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Résumé / Abstract 
 

Au Canada, une politique publique visant à aider les familles monoparentales 
bénéficiaires de l'aide sociale à s'insérer sur le marché du travail a été mise en place sur une 
base expérimentale. Ainsi, plus de 4134 chefs de familles monoparentales qui étaient entrés à 
l'aide sociale entre janvier 1994 et mars 1995 ont été échantillonnés aléatoirement pour faire 
partie du projet d'Autosuffisance (PAS). Seulement 3315 d'entre eux ont accepté de participer 
à cette expérimentation alors qu'ils avaient, dans le cadre de l'expérience, 50% de chance de 
disposer d'un supplément de revenu relativement important mais limité dans le temps. Les 
personnes qui ont fait partie du groupe de traitement ont pu recevoir ce supplément dès lors 
qu’elles ont quitté l'aide sociale pour occuper un emploi à temps plein. 

Dans cet article, nous cherchons à déterminer si un refus de participer à cette expérience 
de l'ordre de 20% est susceptible d'avoir biaisé l'estimation de l'impact du supplément de 
revenu. Nous comparons l'effet estimé du traitement en utilisant l'échantillon expérimental 
seulement avec celui obtenu en utilisant des données additionnelles sur les individus qui ne 
prennent pas part à l'expérience. Nous écrivons la fonction de vraisemblance et obtenons une 
estimation de l'impact de ce programme sur la distribution de la durée de séjour à l'aide 
sociale. Nous mettons en évidence l'existence d'un biais de non-réponse. Nous corrigeons ce 
biais en tenant compte de la décision de participation et nous montrons que les estimations de 
l'effet du supplément de revenu obtenues à partir de l'échantillon expérimental seulement 
sous-estiment de façon importante l'impact du programme. 
 

Mots clés : Expémentation sociale, biais de non-réponse, modèle de durée, 
aide-sociale. 
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In Canada, a policy aiming at helping single parents on social assistance become self-
reliant was implemented on an experimental basis. The Self-Sufficiency Entry Effects 
Demonstration randomly selected a sample of 4 134 single parents who had applied for 
welfare between January 1994 and March 1995. It turned out only 3 315 took part in the 
experiment despite a 50% chance of receiving a generous, time-limited, earnings supplement 
conditional on finding a full-time jobs and leaving income assistance within a year.   

The purpose of this paper is to determine whether a non-response rate as high as 20% is 
likely to bias the measurement of the treatment effect. We compare the estimated impact of the 
program using experimental data only to that obtained using additional data on individuals 
not taking part in the experiment. We write the likelihood of various sets of information and 
obtain relevant estimates of program impact on welfare spell durations. We find strong 
evidence of non-response bias in the data. When we correct for the bias, we find that 
estimates that rely on experimental data only significantly underestimate the true impact of 
the program. 

  
Keywords: Social experiment, non-response bias, duration model, social 
assistance 
 
Codes JEL : I38, J18, C41 



1 Introduction

In seeking to alleviate the problems that plague particularly disadvantaged groups when inte-
grating the labour market, governments have traditionally turned to skill enhancing training
programs. By enhancing skills, it is hoped individuals will receive attractive job offers and
thus reduce their reliance on transfer programs.

Over the past twenty years, the evaluation literature has generally found training programs
to have had limited success in achieving these goals (see Heckman, LaLonde and Smith (1999)
for a recent and detailed survey and Gilbert, Kamionka and Lacroix (2001) for results pertain-
ing to Canada). Indeed, only very focused programs targeted at specific groups seem to have
had any significant impact on reliance toward support programs. Yet, decrease in reliance has
not generally translated into significant reductions in poverty rates. One may infer from such
poor performance that training programs that were implemented over that period simply did
not manage to increase productivity to a level that would make work a better alternative to
social assistance.

Many governments have responded to such disappointing results by shying away from
traditional training programs only to contemplate policies that directly address the relative at-
tractiveness of work. By directly subsidizing wage rates, it is believed many will be induced
to accept jobs offers that would not normally be good alternatives to transfer programs such as
social assistance. Inducing individuals to work is motivated by two separate but complemen-
tary goals. First, by raising total income such policies may be more effective at addressing
poverty than traditional programs. Second, holding a regular job may be more conducive to
the acquisition of skills and attitudes that are necessary for self-reliance.

In Canada, a policy aiming at helping single parents on social assistance become self-
reliant was implemented on an experimental basis. The Self-Sufficiency Project (SSP) is a re-
search and demonstration project that provides a generous, time-limited, earnings supplement
to welfare recipients who find a full-time jobs and leave income assistance. SSP consists of
two main studies: the SSP Recipients Demonstration (RD) and the SSP Entry Effects Demon-
stration (EED). The former focuses on welfare recipients who have been on welfare for at least
a year. The latter focuses on newly enrolled recipients.

The RD began in 1992 and enrolled over 9,000 volunteers. About half were randomly
offered the SSP program. The other half were not offered the supplement and constitute
the experimental control group. The EED, on the other hand, aimed at documenting so-called
delayed exit effects. Since new entrants had to stay on welfare for at least 12 months to qualify
for SSP, it was feared the supplement may entice some to remain longer on the rolls. The EED
randomly selected a sample of single parents who had applied for welfare between January
1994 and March 1995. Half of those selected were offered the supplement. Most evaluations

1



of the SSP are based on the Recipients Demonstration. Nearly all of them conclude that the
program has had sizable impacts on exits from welfare (Michalopoulos, Card, Gennetian,
Harknett and Robins (2000), Quets, Robins, Paan, Michalopoulos and Card (1999)). Others
have found the program beneficial to children (Morris and Michalopoulos (2000)) and to have
had ambiguous results on marital behaviour (Harknett and Gennetian (2001)).

There is little doubt the program has had significant impacts on individual behaviour.
Because both the RD and the EED use classical random assignment designs, estimates of
program impacts rest on simple comparisons between mean responses of treatment and con-
trol groups. Such comparisons provide appropriate estimates of the “treatment effects on the
treated” only under a number of relatively stringent assumptions. One of those states that
individuals taking part in the experiment constitute a true random sample of the population
of interest. There is little discussion of experimental biases in the literature partly because
the data obtained from social experiments simply can not confirm or deny that behaviour has
been disrupted in one way or another. The evidence brought to bear is almost always indirect
or inferential at best.1 It is thus important to determine whether behaviour has indeed been
affected by the experimentation and if so, whether behavioural disruptions have contaminated
the estimated impacts.

The purpose of this paper is to document the extent of non-response bias in the SSP exper-
iment and to propose a measure of the impact of such bias, if any. Our analysis focuses on the
EED because the non-response rate was much higher than in the RD (20% vs 5%).2 Our strat-
egy is thus to compare the estimated impact of the program using experimental data only to
those obtained using additional data on individuals not taking part in the experiment. Reasons
for not participating are threefold. First, some recipients were simply not selected at baseline.
This sample can be thought of as a legitimate control group for the purpose of the experiment.
Second, some were selected but refused to participate. Finally, some were selected but could
not be reached at baseline. Since we know the probability of being in each sample, we can
write the likelihood of various sets of information and obtain relevant estimates of program
impact on welfare spell durations. Our results are consistent with those of Berlin, Bancroft,
Card, Lin and Robins (1998) in finding little evidence of delayed exits, if any. Furthermore,
we find strong evidence of non-response bias in the data. When we properly correct for the
bias, we find that the estimates that rely on experimental data alone underestimate the true
impact of the program.

The remainder of the paper is organized as follows. Section 2 provides a detailed descrip-
tion of the Entry Effects Demonstration. Section 2.1 describes the data on both participants

1See Heckman (1992) for a discussion of randomization biases.
2As many as 4,134 individuals were contacted for the EED. Yet, only 3,326 completed the baseline survey,

and an additional 9 asked to be removed from the experiment after completing the survey. Thus the response rate
is about 80%.
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and non-participants in the EED. Non-parametric evidence on delayed exits is presented as
well. Section 3 discusses the statistical model and the treatment of unobserved individual
heterogeneity. Section 4 reports our main findings. Finally, Section 5 concludes the paper.

