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1 Introduction

The importance of structural breaks in the conditional distribution of finan-
cial risk has been recognized by a number of authors. Bates (2000) shows that
the distribution implicit in option prices since the crash of 1987 is substan-
tially negatively skewed, in contrast to the essentially symmetric and slightly
positively skewed lognormal distribution before the crash. Pástor and Stam-
baugh (2001) examine the equity premium and test for structural breaks in a
long historical sample of US stock market returns. They document multiple
breaks in the equity premium and find that economically sensible priors are
important in estimating the equity premium as well as in identifying the most
likely dates at which breaks occurred. Ghysels (1998) examines in a similar
vein the time variation in conditional beta models and finds structural breaks
in the beta dynamics. Timmerman (2001) also presents empirical evidence
on the existence of structural breaks in the fundamentals process underly-
ing US stock prices. In related work Andreou and Ghysels (2002b, 2003b)
find multiple breaks in volatility dynamics and co-movements of FX and
stock returns associated with the Asian and Russian financial crises. Ignor-
ing change-points in financial time-series may also lead to spurious volatility
persistence (see e.g. Diebold, 1986, Hendry, 1986) as well as a long memory
(see e.g. Diebold and Inoue, 2001, Mikosch and Starica, 2003).

So far the arguments seem to point towards testing for breaks in the
conditional mean and/or variance. In testing for change-points in the con-
ditional variance it is important to acknowledge that ARCH-type processes
are β-mixing (e.g. Carrasco and Chen, (2001), Davis and Mikosch (1998)
among others) which precludes the application of many of the change-point
tests developed for weakly dependent processes. This is because φ-mixing
does not imply β-mixing. A number of recent studies, however, develop
structural break tests for ARCH-type processes. Chu (1995) and Lundberg
and Terasvirta (2002) propose LM type tests, de Lima (1998) considers a
recursive BDS test for testing nonstationarities, Kokoszka and Leipus (1999,
2000) specify CUSUM tests for ARCH processes and Mikosch and Starica
(2003) develop tests based on the data periodogram to detect breaks in the
long memory and GARCH dynamics of asset returns.

In many circumstances the need to test for breaks in higher moments,
or more precisely the tail behavior of the conditional distribution is very
acute as well. Andreou and Ghysels (2003a) argue that testing for breaks in
conditional distributions is important in the context of risk management since
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extreme tail observations and structural breaks are two types of rare events.
The former is one of the main focuses of financial risk management, the latter
represents a fundamental shift in the distribution of risky outcomes. Andreou
and Ghysels (2003a) therefore suggest to perform “quality control” for risk
exposure in order to make sure that no breaks occur in the samples used
to estimate risk management measures such as Value-at-Risk and Expected
Shortfall.

In addition to CUSUM tests, tests for distributional change based on
the residuals of nonlinear dynamic models have also been recently proposed.
For instance, Empirical Distribution Function (EDF) tests for the residuals
of ARCH-type models can be found in Horvath et al. (2001). Koul (1996,
2002) and Koul and Mukherjee (2002) generalize these results for more gen-
eral nonlinear dynamic location-scale models and extend it to other types of
estimators. These residual-based tests aim to examine breaks in the condi-
tional distribution of the process. Giraitis et al. (1996) and Inoue (2001) also
propose EDF statistics for strongly mixing processes. However, these are
based on the actual process (as opposed to the residual process). Although
residual-based EDF tests yield asymptotically distribution free Kolmogorov-
Smirnov type tests when in general the same tests are applied to the actual
process (not the residuals) their limiting distributions depend on the nui-
sance parameters and the use of bootstrap methods (Inoue, 2001). Using
different methods Lavielle and Moulines (2000) and Lavielle (1999) propose
penalized least squares minimum contrast estimators for strongly dependent
and strongly mixing processes to detect multiple change points in the dy-
namics and the marginal distribution of a process, respectively. Last but by
no means least, Quintos et al. (2001) recognize the importance of testing for
breaks in the tails of financial series and use recursive and sequential Hill
estimators.

