇i =
(Π̇i)

n − (Π̇i−1)
n

n(Π̇i − Π̇i−1)
i = K,K − 1, . . . , 1,

and then solve

v̇i =
ki+1Γ̇i+1 − kiΓ̇i

Γ̇i

i = K,K − 1, . . . , 1,

with v̇0 being k1.

5.5. Test Statistic

Given what has come before, performing a test of BNC behaviour is somewhat anti-
climactic, at least computationally. Once one has the unconstrained logarithm of the
likelihood function L(p̂) as well as the largest constrained logarithm of the likelihood
function L(π̃∗) where π̃∗ ∈ C, we propose using the likelihood-ratio test statistic

2[L(p̂)− L(π̃∗)]
d
→ χ2(K). (5.7)

to decide whether the constraint binds in a “significant” way. Here we introduce
the shorthand notation that π̃∗ equals π(ṽ∗) where ṽ∗ solves (5.4). Obviously, the
p-values for a χ2(K) can be found easily in a statistics textbook.

5.6. Practical Considerations

At least two practical considerations may make implementing the test statistic in (5.7)
impossible. First, some of the p̂is may well equal zero, which then makes calculating
the Kullback-Leibler distance impossible; one cannot calculate the likelihood-ratio
test statistic either. What to do?

In such cases, one might want to use the Euclidean (or Mahalanobis) distance
to find π̌, the closest point in C. Given this point, one could then use a test statistic
like

(p̂−0 − π̌−0)
>[Σ(π̌−0)]

−1(p̂−0 − π̌−0) (5.8)

where Σ(π̌−0) denotes (4.2) evaluated at π̌ which equals π(v̌). Here v̌ solves (5.4)
with either the Euclidean or the Mahalanobis distance replacing the Kullback-Leibler
distance. Under the null hypothesis of BNC behaviour, this statistic is also distributed
asymptotically χ2(K).6

6 Of course, this strategy does not help if one of the elements of π̌ is exactly equal to zero, since
then the inverse of the matrix Σ(π̌−0) will not exist. In practice, we have as yet to encounter
such an outcome.
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Second, the transformation used to create the compact and convex set V(K) may
introduce local optima in the objective function, regardless of which distance one uses,
be it Euclidean, Mahalanobis, or Kulback-Leibler. One commonly-suggested way to
check for the presence of these local optima is to try different starting values and then
to check to see what happens to the solution. Obviously, this strategy can provide
evidence of multiple local optima, but the absence of such evidence clearly does not
guarantee that a particular optimum is the global one.

The possibility of local optima is troublesome. For it implies that the likelihood-
ratio test [or any other test based on a distance, such as the Wald-type test proposed
above (5.8)] will be inconsistent. To wit, its actual size will be less than its nominal
size: the test will tend to under-reject the null hypothesis. The reader should note
that this is not a property of our transformation of the problem to the v space: it
would exist in the original specification too.

6. Incomplete Inference concerning F(v)

One way to view auction theory is as a specific application of the theory of optimal
mechanism design. Over the past four decades, economists have made considerable
progress in understanding factors influencing prices realized from goods sold at auc-
tion. For example, they have found that the seller’s expected revenue depends on
the type of auction employed, the rules that govern bidding, the number of potential
bidders, the information available to potential bidders, and the attitudes of bidders
toward risk. From a policy-maker’s perspective, however, one of the most important
problems involves choosing the selling mechanism that obtains the most profit for
the seller. To a large extent, the structure of the optimal selling mechanism depends
on the informational environment. Within the IPVP, which was first developed by
Vickrey (1961), it is known that, under risk neutrality, four quite different auction
formats — the oral, ascending-price (English); the first-price, sealed-bid; the second-
price, sealed-bid (Vickrey); and the oral, descending-price (Dutch) auctions — garner
the same expected revenue for the seller. This result, which is known as the “Revenue
Equivalence Proposition” (REP), is of considerable interest to both economists and
policy makers. Given the REP, one question that arises naturally is can one still
improve on the structure of the four auction formats? Within a continuous-variation
model, Riley and Samuelson (1981) have shown that devising a selling mechanism
which maximizes the seller’s expected gain involves choosing an optimal reserve price
ρ∗. Specifically, ρ∗ should be determined according to the following equation:

ρ∗ = vS +
[1− F (ρ∗)]

f(ρ∗)
(6.1)

where vS is the seller’s valuation for the object for sale.
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The literature concerned with mechanism design has often been criticized as
lacking practical value because the optimal selling mechanism depends on random
variables whose distributions are typically unknown to the designer. In the past,
because the distributions of valuations have been unknown, calculating the optimal
reserve price, the optimal selling mechanism, for a real-world auction was impossible.
At auctions within the IPVP and with continuous-variation, the equilibrium bidding
strategies of potential bidders are increasing functions of their valuations. For exam-
ple, at first-price, sealed-bid auctions the Bayes-Nash equilibrium bidding strategy is
given by (3.4). Thus, in principle, it is possible to estimate the underlying probabil-
ity law of valuations using the empirical distribution of bids from a cross-section of
auctions, and then to use this estimate to estimate the optimal reserve price; Paarsch
(1997) provides an example of this with application to English auctions of British
Columbian timber.

When the bid data are not continuously recorded, Haile and Tamer (2003) point
out, using data from English auctions, that it is impossible to identify the distribution
of latent types; one can only estimate bounds using methods developed by Horowitz
and Manski (1995). The reason why this obtains is that the statistical model is one of
“incomplete inference.” Essentially, a number of different valuations yield the same
action, preventing the econometrician from inverting the action to get a bidder’s type.

Obviously, this is a problem in our model too. What to do? An alternative,
which one might think a useful beginning, would be to assume that F (v) comes
from a parametric family of distributions known up to an unknown (p× 1) vector θ.
Denoting this dependence by F (v;θ), one can then calculate πi as a function of θ
according to

π0(θ) = F (k1;θ)

and
πi(θ) = [F (vi;θ)− F (vi−1;θ)] i = 1, . . . , K − 1

with

πK(θ) = [1−
K−1
∑

i=0

πi(θ)].

Now, the logarithm of the likelihood function, ignoring the constant, becomes

K
∑

i=0

mi log[πi(θ)] = m0 log[F (k1;θ))] +
K−1
∑

i=1

mi log[F (vi;θ)− F (vi−1;θ)]+

mK log[1− F (vK ;θ)]

which has (p +K) parameters, (θ, v1, v2, . . . , vK), but only K pieces of independent
information, the m. Of course, the vis depend on the θ, via equilibrium purposeful
behaviour.
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Assuming a particular family of F (v) and then estimating the parameters of
this family imposed considerable structure on the DGP. What about non-parametric
analysis? Clearly, p̂ is the non-parametric maximum-likelihood estimator of π, but
p̂ does not contain enough information to estimate F (v). As in Haile and Tamer
(2003), one can only bound it.

7. Experimental Evidence

In order to demonstrate the utility of the approach proposed above, we have con-
ducted a series of experiments. These experiments were conducted in the Laboratoires
universitaires Bell, Laboratoire en commerce électronique et économie expérimentale
located at CIRANO (Centre interuniversitaire de recherche en analyse des organisa-
tions) in Montréal using undergraduate students from a pool of subjects drawns from
five universities in Montréal, Québec, Canada, including Concordia University, HEC
(École des Hautes Études Commerciales) Montréal, McGill University, Université de
Montréal, and UQAM (Université du Québec à Montréal).

7.1. Experimental Design

The auctions were conducted electronically using either three or five potential bidders;
i.e., n of three or n of five. In all experiments, the valuation distribution had support
on [0, 100]. No reserve price existed; all potential bidders were expected to tender
some bid. A potential bidder who submitted a bid of 0 still had a chance, albeit a
small one, of winning and earning some profit. The bid increment was 10, so k1 was
0, k2 was 10, k3 20, and so forth, making K = {0, 10, 20, 30, . . . , 90}, with kK+1 being
100.

The subjects were first introduced to the experiment. The subjects were then also
offered a bonus which was either a sure $5 or a lottery of ($0, $11) with probabilities
(0.5, 0.5).7 The subjects were initially allowed five practice rounds during which their
valuations were drawn from a uniform distribution on [0, 100]. We discarded these
data. Subsequently, we conducted a series of experiments in which the shape of the
distribution varied. The distributions of valuations have the following formulae for
the probability density functions:

f(v) =











































(100−v)
5,000 Case a)

v
2,500 v ∈ [0, 50]

Case b)
(100−v)
2,500 v ∈ [50, 100]

v
5,000 Case c).

7 We used this information to get a notion of whether subjects were risk averse or not.
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In tables 1–6, we present the theoretical benchmarks for the three types of distribu-
tions with three and five players.