2 The Entry Effects Demonstration

Economists have long recognized that policies that provide a conditional earnings supplement
may have the unintended consequence of inducing some to modify their behaviour in order to
become eligible. There is very little empirical evidence to support this claim. Most studies that
focus on so-called “entry effects” are based on simulation models (Moffitt (1992, 1996)) that
have nevertheless been shown to perform relatively well at predicting inflows and outflows
from welfare caseloads (Garasky and Barnow (1992)).

The Self-Sufficiency Project was introduced in Canada in 1992. It aimed at measuring the
response of long-term welfare recipients to a financial incentive that made work pay better than
welfare. SSP offered a generous, time-limited, monthly cash payment to eligible single parents
in British Columbia and New Brunswick who found full-time jobs and left welfare. The
supplement was available only to those who had remained on welfare for at least 12 months.
This feature of the program and the (relative) generosity of the supplement were thought to
potentially give rise to two types of entry effects. The first, “unconditional” effect, is to induce
single parents to join the welfare rolls and become eligible. The second, “conditional” effect,
is to induce those currently on the rolls to delay their exit from welfare in order to become
eligible.

Designing an experiment to measure unconditional entry effects is not feasible since it
would require a very large sample and involve huge implementation costs. On the other hand,
measuring delayed exit behaviour through a social experiment is much more feasible. The
Entry Effects Demonstration thus utilized a random sample of single parents who had applied
for and received Income Assistance (IA) between January 1994 and March 1995 in British
Columbia.3 Selected individuals who agreed to be part of the experiment were interviewed
at home to complete the baseline survey. They were also asked to sign an informed consent
form that explained the nature of the experiment, described the random assignment process,
and stated that all individual-level data would be kept confidential. The agreement also gave
researchers access to administrative records on income assistance from the British Columbia
Ministry of Social Services. Immediately after the baseline interview, individuals were ran-
domly assigned to either the program or the control group. Program members were sent a

3To be considered as new entrants, applicants had not to have received IA in the six previous months. A
significant minority (31%) had nevertheless received IA at some time in the two years prior to their current
application (Berlin et al. (1998)).
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letter and brochure explaining their potential eligibility to an earnings supplement. They were
reminded that they had to remain on welfare for at least 12 months to qualify for the supple-
ment and that upon qualification, they had to find a full-time job within the next 12 months.
They were also mailed a “reminder” six to seven months after their baseline interview.

2.1 Data

As mentioned earlier, our empirical strategy consists of using information on individuals who
were not in the experiment to assess the existence of non-response bias. Statistics Canada,
the data collection contractor, agreed to provide us individual IA histories on participants and
non-participants alike using administrative files.

The original sample was fielded between January 1994 and March 1995. Each month, an
independent random sample from the population of welfare applicants was selected. To be
included in the experimental sample, individuals had not to have received welfare payments
for at least 6 months prior to applying for benefits. Statistics Canada used the same algorithm
to generate the sample of non-participants.4 For confidentiality reasons, the data was restricted
in two ways. First, only information on the first welfare spell was made available. Second,
those who had refused to take part in the experiment were included in the population not
sampled at baseline.5

The sampling scheme and the data at our disposal are illustrated in Figure 1. The original
sample comprised over 4,337 individuals. Of those, 139 were declared out-of-scope, i.e. they
were sampled by mistake, 56 were eventually excluded for the same reason, and an additional
8 asked to be removed from the study. This leaves a total of 4,134 individuals. Of these, 3,315
agreed to sign the informed consent form and complete the baseline survey. The response
rate is thus approximately equal to 80%. Of the original sample, 694 individuals could either
not be contacted at baseline (307) or were not followed up (387). We refer to this group as

4Randomization occurred during the first month following application for benefits in most cases. Indeed, as
many as 2,464 individuals had either received no or one IA payment at randomization. Another 653 individuals
had received two monthly payments. Finally, 92 individuals had received as many as three or four payments
prior to assignment. We use the randomization date as the starting date for the experimental sample since this
corresponds to the beginning of the treatment. We acknowledge, though, that this will tend to decrease the
average duration of the experimental sample.

5Statistics Canada estimates that 8% of the original sample either refused to sign the informed consent, asked
to be removed from the project or did not agree to have their data included in any parts of the study. These
observations are excluded from the population that was not sampled at baseline
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Sample D
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Treatment Group

Sample Size=1648

Sample A

Control Group

Sample Size=1667

Sample B

Non-Response bias

Randomization

Figure 1: Randomization Scheme

sample C.6 Finally, 122 individuals refused to take part in the experiment.7 The randomization
procedure yielded the experimental treatment and control groups (henceforth samples A and
B, respectively).

Statistics Canada provided us a sample of 3,073 individuals sampled among those not
contacted at baseline or who refused to be in the experiment. We refer to this group as sample
D.8 Those who have refused are not identifiable in the data. As such sample D is a complex
mix of groups A, B and C. Indeed, among those in D, some would have joined the experiment
(A+B) had they been selected, others would not have been contacted for different reasons (C),
and still others would have refused to take part into the experiment. Under the null assumption
that the data is void of non-response bias, groups B and D should behave in a similar manner.
If it is found that there are systematic differences, it will be necessary to investigate whether
the treatment effect is biased.

6Although Statistics Canada documents show that 694 individuals were not contacted or followed up at base-
line, the sample we were provided contains only 637 observations. Further, we have no information on the
individual status in the sample.

7It is very likely that those who were not followed up also refused to take part in the experiment.
8The total population of welfare applicants over the period covered by the EED is 7,390. Thus, samples A,B,C

and D represent over 95% of the total population.
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2.2 Descriptive Statistics

Table 2 provides descriptive statistics for each sample separately.9 The first two columns show
that the experimental treatment and control groups are very similar in terms of observable
characteristics. This is not surprising since treatment is randomly assigned among those who
agree to take part in the experiment. Individuals in sample D are also very similar to those of
samples A and B. On the other hand, sample C stands out as containing proportionately more
men, and slightly younger individuals with fewer children. Although not reported in the table,
women in sample C are somewhat younger than those of other samples whereas the converse
holds for men. In all samples, male-headed households have significantly fewer children than
female-headed households.

Table 2 indicates that the mean IA spell duration is relatively similar for individuals in
samples A, B and D. Those in sample C have a significantly shorter mean and median dura-
tions. Finally, note that although we observe individual IA histories for over 65 months, more
than 9.6% of all spells are censored.

To better ascertain the extent to which observable characteristics differ between samples
A, B, C and D, we report simple logit regressions of belonging to a given sample in Table 3.
For example, column (1) reports the parameter estimates of the probability of belonging to
sample A when samples A and B are pooled together. As expected, all parameter estimates
turn out not to be statistically significant. Likewise, columns (2) and (3) show that samples A,
B and D are very homogeneous. Indeed, only the intercepts are statistically significant in both
regressions. The intercepts only reflect the relative weight of the samples in the regression.
On the other hand, sample C appears to be quite different from the other samples. Column
(4) indicates that women are less likely to belong to sample C, as are households with more
children, as well as those with older heads.10

2.3 Non-Parametric Evidence

Recall from Section 2 that the Entry Effects Demonstration aimed at determining whether
IA applicants might be induced to delay their exits from welfare in order to qualify for the

9The administrative files contain more information on individual characteristics than those reported in the
table. To insure confidentiality of IA claimants, we were only provided information on characteristics reported
in the table.

10We did not report the results using samples A, B and C for the sake of brevity. They are very similar to those
reported in column (4) of Table 3.
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Figure 2: Kernel Smoothed Hazard Functions – Experimental Groups

(relatively) generous earnings supplement. In order to qualify for the supplement, IA recipi-
ents had to stay on welfare for at least 12 months. Once qualified, those in sample A had to
find a full-time job within 12 months in order to receive the supplement. Those in sample B
continued to receive the standard IA benefit.

Behavioural response to the EED is best investigated through the use of hazard and survival
functions.11 Figure 2 plots smoothed hazard rates of IA spells for the experimental samples A
and B.12 The first noteworthy feature of the figure is that the treatment sample appears to be
sensitive to the parameters of the EED. Indeed, the hazard rates increases in the first 8 months
for both groups upon entry into IA. The hazard rates of the treatment group keep increasing
up until the 25th month while those of the control decrease steadily.13

Weak delayed exit behaviour is evidenced by the difference between the hazard functions
during the first 7 months. Indeed, the hazard function of sample A lies below that of sample
B during the first 7 months, then crosses it and remains above for the next 30 months or so.
The underlying survival functions are plotted below in Figure 3. Not surprisingly, the survival

11This section only presents brief non-parametric evidence on non-response bias in the Applicant Study. More
extensive analyzes using non-parametric permutation tests can be found in Lacroix and Royer (2001).