Our objective is to examine further the CUSUM-type test in Kokoszka
and Leipus (1999, 2000) and the EDF-based tests in Horvath et al. (2001)
and Koul and Mukherjee (2002). Our analysis presents the following exten-
sions:
First, for the EDF-type tests we consider different conditional variance es-
timators based on high-frequency data-driven volatility filters. Horvath et
al. (2001) suggest least squares and QML GARCH estimates. On the other
hand, Koul (2002) and Koul and Mukherjee (2002) address robust estimators
such as M- and minimum distance (m.d.-) estimators. Limited simulation
and empirical evidence exists regarding the performance of these tests for
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either family of estimators except for Kokoszka and Teyssièrre (2002) who
focus on the QMLE. Our results show that the choice of the volatility es-
timator is crucial for the power of the EDF tests. Instead of focusing on
robust and QMLE estimators for specific GARCH parameterizations driven
by innovation in the location-scale family, we choose to complement these
tests with high-frequency estimators such as the Quadratic Variation (QV),
the Power Variation (PV) and the Historical QV. These are high-frequency
data driven volatility estimators discussed in recent work of Andersen et
al. (2003), Andreou and Ghysels (2002a), Barndorff-Nielsen and Shephard
(2002a, b, 2003a), among others. One of the main reasons is that these es-
timators are valid for general semimartingale models and can be considered
as volatility filters for general types of GARCH and SV models under much
more general conditions. The properties of these estimators and some of
their advantages especially with respect to change-point tests are discussed
in detail. As a primer to our results we show that the high-frequency PV
normalized returns enjoys the highest power in detecting change points under
all alternative volatility and distributional changes even for small samples,
small changes and end-of-sample instability, compared with the other high-
frequency and daily volatility estimators. One of the key factors of these
EDF tests is the dependence structure of the ARCH scaled residuals. Hor-
vath et al. (2001), Koul (2002) and Koul and Mukherjee (2002) show that
despite the dependence of residuals in parametric models due to estimation
error, one can still apply EDF-type tests. Andreou and Ghysels (2003b) use
the asymptotic distribution theory of Barndorff-Nielsen and Shephard to ar-
gue that despite the presence of estimation error when high-frequency filters
are used, one can use under certain conditions EDF tests. In this paper we
present simulation evidence based on the Hong and Lee (2003) test showing
that returns scaled by high-frequency volatility filters support the indepen-
dence assumption under a GARCH generated process. In addition, it is also
shown that the possibility of weak dependence in normalized returns due to
temporal aggregation and estimation error does not affect seriously the per-
formance of these tests.
Second, for the CUSUM procedure proposed in Kokoszka and Leipus (1999,
2000) we also find that high-frequency volatility filters perform better in-
stead of the subordinate observed daily returns absolute and quadratic daily
returns proposed by the original authors. These high-frequency volatility
processes satisfy the mixing conditions required by the tests and represent
more efficient approximations of the volatility since they are based on the
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intra-day cumulative information. It is interesting that they also yield power
in detecting not only small shifts in the volatility parameters but also (uncon-
ditional) distribution changes. As a final finding we note that the CUSUM
statistic is standardized by a HAC type estimator and it is shown that the
ARHAC estimator by Den Haan and Levin (1997) for the daily absolute and
squared returns shares good asymptoric properties (Andreou and Ghysels,
2002b). However, for highly persistent high-frequency processes addressed
here the choice parameters of the ARHAC estimator also depends on the
level of aggregation, returns transformation and filtering of the process.

The paper is organized as follows. In section 2 we present the EDF-based
tests that examine the hypothesis of distributional homogeneity based on the
residuals of nonlinear time series models and extend this analysis to financial
returns processes normalized by high-frequency volatility filters. In section
3 we consider the CUSUM-type test for assessing changes in the volatility
structure or tail related processes of financial series. A final section concludes
the paper.