Three sessions of the experiment were held over two days, 1 and 2 May 2003.
In total, 44 subjects participated: 16 in the first two sessions and 12 in the last
sesssion. In each of the three sesssions, the subjects were divided into two groups.
Subjects were then matched within their own group, having two or four opponents.
We recorded data concerning 254 auctions when n was three and 150 when n was
five, a total of 1,512 observcations.

7.2. Sample Summary Statistics

In tables 7 and 8, we present the summary statistics for the p̂s from our experiments,
for ns of three and five, separately. The columns of the two tables have the realizations
from the experiments as well as the theoretical π0

i s. Listed below each column of
realized bid proportions was the total number of observations.

The first thing to note is that the support of the observed bids contains that of
the theoretical DGP. To wit, some of the participants bid more than our theoretical
model, assuming risk neutrality, would predict. Of course, in many cases, it is only
about five percent of the data, but in some (e.g., when n is three) it can be as high
as twenty-five percent of the observations.

It is also interesting to note that, were one to ignore information concerning
the valuation distribution generating the experimental data, one could not reject
that these data were BNC. Thus, implementing the test for BNC behaviour using
equation (4.1) would not result in a rejection of the theory. In the language and
notation of Guerre et al. (2000), the estimated ξ(v) function would be monotonic. In
tables 9 and 10, we tabulated the theoretical and estimated Γis and vis for the three
different distributions a), b), and c) when n is both three and five, separately. By
and large, the experimental data do quite well up to bids of fifty or sixty, but fail to
predict well in the tails. For small bids, the vis are estimated quite precisely, but at
the endpoints these estimates are quite imprecise.

In tables 11 and 12, we tabulated the p̂s for bidders who chose the safe bet
over the risky bet when n was three and five. We call those bidders who chose the
safe bet “risk averse” bidders or “Averse” in the tables and those bidders who chose
the risky bet “risk neutral” bidders or “Neutral” in the tables. Notice that bidding
behaviour is different between these two subgroups. Now, within this experimental
framework, two explanations for these behavioural differences exist: first, differences
in preferences across decision makers and, second, non-rational behavioural. We then
sought to modify our theoretical framework to accommodate these two, potentially-
different explanations.
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8. Asymmetries

In this section, we extend our theoretical model to accommodate asymmetric bidders.
We assume that bidders have different types of cumulative distribution functions, in-
dexed by g. A bidder of type g gets an independent draw from cumulative distribution
function Fg(·), while a bidder of type h gets his independent draw from Fh(·). Of
course, a bidder of type g could have the same cumulative distribution function as that
for type h, but different preferences. Different preference functions would manifest
themselves in the data as apparent differences in valuation distributions.

We assume that a bidder’s type g is observable by the econometrician, at least
ex post. We seek to infer from the data how the observable type g affects bidding
behaviour. Under the assumption of risk neutrality, two different assumptions can
be made about g: first, type g is private information to the bidders and, second,
type g is common knowledge. In the first case, although bidders differ, they are
perceived to be ex ante symmetric. Obviously, this case is easy to analyse. We do
so in subsection 8.1. The second case, when bidders expect others to bid differently
from them, is difficult to analyse in general, particularly with continuous variation in
bids, but tractable under discrete bidding. We do this in subsection 8.2. In section
9, we consider the case of risk aversion among bidders.

8.1. Unknown Types with Symmetric Distributions

We assume here that bidders are of different types g, but that these types are private
information. Denote by ωg the probability of being type g where g = 1, . . . , G different
types. Suppose that the probability of being a particular type is the same across
bidders. Denote by πg

i the probability that a bidder of type g submits a bid ki.
Under these assumptions, the average probability that a given bidder submits ki is

πi =
G
∑

g=1

ωgπ
g
i .

Using this, one can construct, as before, the vector Γ. Note that the ex ante symmetry
implies that the Γis are independent of types. The remainder of the analysis discussed
above carries through, particularly that pertaining to Theorem 1.

8.2. Bidders with Known Types

When bidders’ types are known, the problem become difficult. The main difficulty
obtains when calculating the Γis, which will now vary across types. In the continuous-
variation world, this computational difficulty manifests itself in the form a system of
ordinary differential equations instead of just one, (3.3), which need to be solved
simultaneously.
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To begin, let πg
i denote the probability that a bidder of type g submits a bid of ki.