12Recall that approximately 20% of the sample had been on welfare for at least 2 months prior to randomiza-
tion. If we use first month on IA instead of randomization date as the start of the spell, the figure is basically
unchanged. We use the Epanechnikov kernel with optimal bandwidth to draw the hazard functions.

13The rise in the hazard rates in the first few months has been observed in many studies using Canadian data.
See for instance Drolet, Fortin and Lacroix (2002) and Fougère, Fortin and Lacroix (2002).
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function of sample A lies above that of sample B up until month sixteen. This is consistent
with the findings of Michalopoulos and Hoy (2001) who have found that the individuals in
sample A were proportionately more numerous to receive IA than those in sample B up until
the 5th quarter of the experiment. Based on Figure 3, it seems reasonable to claim that the
earnings supplement first induces individuals to delay their exits in the beginning months
and then provides a relatively strong incentive to leave IA. It is worth investigating though
whether these differences are statistically significant. Figure 4 plots the confidence intervals
of the two survival curves. The confidence intervals of both survival functions overlap for
the first 24 months. Thus delayed exit from welfare, although evidenced from the survival
functions, seem to lack statistical support. This can be formally tested by means of a simple
non-parametric test. Indeed, it can be shown that the estimated mean duration over the interval���������

is14

�	�
��� 
� ������������ �
(1)

where
��������

is the estimated survival rate at time
�
. The variance of this estimator is:

�� � �	�
 � � �����! #" � 
$�% ��#�&���'���)(+* , �- � � - �/. , � � (2)

14See Klein and Moeschberger (1997) for a formal derivation.
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where � is the number of distinct discrete intervals over
������� �

, , � is the number of individuals
who leave welfare at time

� �
, and

- �
is the number of individuals at risk of leaving welfare at

time
� �

. The mean duration of samples A and B over the first 12 months are found to be 8.69
and 8.48, respectively, a difference approximately equal to 2.5% in favour of sample B. A
simple � * ���+� test can not reject the null assumption that both durations are equal. This finding
is similar to that of Berlin et al. (1998) who report an average impact of approximately 3.0%.
On the other hand, mean durations computed over

��������� �
are equal 20.3 and 21.8, respectively.

This time, the � * ���+� test (=4.38) does reject the null assumption that mean durations are equal.

One could thus conclude that the treatment reduces mean duration by approximately 7.4%.
Even though such an estimate does not account for individual characteristics, it is very unlikely
the program impact will be affected by such variables given the results of Tables 3. The more
interesting question that must be addressed is whether our estimates are plagued with non-
response biases. Before we address this question formally, we will present informal evidence
that such biases may be present in the data.

Figure 5 plots the survival functions of samples B, C and D. Notice first that the survival
function of group D lies everywhere below that of group B. Standard Log-rank and Wilcoxon
tests strongly reject equality of the two curves. Hence, individuals in sample B have longer
spells than those in sample D. In the absence of non-response bias, sample D would normally
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constitute a proper control group since the two differ only insofar as the individuals in the for-
mer (D) were not sampled while those in the latter (B) were sampled and agreed to participate
in the experiment. Yet, the difference between D and B may be partly explained by the fact
that sample D includes individuals with unusually short spells that are excluded from B. Those
are individuals who could not be contacted were they sampled. They probably share similar
characteristics with and behave similarly to those in sample C. Incidentally, the survival func-
tion of sample C lies well below that of sample D. Yet, according to the figure as many as a
third would have qualified for the earnings supplement had they been contacted at baseline,
notwithstanding potential delayed exit effects.

The above discussion indicates that the experimental control group likely suffers from non-
response bias. It does not necessarily follow that the comparison between samples A and B
yield a biased estimator of the treatment effect. Indeed, sample A may just as well be plagued
with similar non-response bias that increases mean durations in the same proportion as that of
sample B. In order to measure the program impact correctly, non-response must be modelled
explicitly and accounted for in a regression framework.
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Figure 6: Welfare Applicants.

3 Modelling Individual Spell Durations

In order to derive an appropriate estimator of the treatment effect, non-response bias must
be explicitly taken into account. The framework within which the experiment took place is
illustrated in Figure 6, which depicts a hypothetical sample of individuals drawn from the flow
of welfare applicants. The inner circle is the set of those who are sampled with probability
� at baseline. Those who in the population are not willing a priori to participate in such an
experiment are located below the dashed line. Likewise, those who could not be contacted
are located in the ellipse. Among the latter, a unknown fraction would agree to be part of the
experiment (above the dashed line) and another unknown fraction would refuse (below the
dashed line).

The treatment group is located inside the inner circle to the left of the vertical line. Mem-
bers of this group have all accepted to participate (above the dashed line) and have been con-
tacted (outside the ellipse). The control group is located inside the inner circle to the right
of the vertical line. The surface between the inner and outer circles is the set of applicants
who were not selected at baseline. This set can be broken down in sets similar to those of the
experimental samples: acceptance, refusal, contacted, non-contacted, etc.

Our task is to model all the information that is available in Figure 6. In order to do this, we
need to determine the probability of belonging to the experimental samples. The experimental
samples comprise 3,315 individuals. According to Statistics Canada, these represent 45% of
all claimants over the enrolment period.15 If we consider those who could not be contacted
as well as those who refused to participate in the experiment, then we can establish that the

15See footnote 8.
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average probability of being sampled each month ranges between 60% and 65%. We will thus
consider that each applicant faces a probability � � ��� � �

of being sampled.16

In order to model individual contributions to the likelihood function, we need to define a
number of dummy variables. Thus let:

� � �� � � �
if the individual was sampled at baseline

����
otherwise

�

� � �� � � �
if the individual is willing to participate in the experiment

����
otherwise

�

� � �� � � �
if the individual could be contacted at baseline

����
otherwise

�

� � �� � � �
if the individual belongs to the treatment group

����
otherwise

�

Finally, let � be a realization of the experiment:

� � ��� �
	 ���+� � �� � �
where


is the duration of a welfare spell.17

Which arguments of � ��� � are observable depend on which set an individual belongs to.
Only � and � are observable for all individuals.18 Thus, for those in A we know that they
have been sampled in the experiment (

� � �
), that they have agreed to participate (

	 � �
), that

they could be contacted (
� � �

) and are eligible for the supplement (
� � �

). Table 3 below
summarizes the realizations of the random variables according to group membership.

3.1 Likelihood function

Each individual contributes a sequence � � ��� ��	/��� � � �� �
to the likelihood function. The con-

tribution can be written conditionally on a vector of exogenous variables, � , and on an un-

16The indeterminacy of the probability of being sampled arises due to some confusion related to sample C.
According to private communications with Statistics Canada, our sample C only includes individuals that could
not be contacted at baseline. In such a case, the probability of being sampled is roughly equal to 65%. If, on
the other hand, the sample includes both those who could not be contacted and those who were not followed up,
then the probability of being sampled is approximately equal to 60%. The model was estimated with ������� ���
and ������� �! . The main results are very robust to the choice of � .

17We follow the convention of denoting a random variable by a capital letter and write its realization in lower
case.

18The welfare duration are right censored at 64 months.
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Group E A R T
A 1 1 1 1
B 1 1 1 0
C 1 0,1 0 0
D 0,1 0,1 0,1 0

Table 1: Realizations of random variables

observed heterogeneity factor, � . In order to simplify the presentation, we assume that the
components of � that are not observed are equal to -1.

Let
��� �����

denote the conditional contribution of the realization � . We have,

��� ����� ��� � �
	������� ��� �
where � � ��	�������� ��� is the conditional density of � given � and � , and

�������
IR� is a vector

of parameters. When the welfare spell is right censored, the contribution to the conditional
likelihood function is limited to the survivor function of the observed duration.

The random variable � is assumed to be independently and identically distributed across
individuals, and independent of � . If the unobserved heterogeneity only takes a finite number
of values, �

 � � � � � ��� , the contribution of a realization � to the likelihood function is

� ����� � ��
�
�! � � ��	 ����� � � ����� � � (3)

where
� � is the probability that � � � � with

��� � � � �
and  ��

�! � � � �
.