2 EDF tests for distributional change

In discrete time we assume that financial data are generated by the following
type of processes:

rt = µt + σtεt (2.1)

where rt is the return on an asset (or a portfolio of assets), σt is the con-
ditional volatility, µt is the conditional mean and εt is an i. i. d. process.
Parametric models within the class of ARCH and SV models can be nested
into equation (2.1). The former class of models assumes that σt is a mea-
surable function of past returns, whereas the latter assumes that volatility
is latent (see Bollerslev et al. (1994) and Ghysels et al. (1996) for further
discussions). It should be noted that the specification in (2.1) amounts to
working with the location-scale family of distributions for the conditional
distributions once the conditional mean and variance are determined. It is
well known that in the class of the location-scale family of distributions the
pivotal quantity is ε = (r − µ)/σ whose distribution F (.) depends neither
on the location µ nor the scale σ parameters. Some members of this family
featured in finance are the Normal, Student’s t, Generalized Error, General-
ized Extreme Value (GEV) such as the Frechet distribution and the Stable
distributions such as the Lévy distribution. It should also be noted that
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(2.1) allows for the presence of a jump component, which we assume to be
incorporated in εt. In the absence of leverage effects equation (2.1) can also
be viewed as a discretization of continuous time jump-diffusion (see e. g.
Ghysels et al. (1996) for further discussion).

For the general model (2.1) the conditional moments µt and σt need to be
estimated. We will operate with both parametric and data-driven estimates
σ̂t, or related processes and consider the normalized returns process X̂t ≡
g[(rt−µ̂t)/σ̂t]. To estimate σ̂t one may follow two strategies. The first consists
of assuming a parametric model, this typically being an ARCH-type model
and hence formulate σ̂t ≡ σ̂t(b) where b is a parameter vector governing the
conditional mean and volatility. Horvath, Kokoszka and Teyssière (2001),
Koul (2002) and Koul and Moukherjee (2002) provide recent contributions
on the empirical process properties of Xt(b̂)2. The second strategy involves
using high-frequency volatility filters. This is one of our objectives analyzed
below.

In a first subsection we review the EDF tests for (semi)parametric models.
In the second subsection we extend this test for returns normalized by HF
volatility filters. In the last subsection we present simulation evidence for the
historical performance of these tests for alternative high-frequency volatility
estimators.

2.1 EDF tests for (semi)parametric models

Horvath, Kokoszka and Teyssière (2001) (henceforth HKT) and Koul (2002)
show that unlike the residuals of ARMA processes (e.g. Bai, 1994), the resid-
uals of the ARCH models yield sequential empirical processes that do not
behave like asymptotically independent random variables. In particular they
show that the asymptotic distribution involves among others a term depend-
ing on the unknown parameters of the model. However, in certain interesting
cases, including the detection of changes in the distribution function of un-
observed innovations, the sequential Empirical Distribution Function (EDF)
tests yield asymptotically distribution free statistics (see e.g. Bai (2003)).

The discussion below holds for a Generalized ARCH model and for sim-
plicity purposes we focus on the ARCH model (Engle, 1982) for the returns
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process {rt} given by:1

rt = σtεt (2.2)

σ2
t = b0 +

∑p

j=1
bjr

2
t−j (2.3)

where the volatility {σt} is assumed to be driven by an i.i.d. innovation
process {εt −∞ < t < ∞} with mean zero and unit variance and bj > 0.
The conditional distribution change-point analysis is based on the normalized
returns process εt in (2.2) which is given by Xt := (rt/σt) := εt. HKT assume
the following two model conditions: (M1) The unknown density function f
of εt exists and is continuous. (M2) The innovation process has a finite
fourth moment, E(ε4

0) < ∞, and the ARCH process satisfies the stationarity
condition:2

E(ε4
0)

1/2
∑

1≤j≤p
bj < 1. (2.4)

Hence the ARCH equations have a unique strictly stationary solution such
that E(r4

t ) < ∞ and the squares r2
t have a Volterra representation

r2
t =

∑∞

l=0

∑p

j1,...,jl

bj1 ...bjl
ε2

t ε
2
t−j1

...ε2
t−jl

.

Thus r2
t is a function of εt, εt−1, ..., and so it follows that {r2

t } is ergodic. It is
also well-known that ARCH-type sequences are not only ergodic but mixing
with geometric rate (Chen and Carrasco, 2001).

The properties of the normalized returns (or residual) empirical pro-
cess intimately depend on the family of estimators of the parameter vector
b = (b0, b1, ...bp). They are assumed to satisfy the conditions of asymptotic
linearity and

√
T -consistency given by:

b̂i − bi =
1

T

∑
1≤t≤T

li(ε
2
t )fi(εt−1, εt−2, ...) + o(T−1/2), 0 ≤ i ≤ p (2.5)

The functions li and fi above are regular in the sense that:

E(li(ε
2
0)) = 0, E

[
li(ε

2
0)
]2

< ∞, E [fi(ε0, ε1, ...)]
2 < ∞, 0 ≤ i ≤ p (2.6)

1In the discussion below we present more general nonlinear dynamic structures that
incorporate various GARCH specifications and nonlinear AR models. We also suppress
for simplicity the presence of a mean component in (2.2).