We assume that all of the πg
i s are common knowledge and that, potentially, they differ

from one another. Under these assumptions, one can calculate, the probabilities of
winning given bid ki. Of course, these will vary from one bidder to the next depending
on a bidder’s type g. We denote by Γg

i the probability that bidder of type g wins
having submitted bid ki. IntroducingN as the set of all n bidders and T as a coalition
contained in N , for a bidder of type g, one needs to calculate

Γg
i =

∑

T ⊆N\g

[

1

|T |+ 1

∏

j /∈T

(

i−1
∑

`=0

πj
`

)

∏

j∈T

πj
i

]

.

Numerically, this involves calculating the sum over all 2|N |−1 possible coalitions T
which are a subset of N , having removed all of those who are of type g. Once the Γgs
have been calculated, one must proceed individually through each type g to verify
whether the analog to (3.1) is valid.

9. Risk-Averse Bidders

We can expand our model further by introducing the possibility of risk-averse bidders.
Suppose that a bidder of type g faces the probability of winning Γg

i when he submits
ki and has von Neumann-Morgenstern utility functoin Ug(·). More precisely, suppose
that a bidder of type g having valuation v solves the following optimization problem:

max
<kt∈K>

Ug(v − kt)Γ
g
t .

Given some utility function Ug(·) as well as Γg, one can calculate the thresholds
vg

i and v̄g
i in a similar fashion. If πg

i is strictly positive then, as before, one must
necessarily have

vg
i ≤ v̄g

i

with

πg
i = [Fg(v̄

g
i )− Fg(v

g
i )].

Note that, when the utility function is given, as before, one can identify the
cumulative distribution function of valuations as some points. Similarly, when the
cumulative distribution functions Fg(·)s are known, one can, from the πg

i s, calculate
the threshold values vg

i and v̄g
i for all gs and is. In turn, this allows one to identify

some restrictions on the Ug(·)s. Note, however, that one cannot identify both the
Ug(·)s and the Fg(·)s. In future research, we intend to apply the above results to our
experimental data.

19



10. Summary and Conclusions

Within the independent private-values paradigm, we have derived the equilibrium
implications of purposeful bidding behaviour at single-unit, first-price, sealed-bid
auctions when discrete increments are imposed on bidding. Subsequently, we have
developed an empirical framework within which to examine why observed data from
auctions, either experimental or field, deviates from theoretical predictions. While
according with many real-world auctions, the presence of discrete bid increments also
simplifies computation when estimating and testing auction models. Our approach
fits within a model of incomplete inference and allows us to test sequentially for
symmetric, equilibrium purposeful behaviour as well as asymmetric, equilibrium pur-
poseful behaviour. We have demonstrated the utility of the approach by applying it
to data from laboratory experiments.
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Table 1
Case a) with n = 3

i ki vi F (vi) Γi v∗i π0
i

1 0 11 0.2079 0.0144 11.5307 0.2079
2 10 25 0.4375 0.1085 25.6525 0.2296
3 20 41 0.6519 0.3005 41.8980 0.2144
4 30 59 0.8319 0.5531 59.1918 0.1800
5 40 100 1.0000 0.8413 103.0196 0.1681
6 50 100 1.0000 1.0000 0.0000

Table 2
Case a) with n = 5

i ki vi F (vi) Γi v∗i π0
i

1 0 10 0.1900 0.0003 10.3453 0.1900
2 10 21 0.3759 0.0078 21.7354 0.1859
3 20 34 0.5644 0.0528 34.1202 0.1885
4 30 48 0.7296 0.1810 48.2745 0.1652
5 40 62 0.8556 0.3996 62.1231 0.1260
6 50 89 0.9879 0.7293 89.5511 0.1323
7 60 100 1.0000 0.9761 478.2535 0.0121
8 70 100 1.0000 1.0000 0.0000
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Table 3
Case b) with n = 3

i ki vi F (vi) Γi v∗i π0
i

1 0 10 0.0200 0.0001 10.4191 0.0200
2 10 21 0.0882 0.0033 21.5420 0.0682
3 20 33 0.2178 0.0248 33.3042 0.1296
4 30 45 0.4050 0.0999 45.4951 0.1872
5 40 58 0.6472 0.2817 58.3196 0.2422
6 50 80 0.9200 0.6202 80.5441 0.2728
7 60 100 1.0000 0.9221 188.4247 0.0800
8 70 100 1.0000 1.0000 0.0000