If � is a continuous random variable, then

� ����� � �"! � � ��	 ������� � ��#�� ���%$ � � � � (4)

where
#�� ���&$ � is a probability density function and

�
is the support of � .

The conditional contribution of the realization � � ��� �
	 ���+� � �� �
to the likelihood function

is written using the joint distribution of the components of � with the values of the realization
fixed to those observed in the sample for a given individual.
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3.2 Modelling Individual Contributions

In this section we focus on the conditional distributions of variable
�

,
�

and � . Recall that
the probability of being sampled in the experiment is � and that the probability of assignment
to the treatment group conditional on acceptance and on being contacted is

��� �
. We assume

these two probabilities are independent of individual characteristics.

Define � � � � � � as the conditional probability that the individual agrees to participate in the
experiment. We will assume that

� � � � � � � Prob
� ����� � 	����� � � (5)

where ��� � ������	�
 ��
��	 �
where �	 is a normal random variable with mean zero and variance equal to 1, and is distributed
independently of � . In the model, � is an unobserved heterogeneity term. In the participation
equation � can be considered as an individual random effect.

Let � � � � � �
	 � denote the conditional probability that the individual cannot be contacted.
We assume

� � � � � �
	 � � Prob
� � ��� � 	���� 	 ��� � � (6)

where � � � ��������
 	�� 	�
 ��
��� �
where

	
is the realization of the participation decision, and ��� is a vector of parameters and� 	 � IR. We also assume that �� is a normal random variable with mean zero and variance

equal to 1. For simplicity, we further assume that �	 , �� and � are independent.

Finally, let � ��� �
	 ��� � denote the conditional probability that the individual belongs to the
treatment group given selection into the experiment (

� � �
or

�
), given acceptance (

	 � �
or�

) and given having been contacted (
� � �

or
�
). Let us assume that:

Prob
�
� � � 	 � �
	 ���+� � � ��� �
	 ��� � � �� �

 
* � if

� � � �
	 � �
and

� � � ����
otherwise

�

Hence, an individual can be assigned to the treatment group if and only if he/she has been
sampled in the experiment, has agreed to participate and could be contacted.

The conditional probability density function of the welfare duration is denoted � �  	��� 	 � � � � ����� ��� , where
�

is a vector of parameters. Therefore, the conditional contribution of a
given realization to the likelihood function is

��� ����� � � � � � � � � ��� . � � � �
	 � � ��� ��� � � �  	 ��� 	 � � � � � � � � � � ����� ��� � (7)
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if the individual belongs to group A;

��� ����� � � � � � � � � ��� . � � � �
	 � � ��� ��� � � �  	 ��� 	 � � � � � � � � � � ����� ��� � (8)

if the individual is in group B;

��� ����� � � � � � � � � � � � �
	 � � � � �  	 ��� 	 � � � � � � � � � � ���� ��� �

 � ��� . � � � � � ��� � � � �
	 � � � � �  	 ��� 	 � � � � � � � � � � ����� ��� � (9)

if the individual is in group C;

and

��� ����� � � ��� . � � � � � ��� ��� . � � � ��	/� � ��� � �  	 ��� 	 � � � � � � � � � � ����� � � �

 ��� . � � � � � � � � ��� . � � � ��	/� � ��� � �  	 ��� 	 � � � � � � � � � � ����� � � �

 ��� . � � � � � � � � � � � �
	 � � � � �  	 ��� 	 � � � � � � � � � � ����� ��� �

 ��� . � � ��� . � � � � � ��� ��� . � � � �
	 � � ��� � �  	���� 	 � � � � � � � � � � ����� ��� �

 ��� . � � ��� . � � � � � ��� � � � �
	 � � � � �  	 ��� 	 � � � � � � � � � � ����� � � �

(10)

if the individual belongs to group D.19

The contribution of each group to the likelihood function is indicated in Figure 7. Thus
groups A and B contribute sections 1 and 2 (equations (7) and (8), respectively). Likewise,
group C (equation (9)) corresponds to sections 3 and 4. Group D (equation (10)) to sections
5, 6, 7, 8 and 9.

Let us consider a given individual. Let
���

denote the set of possible values of
�

:

��� � �����
���
�
� ��� �

if the observed value
� � � �

� � � �
if the observed value

� � ���
� ��� ��� �

if
�

is not observed, i.e.
� � .

� �
19The likelihood function of individuals in sample D is written as if the sample included all the individuals

outside the experiment, i.e. as if sample D was the complement of samples A, B and C. In principles, the
likelihood function should be weighted to account for the fact that sample D is a subsample of those outside the
experiment. As mentioned in footnote 8, sample D comprises over 95% of that population. Further, selection
into the sample was made using a random procedure. We have thus chosen not to weigh the function so as to
avoid making an already involved function overly complicated.
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Figure 7: Welfare Applicants.

Let
� 	 and

� � denote the sets of possible values of
�

and
�

. Both are defined in a similar
fashion to

� �
. Finally, the contribution to the likelihood function can be written20

��������� � �
� � ! ��� 	 � ! �	� � � ! 


�
� ��� . � �  � � � � � � � � 	 ��� . � � � � � ���

 
� 	�

� � � �
	 � � �
 
� � ��� . � � � �
	 � � ��� � � ��� �
	 ��� � $ ��� . � ��� �
	 ��� ���

 
� $ � �  	 ��� 	 � � � � ����� � � �

3.3 Unobserved heterogeneity

Estimation of the parameters by means of maximum likelihood requires that we specify the
distribution of the unobserved heterogeneity terms. We will first approximate arbitrary con-
tinuous distributions using a finite number of mass points (see Heckman and Singer (1984)).
Next we will investigate the robustness of the slope parameters using various continuous dis-
tributions.

1. Discrete distributions
20One may question whether there is a unique mapping between these reduced form equations and the struc-

tural model. Note that we have imposed a number of restrictions on the covariance matrix of the reduced form
model. In particular, the dichotomization of the latent variables corresponding to the acceptance and recontact
variables imposes that their variances be normalized to unity. Furthermore, there are no correlations between the
latent variables and the duration variable. It is then then possible to show that a generalized order condition holds
for each latent equation in the conditional model (see Fomby, Hill and Johnson (1984)). It should be noted, how-
ever, that assuming there is no correlation between the latent variables does not imply that they are independent.
Indeed, the conditional expectation of the recontact variable depends on the acceptation decision. Consequently,
whereas the errors term ��� and ��� are assumed to be independent, the recontact variable ��� and the acceptance
variable ��� are correlated. The correlation between the two latent variables is given by the parameter � (see
equation (6))
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Let
�

denote the random variable associated to the unobserved heterogeneity terms.

Assume that

Prob
� � ��� � � � � � � if � � � � ���� . � � � � if � � .

� � � (11)

where the probability � � is defined as

� � ��� � � � �
where

� � � � �
IR are parameters and � is the cumulative distribution function of the

normal distribution with mean zero and variance 1.

This unrestricted model is estimated first. Next we consider a restricted version which
imposes

� � �
or, equivalently, that � � ��� �

(i.e.
� � � � � �

).

2. Continuous distributions

The unobserved heterogeneity terms � are assumed to be independently and identically
distributed. Let

#�� ���&$ � be the pdf of � , with
# � ���&$ � representing any well-behaved

probability density function (the pdf of normal or student distributions, for example).

3.4 Specification of conditional hazard function

The conditional hazard function for welfare durations is given by

� �  	���� 	 � � � � ����� � � � � � �  ��� �	� � ��� 	 � � � � � ��
 ������ � . � � � (12)

where
�

is a positive function of the exogenous variables, � , and of
	
,
�

and
�
, and where� � �  ��� � is the baseline hazard function. Depending on which version of the model is esti-

mated, � may or may not include a constant. We assume that:

� � ��� 	 � � � � ����
 � � ����� � . ��� ��� . 	�� 	
. ��� �

. � � $ � �
where

� 	 ��� � ��� $ � IR and ��� are vectors of parameters.