2It is worth noting that Inoue (2001), Giraitis et al. (1997), Mikosch and Starica (1999),
Quintos et al. (2001) also require existence of the fourth moment of the return process itself,

rather than the residuals. The above approach requires moment restrictions on εt which
can be easier to evaluate if such an assumption is verifiable as opposed to the analogous
condition on the strongly dependent process rt.
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Berkes et al. (2002) show that the above conditions hold for GARCH(p, q)
processes.

The sequential (or two-time parameter) empirical process of the squared
residual process X̂t = r2

t /σ̂
2
t is defined by:

êT (x, s) = T 1/2s
(
F̂T (x, s) − F (x)

)

where

F̂T (x, s) =





1
Ts

∑
p<t≤Ts 1{X̂ t ≤ x} if p/T < s ≤ 1

0 if 0 ≤ s ≤ p/T.

Theorem 1.1 in Horvath et al. (2001, p.3) shows that under the above con-
ditions this converges to a Kiefer process:

êT (x, s) → Γ(x, s) (2.7)

where Γ(x, s) is the limiting Gaussian process with zero mean and covari-
ance function Γ. This is equivalent to the convergenence êT (F−1(x), s) →
Γ(F−1(x), s), 0 ≤ x, s ≤ 1, in D([0, 1] × [0, 1]). However, its covariance de-
pends on several unknown parameters and functions involving the innovation
process, its density function, the volatility process and their expected values.
In particular it is shown in HKT (2001, Theorem 1.1) that

sup
0≤x<∞

sup
0≤s≤1

∣∣∣∣∣êT (x, s) −
(

eT (x, s) + xf(x)s
∑

1<i≤p

T 1/2(b̂i − bi)βi

)∣∣∣∣∣ = op(1)

(2.8)
and therefore the joint convergence of eT (x, s) and

√
T (b̂T − b) imply the

result in (2.7).
The above results imply that Empirical Distribution Function (EDF) of

the squared returns normalized by the estimated ARCH variance (X̂t ≡ ε̂2
t )

can be used to study the distribution change-point problem just like the EDF
tests for an i.i.d. process, the latter being a widely used and studied statistical
problem (e.g. Csörgö and Horvath, 1997, section 2.6, Szyszkowicz, 1998).
Therefore according to Horvath et al. (2001) the sequential two-parameter
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EDF process, wT (x, s) for {ε̂2
t } is:

wT (x, s) =





0 0 ≤ s ≤ p/T
[Ts](T−[Ts])

T 3/2

(
F̂T (x, s) − F̂ ∗

T (x, s)
)

p/T < s ≤ (T − 1)/T

0 (T − 1)/T < s ≤ 1,
(2.9)

where F̂ ∗
T (x, s) = 1/(T −Ts)

∑
Ts<t≤T 1{ε̂2

t ≤ x}, or equivalantly, F̂ ∗
T (x, s) =

1/(T−Ts)
∑

Ts<t≤T 1{X̂t ≤ x} so that it compares the EDF of X̂p+1, ..., X̂[Ts]

to that of X̂[Ts]+1, ..., X̂T . What is interesting about (2.9) is that the third

term in (2.8), xf(x)s
∑

1<i≤p T 1/2(b̂i − bi)βi, in the two-parameter process
cancel out so that the process {wT (x, s)} converges to a tied-down Kiefer
process. Hence the following well known statistics can be used to examine
the distributional homogeneity hypothesis. The supremum statistic is:

sup
0≤x<∞,0≤s≤1

|wT (x, s)| d→ sup
0≤u,s≤1

|K∗(u, s)| (2.10)

where K∗ is a “tied” down Kiefer process. This statistic has an asymptotic
distribution equivalent to the Kolmogorov-Smirnov statistic and has been
studied for time series models originally by Picard (1985). Similarly since F
is continuous the quadratic statistic:

∫ 1

0

∫ ∞

0

w2
T (x, s)dF̂T (x, 1)ds

d→
∫ 1

0

∫ 1

0

[K∗(u, s)]2duds (2.11)

has an asymptotic distribution equivalent to the Cramer-von Mises represen-
tation studied for instance in Blum et al. (1961).