Table 4
Case b) with n = 5

i ki vi F (vi) Γi v∗i π0
i

1 0 10 0.0200 0.0000 10.0294 0.0200
2 10 20 0.0800 0.0000 20.3027 0.0600
3 20 30 0.1800 0.0004 30.7560 0.1000
4 30 41 0.3362 0.0053 41.4846 0.1562
5 40 52 0.5392 0.0407 52.8157 0.2030
6 50 65 0.7550 0.1851 65.2114 0.2158
7 60 84 0.9488 0.5403 84.9110 0.1938
8 70 100 1.0000 0.9027 172.7855 0.0512
9 80 100 1.0000 1.0000 0.0000
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Table 5
Case c) with n = 3

i ki vi F (vi) Γi v∗i π0
i

1 0 10 0.0100 0.0000 10.4191 0.0100
2 10 21 0.0441 0.0008 21.5420 0.0341
3 20 33 0.1089 0.0062 33.3042 0.0648
4 30 45 0.2025 0.0250 45.8558 0.0936
5 40 56 0.3136 0.0676 56.5928 0.1111
6 50 71 0.5041 0.1702 71.4043 0.1905
7 60 79 0.6241 0.3194 79.0795 0.1200
8 70 100 1.0000 0.6712 100.4137 0.3759
9 80 100 1.0000 1.0000 0.0000

Table 6
Case c) with n = 5

i ki vi F (vi) Γi v∗i π0
i

1 0 10 0.0100 0.0000 10.0294 0.0100
2 10 20 0.0400 0.0000 20.3027 0.0300
3 20 30 0.0900 0.0000 30.7600 0.0500
4 30 41 0.1681 0.0003 41.4702 0.0781
5 40 52 0.2704 0.0026 52.3909 0.1023
6 50 63 0.3969 0.0133 63.1022 0.1265
7 60 75 0.5625 0.0561 75.1189 0.1656
8 70 84 0.7056 0.1657 84.1982 0.1431
9 80 100 1.0000 0.5605 102.7546 0.2944
10 90 100 1.0000 1.0000 0.0000

25



Table 7
Summary Statistics for n = 3

i ki p̂a
i π

0,a
i p̂b

i π
0,b
i p̂c

i π
0,c
i

1 0 0.2208 0.2079 0.0296 0.0200 0.0238 0.0100
2 10 0.2250 0.2296 0.0926 0.0682 0.0437 0.0341
3 20 0.1375 0.2144 0.1519 0.1296 0.0556 0.0648
4 30 0.1583 0.1800 0.1370 0.1872 0.0595 0.0936
5 40 0.1208 0.1681 0.2148 0.2422 0.0754 0.1111
6 50 0.0958 0.0000 0.1852 0.2728 0.1508 0.1905
7 60 0.0333 0.1111 0.0800 0.1349 0.1200
8 70 0.0083 0.0519 0.0000 0.1944 0.3759
9 80 0.0148 0.1944 0.0000
10 90 0.0111 0.0675

nT 240 270 252

Table 8
Summary Statistics for n = 5

i ki p̂a
i π

0,a
i p̂b

i π
0,b
i p̂c

i π
0,c
i

1 0 0.2200 0.1900 0.0360 0.0200 0.0480 0.0100
2 10 0.1880 0.1859 0.0480 0.0600 0.0440 0.0300
3 20 0.1640 0.1885 0.1400 0.1000 0.0600 0.0500
4 30 0.1200 0.1652 0.1200 0.1562 0.0840 0.0781
5 40 0.1280 0.1260 0.1680 0.2030 0.0520 0.1023
6 50 0.1040 0.1323 0.2040 0.2158 0.0920 0.1265
7 60 0.0440 0.0121 0.1200 0.1938 0.1560 0.1656
8 70 0.0240 0.0000 0.1280 0.0512 0.1760 0.1431
9 80 0.0040 0.0320 0.0000 0.2240 0.2944
10 90 0.0040 0.0040 0.0640 0.0000

nT 250 250 250
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Table 9
Cases a), b), and c) with n = 3

i ki Γa

i
Γ̂a

i
v
∗,a
i

v̂
∗,a
i

Γb

i
Γ̂b

i
v
∗,b
i

v̂
∗,b
i

Γc

i
Γ̂c

i
v
∗,c
i

v̂
∗,c
i

1 0 0.014 0.016 11.531 11.641 0.000 0.000 10.419 10.472 0.000 0.000 10.419 10.919