The baseline hazard function is

� � �  ��� � � � �� �
 �

� �
IR � . Consequently, welfare duration is assumed to be distributed as a Weibull random

variable. If ��� �
, then the hazard function is increasing with respect to


. If ��� �

, then the
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hazard function is decreasing with respect to


, and if � � �
the conditional hazard function

is constant.21

For uncensored spells, the contribution of the welfare duration is given by the conditional
probability density function :

� �  	���� 	 � � � � ����� � � � � �  	 ��� 	 � � � � ����� � ������ � .����� � ��� 	 ��� 	 � � � � ����� � � ����� �� �  � �
 
� � ��� 	 � � � � � ��
 � ����� � . � � ��� � � . � � ��� 	 � � � � � ��
 � ��� � � . � �  � � �

where
 � ���

months.

The contribution of censored spells is given by the conditional survival function:

� �  	 ��� 	 � � � � ����� � � � ����� � . � �� � �	� 	 ��� 	 � � � � ����� ��� �
��� �� ����� � . � � ��� 	 � � � � � ��
 � ����� � . � �  � � �
if
 � ���

months.

3.5 Estimation

We consider two alternative specifications for the unobserved heterogeneity distribution.

1. Discrete Distribution

The log likelihood is

���� ��� ������� � �� � �! ���� � � � ������� � (13)

where
� � ��� �

is obtained by substituting the sequence �
� � ��� � �
	 � ��� � � � � �� � �

and the ob-
served vector of covariates �

�
in (3), and where � is the sample size.

In equation (3)
� � is set equal to22

� � ��� � � � if � � � ���� . � � � � if � ��� �
where

�  � Prob
� � � � � � , � * � Prob

� � � .
� � � and � � � IR is a parameter. The

log-likelihood is then maximized with respect to
�

(
�����

). The number of mass points

21Note that the hazard function of the Weibull model with parametric unobserved heterogeneity need not be
monotonic in duration. In fact, if the distribution function of the unobserved heterogeneity is Gamma, the hazard
function is non-monotonic and is known as the Singh-Maddala.

22See section 3.1.
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�
is set to 2.23 �

 
represents the probability that the unobserved term

�
takes the value� � (

� * � �
. �  

).

2. Continuous Distribution

The model includes an unobserved heterogeneity terms � ( � � �
). We assume these

terms to be independently and identically distributed. Let
# � ���&$ � be the pdf of � .

The contribution of a given realization to the likelihood function is given by equation
(4), where

� � IR � . The log-likelihood is given by equation (13), where
� � �����

is the
contribution to the likelihood of the sequence �

�
.24 Since the integral in

� ��� �
generally

cannot be analytically computed it must be numerically simulated.

Let
�� ��� �

denote the estimator of the individual contribution to the likelihood function.
We assume that

�� ����� � �
�

��
�
�! � � �
	 ����� � � � � �

where � � are drawn independently according to the pdf
#�� ���&$ � . The drawings � � (

� �
� � � � � � �

) are assumed to be specific to the individual. The parameter estimates are
obtained by maximizing the simulated log-likelihood:

���� ��� ������� � �� � �! ���� � �� � ������� �
where

�� � �����
is the simulated contribution of the sequence �

�
to the likelihood function.

The maximization of this simulated likelihood yields consistent and efficient parameter
estimates if

� �� � �
when

� � 
�� and � � 
�� (see Gourriéroux and Monfort
(1991, 1996)). Under these conditions, this estimator has the same asymptotic dis-
tribution as the standard ML estimator. We have used 1,000 draws from the random
distributions when estimating the models. Using as few as 100 draws yielded essen-
tially the same parameter estimates. Usually, fewer draws are considered adequate (see
Kamionka (1998) and Gilbert et al. (2001)).

3.6 Incomplete Information Schemes

It is possible to examine the impact of the non-response biases on the treatment effect by
considering various estimates obtained using more or less complete information schemes. For

23The data support only two mass points. This is due to the fact that the individuals in our sample are relatively
homogeneous as shown in Table 2.

24In what follows, � includes 	 , the parameters of 
����� .
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Treatment Control

.......................................................................................................................

Figure 8: Participants in the experiment who could be contacted.

instance, we can estimate the treatment effect using only the control and the treatment groups
A and B.

Let � define the conditional density of the welfare durations given the conditioning vari-
ables and the value of the vector of parameters.

1. Treatment and Control Groups

Each individual contributes a sequence � � �&� �� �
to the likelihood function. They all

agreed to participate and all could be contacted at baseline (see figure 8).

The conditional contribution of a given realization to the likelihood function is

��� ����� � ��� � � �  	 ��� � � � ����� ��� �
if the individual belongs to A;

��� ����� � ��� � � �  	 ��� � � � ����� ��� �
if the individual belongs to B.

The conditional distribution of the welfare durations corresponds to the hazard function
(12), where

� 	 � � � � �
(here

	
and

�
are set equal to arbitrary values in the conditional

distribution of the welfare duration).

2. Participants in the experiment

Each individual contributes a sequence � � � � � � �� �
to the likelihood function. All were

selected for the experiment, some could be contacted but others could not be reached
(see figure 9). Those who were contacted were offered the treatment with probability
� � ��� �

.
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Not contacted

Figure 9: Participants to the experiment.

The conditional contribution of a given realization to the likelihood function is

��� ��� � � ��� . � � � � � ��� ��� � � �  	 ��� � � � � � � � ���� ��� �
if the individual belongs to A;

��� ��� � � ��� . � � � � � ��� ��� � � �  	 ��� � � � � � � � ���� ��� �
if the individual belongs to B;

��� ����� � � � � � � � � �  	 ��� � � � � � � � ����� ��� �
if the individual belongs to C;

Here, � � � � � � denotes the conditional probability that the individual could not be con-
tacted and is defined as in the context of a complete information scheme (see equation
(6)), where

� 	 � �
(here

	
is fixed to an arbitrary value in this equation and in the

expression of the conditional hazard function).

The expression of the conditional hazard function of the welfare durations is given by
the equation (12) where

� 	 � �
.

3. Selected and non-selected welfare applicants

Here, each individual contributes a sequence � � ��� �
	 � � �� �
to the likelihood function.

Those that were selected at baseline have agreed to participate in the experiment. Those
who were not selected may or may not have agreed (see figure 10).

The conditional contribution of a given realization to the likelihood function is

��� ��� � � � � � � � � � ��� � � �  	 ��� 	 � � � � � � ���� ��� �
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Figure 10: Selected and Non-Selected welfare applicants.

if the individual belongs to A;

��� ����� � � � � � � � � ��� � � �  	���� 	 � � � � � � ����� ��� �
if the individual belongs to the B;

��� ����� � � ��� . � � � � � ��� � �  	 ��� 	 � � � � � � ����� � � �

 ��� . � � � � � � � � � �  	 ��� 	 � � � � � � ����� � � �

 ��� . � � ��� . � � � � � ��� � �  	 ��� 	 � � � � � � ����� ��� �

if the individual belongs to D.

Here, � � � � � � is the conditional probability that the individual agrees to participate in
the experiment. The definition of � � � � � � is similar to the one given for the complete
information scheme (see equation (5)).

The expression of the conditional hazard function of the welfare durations is given by
equation (12), where

� � � �
(
�
, for convenience, is fixed to an arbitrary value in the

expression of the conditional hazard).

4 Results

4.1 Single treatment effect

The estimation results presented in Table 4 investigate the overall impact of the treatment on
the average spell duration. Since the experiment’s setup is expected to delay exit prior to
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the qualifying period and to hasten it in the following months, using a single treatment effect
provides a measure of the programs’ net impact. The first four columns of the table provide
estimates based on non-parametric unobserved heterogeneity (see equation (11)).25

The estimates of the first column are obtained from the experimental samples only. This
specification is the only one in which we omit unobserved heterogeneity. This is done for
two reasons. First, given that individuals were randomly assigned to control and treatment
groups, unobserved characteristics should be distributed similarly across groups. Second, the
maximum likelihood estimator of the treatment effect that neglects unobserved heterogeneity
should be relatively close to a simple difference in mean durations between the two groups.

The estimate of � indicates that the hazard function is decreasing with duration. The slope
parameters show that duration increases with the number of children and decreases with age.
Both parameter estimates are highly statistically significant. Women are also found to have
longer mean spell durations than men. Finally, the treatment effect is found to reduce spell
duration by approximately 7.5%. This estimate is quite similar to that reported in section 2.3
where it was found that the treatment group had a 7.3% shorter mean duration.