Commonly used estimators for GARCH models admit the representation
(2.5) e.g. conditional likelihood, pseudo maximum likelihood, conditional
least squares estimators. Moreover, in general (2.6) can be considered as score
functions which are assumed to be bounded, nondecreasing and real-valued,
and can be related to robust estimators. Koul and Koul and Mukherjee
(2002) extend this to a class of nonparametric estimators, namely M- and
minimum distance (m.d.) estimators. In the context of this simple ARCH
model Koul and Mukherjee (2002) show the asymptotic relative efficiency
of an M-estimator for b relatively to the QMLE. In addition they prove
the above limiting distribution of the weighted sequential statistic (2.9) for
the residuals of a general location-scale dynamic model which is useful for
change-point detection.
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2.2 EDF tests and high-frequency volatility estimators

The above analysis considers nonlinear time series models where the structure
of the conditional mean and variance needs to be a priori specified including
a set of stationarity and moment conditions. Parametric or semiparametric
nonlinear time series belong in this approach where for instance the condi-
tional moments are specified whereas the distribution of the innovations is
left unspecified and satisfies some mild conditions relating to continuity and
decreasing tail behavior. Consider for instance the ARCH model restrictions
(M1) and (M2) in the previous section. These conditions in the semipara-
metric model along with certain estimator properties allow us to derive the
asymptotic distribution of the residual based EDF tests. In this section we
will consider more general models that belong to the family of semimartingale
models for financial asset price processes and again we shall focus on esti-
mators of volatility. We shall consider estimators of the integrated volatility
(discussed in more detail below).

We consider the general semimartingale process for rt widely used in
finance. A semimartingale is a process right continuous with left limits (a
cadlag process) of the form:

rt = r0 + Mt + At

where r0 is finite-valued and =0-measurable, M is a local martingale and A
some process of finite variation. Semimartingale models include the continous
diffusions, jump-diffusions, hence stochastic volatility models as well as Lévy
processes and most additive processes.3 Take for instance the SV model for
log prices p∗(t) :

p∗(t) = a∗(t) +

∫ t

0

σ1/2(u)dw(u) (2.12)

where the processes σ1/2 and a∗(t) are assumed to be stochastically inde-
pendent of the Brownian motion w. The instantaneous or spot volatility is
given by σ1/2 and a∗(t) represents the mean of the process. For example
a∗(t) = µt + βσp∗(t) where σp∗(t) =

∫ t

0
σp(u)du. The process σp∗(t) is called

the integrated volatility of power p > 0. In view of the cadlag assumption
a∗(t) is a continuous local martingale (i.e. predictable) and the volatility can
have deterministic effects, leverage, jumps, long memory, be non-stationary.

3The former are a special case of the latter in that they have not only independent but
also stationary increments.
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The idea that volatility can be precisely estimated using high-frequency
data goes back at least to Merton (1980) and has been the subject of recent re-
search given the availability of high-frequency financial data. High-frequency
data volatility estimators computed as the sum of high-frequency intra-daily
returns involve a discretization based on m intradaily returns and pertains to
the increments in the quadratic variation of day t,

∫ t

t−1
σ2

udu. The Quadratic

Variation is defined as QVm,t =
∑m−1

j=0 [r
(m)
t−j/m]2 and the Power Variation is

defined as PVm,t =
∑m−1

j=0 |r(m)
t−j/m|. These processes have been studied exten-

sively by Andersen et al. (2003), Barndorff-Nielsen and Shephard (2002a,b,
2003a), among others. In addition, Barndorff-Nielsen and Shephard (2003a)
also consider the so called realized power variation where p = 1, i.e. the cu-
mulative sum of absolute intra-daily returns is computed. We shall use the
notation P r to refer to a general specification, with special cases QV (p = 2)
and PV (p = 1). QVm,t and PVm,t represent two estimators of the integrated
volatility used in the remainder of the paper. The QV estimators have been
used quite extensively since many years, see for example French, Schwert and
Stambaugh (1987), Poterba and Summers (1987), Schwert (1989), Andersen
and Bollerslev (1998), Andersen et al. (2003), Andreou and Ghysels (2002b),
among others.