2 10 0.109 0.115 25.653 27.635 0.003 0.007 21.542 21.866 0.001 0.002 21.542 23.161

3 20 0.301 0.266 41.898 45.273 0.025 0.041 33.304 35.297 0.006 0.009 33.304 36.486

4 30 0.553 0.441 59.192 61.687 0.100 0.119 45.495 47.736 0.025 0.024 45.856 49.315

5 40 0.841 0.644 103.020 84.822 0.282 0.273 58.320 61.066 0.068 0.049 56.593 57.673

6 50 1.000 0.829 128.515 0.620 0.519 80.544 82.278 0.170 0.113 71.404 69.823

7 60 0.950 302.307 0.922 0.752 188.425 121.129 0.319 0.229 79.080 82.319

8 70 0.991 1.000 0.899 220.179 0.671 0.415 100.414 94.436

9 80 0.963 466.599 1.000 0.702 120.081

10 90 0.989 0.935

Table 10
Cases a), b), and c) with n = 5

i ki Γa

i
Γ̂a

i
v
∗,a
i

v̂
∗,a
i

Γb

i
Γ̂b

i
v
∗,b
i

v̂
∗,b
i

Γc

i
Γ̂c

i
v
∗,c
i

v̂
∗,c
i

1 0 0.000 0.001 10.345 10.426 0.000 0.000 10.029 10.026 0.000 0.000 10.029 10.102

2 10 0.008 0.012 21.735 22.323 0.000 0.001 20.303 20.303 0.000 0.000 20.303 20.707

3 20 0.053 0.061 34.120 35.997 0.000 0.002 30.757 31.554 0.000 0.000 30.760 31.952

4 30 0.181 0.162 48.275 49.615 0.005 0.015 41.485 42.339 0.000 0.001 41.470 43.076

5 40 0.400 0.331 62.123 63.203 0.041 0.079 52.816 53.988 0.003 0.003 52.391 52.249

6 50 0.729 0.582 89.551 86.535 0.185 0.275 65.211 69.386 0.013 0.014 63.102 63.424

7 60 0.976 0.802 478.254 136.312 0.540 0.568 84.911 93.636 0.056 0.054 75.119 74.358

8 70 1.000 0.923 252.205 0.903 0.809 172.786 148.163 0.166 0.177 84.198 85.461

9 80 0.976 707.515 1.000 0.928 275.957 0.562 0.501 102.755 103.387

10 90 0.992 0.978 1.000 0.876
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Table 11
p̂: Risk-Neutral and Risk-Averse Bidders, n = 3

Cases a), b), and c)

Type/ki 0 10 20 30 40 50 60 70 80 90

Neutral 0.2372 0.2372 0.1090 0.1731 0.1346 0.0897 0.0192 0.0000 0.0000 0.0000

Averse 0.1905 0.2024 0.1905 0.1310 0.0952 0.1071 0.0595 0.0238 0.0000 0.0000

Neutral 0.0333 0.1000 0.1556 0.1444 0.2000 0.1611 0.1056 0.0667 0.0222 0.0111

Averse 0.0222 0.0778 0.1444 0.1222 0.2444 0.2333 0.1222 0.0222 0.0000 0.0111

Neutral 0.0120 0.0542 0.0663 0.0723 0.0783 0.1566 0.1325 0.1747 0.1867 0.0663

Averse 0.0465 0.0233 0.0349 0.0349 0.0698 0.1395 0.1395 0.2326 0.2093 0.0698

Table 12
p̂: Risk-Neutral and Risk-Averse Bidders, n = 5

Cases a), b), and c)

Type/ki 0 10 20 30 40 50 60 70 80 90

Neutral 0.2171 0.1860 0.1550 0.1163 0.1085 0.1085 0.0543 0.0388 0.0078 0.0078

Averse 0.2231 0.1901 0.1736 0.1240 0.1488 0.0992 0.0331 0.0083 0.0000 0.0000

Neutral 0.0400 0.0514 0.1143 0.1143 0.2000 0.1714 0.1429 0.1257 0.0343 0.0057

Averse 0.0267 0.0400 0.2000 0.1333 0.0933 0.2800 0.0667 0.1333 0.0267 0.0000

Neutral 0.0682 0.0606 0.0682 0.0606 0.0455 0.0682 0.1667 0.1439 0.2348 0.0833

Averse 0.0254 0.0254 0.0508 0.1102 0.0593 0.1186 0.1441 0.2119 0.2119 0.0424
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