Column 2 of the table reports the results using groups A, B, and C (see Figure 9). The
baseline hazard function is decreasing with duration. As previously, spell duration decreases
with age and increases with the number of children. Likewise, women are found to have
longer spell durations than men. The impact of the treatment is very similar to that of column
(1) although it is not statistically significant. Note that the parameter estimate of the contact
binary variable is positive and significantly different from zero. This is consistent with the
observation that individuals in sample C have significantly shorter spells (see Table 2). Hence,
once we include those that could not be contacted at baseline, the treatment effect vanishes.
The third panel of the table reports the parameter estimates of the probability of not being
contacted at baseline. It is found that the probability is decreasing with age and the number of
children. Women are also less likely not to be contacted than men. These results are consistent
with those obtained for descriptive statistics on sample C (see Table 2).

Column 3 of the table reports the results using groups A, B, and D (see Figure 10). Contrary
to the previous cases, the conditional hazard function is increasing with duration. Inclusion
of this group allows us to model explicitly the participation decision. Omission of the latter
thus induces a spurious negative duration dependence. This phenomenon is well known in
duration models. The marginal duration model is the mixture of conditional duration models
with respect of the acceptance decision. The sign of the slope parameters are similar to those
obtained using groups A, B and C. The parameter of the acceptance binary variable is positive
and statistically significant. Thus among the individuals that could be contacted a priori,

25We only report results based on the restricted version, i.e. � � ���  . Except for a few specifications, � could
be estimated freely. The parameter estimates are relatively robust to the estimation of � .
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those who decided to participate have longer mean spell duration. The treatment effect is now
nearly four times greater than the one obtained using samples A and B. Consequently, omission
of the participation decision significantly biases the effect of the earning supplement on the
exits from welfare. The second panel of the table reports the parameters of the conditional
probability of agreeing to participate in the experiment. Unfortunately, not a single parameter
is statistically significant in this specification.

Column 4 of the table reports the results using groups A, B, C and D (see Figure 6). The
parameter estimates show that the conditional hazard function is increasing with duration.
The sign of the slope parameters are similar to those of the previous specifications. The
impact of the treatment is again nearly four times greater than the one obtained using the
experimental groups only. Spell duration is also longer for participants and for those who
could be contacted. Both parameter estimates are statistically significant.

The next two panels indicate that the probability of not being contacted is decreasing with
age, the number of children and is higher for women than for men. The parameters are very
similar those obtained using groups A, B and C. Furthermore, the probability is significantly
lower for those who are willing to participate ex ante. Finally, note that the probability of
agreeing to participate increases with age and that the parameter estimate is statistically sig-
nificant at 5%.

The estimates in columns (1)–(4) of Table 4 are based on a rather restrictive specifica-
tion for the unobserved heterogeneity component. Previous research has shown that the slope
parameters of duration models are usually rather insensitive to particular distributional as-
sumptions (see Heckman and Borjas (1980), Bonnal, Fougère and Sérandon (1997), Gilbert
et al. (2001)). It is thus worth investigating whether our results are also robust to various
assumptions pertaining to the distribution of the unobserved heterogeneity.

The last four columns of Table 4 report results based on particular parametric distribution
and using samples A, B, C and D. The parameter estimates are thus comparable to those of
column 4. The treatment effect is still sizable although slightly smaller than that of column
(4), except for the specification based on the student distribution (with 5 degrees of freedom).
As with column (4), the mean spell duration of those who could be contacted or agreed to
participate in the experiment is considerably longer. Furthermore, the parameter estimates of
the two latent equations are very similar to those of column(4). Thus the estimates of the
treatment effect appears relatively robust with respect to the distribution of the unobserved
heterogeneity.
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4.2 Multiple treatment effects

The parameter estimates of the treatment effect presented in Table 4 make no distinction be-
tween the qualifying period and the ensuing months. Yet, the experiment is setup so as to
measure potential delayed exit effects that may arise with a full-scale program. The non-
parametric evidence provided in previous sections suggested that such effects are likely rather
small, if at all significant. Our model can easily be modified to account for potential time-
varying treatment effects. Using the experiment’s design, we have re-estimated the model
by allowing the treatment to have a differentiated impact on the duration at discrete intervals
([0,12[, [12,24[, [24,36[, [36 and more].).

The estimation results are reported in Table 5. The table has the same setup as Table
4. The specification in the first column uses samples A and B. According to the parameter
estimates, the treatment group does not appear to delay exit any more than the control group
since the parameter estimate of the treatment effect is not statistically different from zero. The
treatment effects for subsequent interval are all highly significant. The results indicate that the
treatment effect reduces durations considerably over the [12,24[ and [24,36[ intervals. On the
other hand, the treatment group appears to have longer spells over the [36 and more] interval.
The parameter � indicates that there is negative duration dependence in the data.

The second column reports the estimation results using samples A, B and C. This specifi-
cation yields rather strange results. Indeed, the parameter estimates suggest that the treatment
group has a much longer mean spell duration that the control group. There are no appealing
reasons that may justify such a result, but further investigation certainly seems warranted.

Columns (3) and (4) yield essentially similar results. Contrary to the first two specifica-
tions, there now appears to be positive duration dependence in the data. Furthermore, the
parameter estimates suggest there is no evidence of exit delayed behaviour. If anything, the
treatment group has a shorter conditional duration over the [0,12[ interval. Likewise, the
treatment effect over the [12,24[ and [24,36[ intervals reduces duration considerably. In both
cases, it is found that the treatment has no impact on the mean duration over the [36 and more]
interval.

The specifications in columns (5)–(8) are identical to that of column (4) but use paramet-
ric distributions for the unobserved heterogeneity. The parameter estimates of the treatment
effect are qualitatively similar to those of columns (3) and (4) except they are much smaller in
magnitude. Furthermore, only in column (5) is the treatment found to have an impact on the
duration over the [36 and more] interval.
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4.3 Mean Durations

The slope parameters can not directly be interpreted as marginal impacts since the expected
duration is highly non-linear with respect to the covariates.26 We thus report the conditional
(on treatment) expected durations for various model specifications in Table 6. The top panel
of the table reports the expected durations based on the parameters of the first column of Ta-
ble 4. This specification allows only one treatment effect and is based on the experimental
samples only. The expected durations are computed by bootstrapping the samples 500 times
and averaging the mean durations across individuals. This allows to integrate over the dis-
tribution of the covariates in the experimental population. The table shows that men have
somewhat shorter durations than women. Likewise, the treatment effect reduces duration by
approximately 6.9% for women, and 7.7% for men.

The middle panel uses the same parameter estimates as the top panel except that the draw-
ing is made within sample D. This allows to measure the impact of differing distributions
of the covariates between the experimental samples and the population of welfare recipients.
The results show that the mean durations are very similar to those of the top panel. This is not
surprising given the results reported in Table 2. If anything, the durations are slightly shorter
when using data from sample D as opposed to the experimental samples.

The bottom panel of the table uses the parameter estimates of the 4th column of Table
5. The treatment effect is allowed to vary with duration and data from all samples are used
to estimates the parameters. To compute mean durations, only data from sample D is used
since this sample best mimics the population of welfare recipients. The table shows that the
treatment is much larger when using the complete model. Indeed, the treatment effect is found
to reduce mean spell duration by as much as 25% for both men and women.

To the extent that our model properly accounts for the non-response bias in the data, one
must conclude that the expected durations of experimental data void of any bias would be
considerably shorter. We conjectured previously that such bias did not necessarily imply that
the impact of the treatment itself would be biased. According to our parameter estimates and
to our simulations, though, it does seem that the estimate is biased.

5 Conclusion

Over the past twenty years experimental designs have become the preferred means of many
by which to evaluate employment and training programs. This is not surprising given that in
an ideal setting social experimentation is able to solve the so-called “evaluation problem”. In

26Indeed, it can be shown that
� ����� ���	�
� � � ��������� ����������� � , where � �����
� �! "�$#&%' (� � .
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practise, implementation of a demonstration project is likely to be hampered by many logisti-
cal and behavioural problems that may prove detrimental to the quality of the data it generates
(see Hotz (1992)). Although the literature has singled out non-response or randomization bias
as the main culprit, we know surprisingly little about the extent to which demonstrations are
contaminated by these potential problems. The evidence brought to bear is almost always
indirect or inferential at best.

In Canada, a policy aiming at helping single parents on social assistance become self-
reliant was implemented on an experimental basis. The Self-Sufficiency Entry Effects Demon-
stration (EED) focused on newly enrolled recipients. The EED randomly selected a sample of
4,134 single parents who had applied for welfare between January 1994 and March 1995. It
turned out only 3,315 agreed to be part of the experiment despite a 50% chance of receiving a
generous, time-limited, earnings supplement conditional on finding a full-time job and leaving
income assistance.

The purpose of this paper is to determine whether a non-response rate as high as 20% is
likely to bias the measurement of the treatment effect. Our empirical strategy is to compare
the estimated impact of the program using experimental data only to those obtained using
additional data on individuals not taking part in the experiment and drawn from the same
population. We identify three reasons for not participating in the experiment. First, some
recipients simply were not selected at baseline. Second, some were selected but refused to
participate. Thirdly, some were selected but could not be reached at baseline. We write the
likelihood of various sets of information and obtain relevant estimates of program impact on
welfare spell durations.

We find strong evidence of non-response bias in the data. When we correct for the bias,
we find that the estimates of the treatment effect that rely solely on experimental data under-
estimate the true impact of the program. We conjecture this is because those who agreed to
participate have longer mean spell durations and are likely less responsive to financial incen-
tives than others. Furthermore, we find no evidence of the so-called “delayed exit effect” that
may arise due to the program setup.

Finally, the sensitivity of the parameter estimates to distributional assumptions pertaining
to the unobserved heterogeneity is also investigated. We find that many parametric distribu-
tions yield similar results to those obtained from a simple non-parametric model.

27



References

Berlin, G., W. Bancroft, D. Card, W. Lin, and P. K. Robins (1998) ‘Do work incentives have
unintended consequences ? measuring "entry effects" in the self-sufficiency project.’
Working Paper, SRDC

Bonnal, L., D. Fougère, and A. Sérandon (1997) ‘Evaluating the impact of french
employment policies on individual labour market histories.’ The Review of Economics
Studies 64(4), 683–718

Brown, J. B., W. Hollander, and R. M. Korwar (1974) ‘Nonparametric tests of independence
for censured data, with applications to heart transplant studies.’ In Reliability and
Biometry: Statistical Analysis of Lifelength, ed. F. Proschan and R. J. Serling
(Philadelphia: SIAM) pp. 327–354

Drolet, S., B. Fortin, and G. Lacroix (2002) ‘Welfare benefits and the duration of welfare
spells: Evidence from a natural experiment in Canada.’ Forthcoming, Journal of Public
Economics

Fomby, T.B., R. C. Hill, and S.R. Johnson (1984) Advanced Econometric Methods
(Springer-Verlag)

Fougère, D., B. Fortin, and G. Lacroix (2002) ‘The effects of welfare benefits on the duration
of welfare spells: Evidence from a natural experiment in Canada.’ In Institutional and
Financial Incentives for Social Insurance, ed. C. D’Aspremont and P. Pestieau (Kluwer
Press) chapter 1, pp. 1–24

Garasky, S., and B. S. Barnow (1992) ‘Demonstration evaluations and cost neureality: Using
caseload models to determine the federal cost neutrality of New Jersey’s REACH
demonstration.’ Journal of Policy Analysis and Management 11(3), 624–636

Gilbert, L., T. Kamionka, and G. Lacroix (2001) ‘The impact of government-sponsored
training programs on the labour market transitions of disavantaged men.’ Working Paper
2001–15, CREST, Paris

Gouriéroux, C., and A. Monfort (1996) Simulation-Based Econometric Methods Core
Lectures (Oxford University Press)

Gourriéroux, C., and A. Monfort (1991) ‘Simulation based econometrics in models with
heterogeneity.’ Annales d’économie et de statistique 20(1), 69–107

Harknett, K., and L. A. Gennetian (2001) ‘How an earnings supplement can affect the marital
behaviour of welfare recipients: Evidence from the self-sufficiency project.’ Working
Paper, SRDC

Heckman, J., and B. Singer (1984) ‘A method for minimizing the distributional assumptions
in econometric models for duration data.’ Econometrica pp. 271–320

Heckman, J. J. (1992) ‘Randomization and social policy evaluation.’ In Evaluating Welfare
and Training Programs, ed. F. C. Manski and I. Garfinkel (Harvard University Press)

Heckman, J.J., and G.E. Borjas (1980) ‘Does unemplyment cause future unemployment ?
definitions, questions and answers from a continuous time model of heterogeneity and

28



state dependence.’ Economica pp. 247–283
Heckman, J.J., R.J. LaLonde, and J.A. Smith (1999) ‘The economics and econometrics of

active labor market programs.’ In Handbook of Labor Economics, ed. O. Ashenfelter and
Eds. D. Card (North-Holland) chapter

Hotz, V. J. (1992) ‘Designing an evaluation of the Job Training Partnership Act.’ In
Evaluating Welfare and Traiing Programs, ed. C.F. Manski and I. Garfinkel (Harvard
University Press) chapter 2, pp. 76–114

Kamionka, T. (1998) ‘Simulated maximum likelihood estimation in transition models.’
Econometrics Journal 1, C129–C153

Klein, J. P., and M. L. Moeschberger (1997) Survival Analysis (Statistics for Biology and
Health, Springer)

Lacroix, G., and J. Royer (2001) ‘Vérification empirique de l’absence de biais de
non-réponse à l’aide d’une procédure de test MC.’ mimeo, Université Laval

Michalopoulos, C., and T. Hoy (2001) ‘When financial work incentives pay for themselves:
Interim findings from the self-sufficiency project’s applicant study.’ Working Paper, SRDC

Michalopoulos, C., D. Card, L. A. Gennetian, K. Harknett, and P. K. Robins (2000) ‘The
self-sufficiency project at 36 months: Effects of a financial work incentive on employment
and income.’ Working Paper, SRDC

Moffitt, R. A. (1992) ‘Evaluation methods for program entry effects.’ In Evaluating Welfare
and Training Programs, ed. C. F. Manski and I. Garfinkel (Harvard Univeristy Press)
pp. 231–152

Moffitt, R.A. (1996) ‘The effect of employment and training programs on entry and exit from
welfare caseload.’ Journal of Policy Analysis and Management 15(1), 32–50

Morris, P., and C. Michalopoulos (2000) ‘The self-sufficiency project at 36 months: Effects
on children of a program that increased parental employment and income.’ Working Paper,
SRDC

Quets, G., P. K. Robins, E. C. Paan, C. Michalopoulos, and D. Card (1999) ‘Does SSP Plus
increase employment ? The effect of adding services to the self-sufficiency project’s
financial incentives.’ Working Paper, SRDC

29



Table 2: Descriptive Statistics

Sample
Variable A B C D
Sex (Women=1) 0.89 0.91 0.86 0.90

(0.31) (0.28) (0.34) (0.30)
Age 32.65 32.37 31.79 32.42

(7.88) (7.41) (7.85) (7.73)
Children 1.65 1.68 1.57 1.65

(0.80) (0.82) (0.77) (0.81)
Mean spell length � 20.28 21.75 13.76 20.34

(0.47) (0.51) (0.75) (0.38)
Median spell length 15 13 4 11
Proportion of censured spells 7.83 10.20 6.59 9.63
No. Observations 1648 1667 637 3073�
Estimated from Kaplan-Meir survival rates and tail corrections proposed by

Brown, Hollander and Korwar (1974)



Table 3: Logit Regressions

Sample
Variable A vs B A vs D B vs D C vs D
Intercept 0.151 -0.700

�
-0.851

�
-0.650

�
(0.215) (0.184) (0.186) (0.253)

Sex (Women=1) -0.193 -0.021 0.173 -0.378
�

(0.122) (0.103) (0.108) (0.135)
Children -0.065 -0.018 0.047 -0.102

� �
(0.044) (0.034) (0.038) (0.057)

Age 0.003 0.004 0.001 -0.013
�

(0.005) (0.184) (0.004) (0.006)
Observations 3315 4721 4740 3710
Log-Likelihood -2294.5 -3053.3 -3071.5 -1693.6
� Statistically significant at 5% or better. ��� Statistically significant at

10% or better.



Table 4: Maximum Likelihood Estimates: Single Treatment Effect

Non-Parametric Heterogeneity Parametric Heterogeneity

Parameter A + B A+B+C A+B+D A+B+ A+B+ A+B+ A+B+ A+B+
Estimates C+D C+D C+D C+D C+D

Expo- Gamma Log- Student
nential Normal (5)

Duration
� 0.873 0.896 1.506 1.382 1.048 1.035 0.983 0.993

(0.013) (0.015) (0.026) (0.024) (0.020) (0.020) (0.016) (0.019)
� 0.460 -1.326 -1.246 -0.424 -0.497 -1.499 -1.236

(0.036) (0.039) (0.041) (0.073) (0.074) (0.107) (0.217)
Intercept 2.753 2.027 3.820 2.552 1.493 1.458 1.293 1.109

(0.120) (0.121) (0.149) (0.133) (0.137) (0.134) (0.135) (0.130)
Women 0.198 0.209 0.161 0.213 0.272 0.277 0.222 0.215

(0.064) (0.064) (0.065) (0.062) (0.053) (0.052) (0.047) (0.057)
Age/100 -0.697 -0.776 -1.063 -0.579 -0.988 -0.900 -0.716 -0.605

(0.240) (0.249) (0.251) (0.242) (0.213) (0.207) (0.190) (0.213)
Children 0.203 0.203 0.239 0.269 0.202 0.196 0.187 0.189

(0.052) (0.055) (0.058) (0.058) (0.047) (0.046) (0.043) (0.046)
Treatment -0.075 -0.059 -0.288 -0.294 -0.176 -0.187 -0.186 -0.259

(0.037) (0.042) (0.044) (0.048) (0.037) (0.037) (0.033) (0.036)
Accept 1.148 1.167 1.495 1.560 1.727 1.620

(0.112) (0.086) (0.125) (0.115) (0.115) (0.136)
Contacted 0.810 0.242 0.431 0.336 0.196 0.208

(0.066) (0.077) (0.160) (0.141) (0.160) (0.125)

Acceptance
Intercept 2.026 1.461 1.043 1.046 0.978 0.785

(0.245) (0.201) (0.187) (0.184) (0.182) (0.180)
Women 0.130 0.112 0.180 0.166 0.202 0.232

(0.124) (0.107) (0.100) (0.098) (0.094) (0.098)
Age/100 -0.419 0.402 -0.049 -0.087 -0.162 -0.066

(0.546) (0.443) (0.419) (0.413) (0.407) (0.395)
Children -0.011 0.021 0.031 0.029 0.026 0.024

(0.114) (0.093) (0.090) (0.089) (0.087) (0.085)

Not Contacted
Intercept -0.493 1.860 1.328 1.288 1.039 0.576

(0.154) (0.212) (0.245) (0.243) (0.226) (0.220)
Women -0.288 -0.276 -0.284 -0.297 -0.234 -0.192

(0.085) (0.111) (0.122) (0.118) (0.109) (0.108)
Age/100 -0.988 -0.880 -1.540 -1.463 -1.475 -1.114

(0.085) (0.433) (0.510) (0.512) (0.466) (0.437)
Children -0.140 -0.165 -0.177 -0.176 -0.170 -0.148

(0.078) (0.094) (0.120) (0.115) (0.107) (0.096)
Accepted -3.732 -2.346 -2.279 -1.899 -1.593

(0.122) (0.134) (0.133) (0.132) (0.150)

Likelihood -12 391 -18 522 -33 553 -34 310 -34 427 -34 453 -34 470 34 491



Table 5: Maximum Likelihood Estimates: Multiple Treatment Effects

Non-Parametric Heterogeneity Parametric Heterogeneity

Parameter A + B A+B+C A+B+D A+B+ A+B+ A+B+ A+B+ A+B+
Estimates C+D C+D C+D C+D C+D

Expo- Gamma Log- Student
nential Normal (5)

Duration
� 0.783 0.880 1.451 1.462 1.111 1.065 1.053 1.008

(0.011) (0.016) (0.031) (0.025) (0.025) (0.021) (0.021) (0.018)
� -0.622 1.330 -1.384 -0.214 -0.083 -1.124 -1.479

(0.053) (0.045) (0.038) (0.067) (0.078) (0.093) (0.232)
Intercept 3.061 1.832 3.001 2.763 0.746 0.906 0.803 1.364

(0.141) (0.136) (0.147) (0.131) (0.147) (0.151) (0.163) (0.120)
Women 0.236 0.207 0.172 0.189 0.291 0.263 0.252 0.212

(0.080) (0.067) (0.066) (0.062) (0.058) (0.055) (0.053) (0.056)
Age/100 -0.817 -0.883 -0.765 -0.609 -1.244 -1.034 -0.956 -0.520

(0.303) (0.264) (0.255) (0.239) (0.231) (0.215) (0.210) (0.206)
Children 0.241 0.214 0.283 0.247 0.209 0.200 0.200 0.177

(0.065) (0.059) (0.060) (0.056) (0.050) (0.047) (0.046) (0.045)
Treatment

T � 12 0.074 -0.053 -0.382 -0.329 -0.256 -0.284 -0.290 -0.327
(0.059) (0.046) (0.075) (0.075) (0.048) (0.047) (0.046) (0.049)

12 � T � 24 -0.254 1.107 -0.621 -0.634 -0.125 -0.143 -0.149 -0.290
(0.074) (0.101) (0.074) (0.070) (0.062) (0.059) (0.058) (0.055)

24 � T � 36 -0.444 1.041 -0.539 -0.529 -0.391 -0.342 -0.326 -0.288
(0.094) (0.089) (0.073) (0.073) (0.078) (0.073) (0.072) (0.073)

T ����� 0.444 0.763 0.103 0.119 -0.249 -0.118 -0.059 0.099
(0.105) (0.080) (0.084) (0.084) (0.099) (0.091) (0.087) (0.086)

Accept 1.240 1.133 1.293 1.517 1.574 1.821
(0.108) (0.094) (0.118) (0.112) (0.111) (0.115)

Contacted 0.642 0.269 0.869 0.695 0.633 0.095
(0.078) (0.078) (0.162) (0.171) (0.184) (0.103)

Acceptance
Intercept 2.031 1.615 0.152 0.448 0.375 0.757

(0.237) (0.198) (0.175) (0.166) (0.167) (0.163)
Women 0.132 0.092 0.205 0.201 0.198 0.234

(0.119) (0.105) (0.093) (0.089) (0.088) (0.090)
Age/100 -0.426 0.405 -0.049 -0.115 -0.133 -0.074

(0.518) (0.440) (0.400) (0.383) (0.382) (0.358)
Children -0.003 0.009 0.011 0.013 0.014 0.031

(0.112) (0.092) (0.085) (0.081) (0.080) (0.079)

Not Contacted
Intercept -0.541 2.021 0.236 0.346 0.220 0.525

(0.164) (0.209) (0.227) (0.213) (0.211) (0.202)
Women -0.312 -0.281 -0.223 -0.226 -0.230 -0.185

(0.091) (0.109) (0.117) (0.108) (0.106) (0.102)
Age/100 -1.023 -0.875 -1.648 -1.531 -1.478 -1.118

(0.376) (0.428) (0.511) (0.472) (0.460) (0.417)
Children -0.152 -0.169 -0.188 -0.169 -0.164 -0.142

(0.083) (0.093) (0.116) (0.107) (0.105) (0.092)
Accepted -4.031 -2.259 -1.847 -1.726 -1.510

(0.117) (0.136) (0.121) (0.125) (0.125)

Likelihood -12 391 -18 499 -25 758 -34 253 -34 387 -34 409 -34 416 -34 457



Table 6: Mean Spell Duration �

Model Women Women Men
and Men
Experimental Sample (A+B)

Model A+B
�

T=0 23.547 24.082 18.568
(0.044) (0.035) (0.091)

T=1 21.913 22.426 17.138
(0.043) (0.034) (0.086)

Sample D
Model A+B

�
T=0 23.490 24.040 18.698

(0.046) (0.034) (0.089)
T=1 21.857 22.385 17.260

(0.044) (0.036) (0.084)
Sample D

Model A+B+C+D
�

T=0 26.130 26.417 23.644
(0.019) (0.012) (0.057)

T=1 19.309 19.594 16.836
(0.020) (0.015) (0.054)

�
Computed on the basis of 500 replications of the relevant samples.

Empirical standard errors in parentheses.�
Based on the parameter estimates of column (1), Table 4.�
Based on the parameter estimates of column (4), Table 5.