Barndorff-Nielsen and Shephard (2002a,b) show that the realized volatil-
ity QVm,t has an asymptotic distribution that follows a mixture of normal
distributions (see equation ( 2.13) below), a result obtained using “fill-in”
asymptotic arguments keeping the interval [t−1, t] fixed and letting m → ∞.
Similarly, Barndorff-Nielsen and Shephard (2003a) show the realized power
variation, with r > 1/2 has an asymptotic distribution:

log[η−1
r m1−r/2P r

m,t] − log P r
t

η−1
r m1−r/2

√
ηrνrP 2r

m,t

[η2rm1−r/2P r
m,t]

L→ N(0, 1) (2.13)

where ηr = E[|u|r] and νr = V ar[|u|r] with u standard Gaussian. Note that
the case of r = 2 covers the quadratic variation and hence (2.13) general-
izes earlier results on quadratic variation estimation, notably by Barndorff-
Nielsen and Shephard (2002 a,b). These results show that QVm,t has

√
m

rate of convergence, that the limit is unaffected by the drift of the process a∗,
that volatility dynamics do not play a role for the limit behavior, that the
volatility process σ can be non-stationary, exhibit long-memory or include
intra-day effects. Moreover, existence of the fourth moment is not required

10



for the asymptotic normality to hold since this implies that the stochastic
denominator in (2.13) would not possess an unconditional mean. Last but

not least the results show that QVm,t −
∫ th

(t−1)h
σ(u)2du has a mixed Gaussian

limit implying that marginally it will have heavier tails than the normal.
Simulation evidence presented by Barndorff-Nielsen and Shephard (2003a,b)
shows that the log transformation of QVm,t and PVm,t has relatively bet-
ter asymptotic properties for m > 48 and perform well under alternative
volatility specifications (including long-memory, leverage).

Further advantages of high-frequency filters can be found in Andersen
and Bollerslev (1998) although it is important to acknowledge that these
estimators are not without caveats. These estimators are valid for actively
traded markets. Also very little is known about the asymptotic properties of
QVm,t when the return process is generated by a jump diffusion or when the
diffusion features leverage. Barndorff-Nielsen and Shephard show via sim-
ulation that leverage does not affect the asymptotic properties. We use an
alternative data-driven volatility that could deal with some of these issues.
Recently, Alizadeh et al. (2002) suggest to use the daily range as a measure
of volatility instead of the increments in quadratic variation. The range esti-
mator was initially considered as an extreme value estimator for indepedent
processes (e.g. Feller, 1951, Parkinson, 1980). The appeal of the daily range
is that is measured without error, unlike the quadratic and power variation
estimators discussed above. To proceed let us define the daily range, namely:

RAm,t = ( sup
t−1/m<τ≤t

pτ − inf
t−1/m<τ≤t

pτ )
2 (2.14)

Let us also consider the stochastic process Xt ≡ r2
m,t/RAm,t.

4 Note that
unlike the quadratic variation, we no longer hold the time interval fixed,
instead we consider returns over a ever shrinking time interval and the as-
sociated range. Note also that we do not denote the process as X̂t since in
principle no estimation is involved. Obviously we can view the range as an
estimator of volatility, yet we do not directly link it to the parameters of
the underlying process, nor to its quadratic variation. Such links can only
be established in some special cases as discussed by Alizadeh et al. (2002).
We view the ratio Xt ≡ r2

m,t/RAm,t, as a process not involving parametric or
non-parametric estimation. In practice we will have to assume that we sam-
ple over sufficiently small intervals, instead of sampling squared returns over

4The volatility estimator based on the range as it appears in Parkinson is σ̂2 =
RAm,t/(4 ln 2).
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some sufficiently small subintervals of [t − 1, t] to compute quadratic varia-
tion estimators. Such asymptotic analysis is reminiscent of the continuous
record asymptotic theory of Foster and Nelson (1996). Using arguments sim-
ilar to those of Foster and Nelson, Andreou and Ghysels (2002c) show that
Xt ≡ r2

m,t/RAm,t becomes an i.i.d. random variable for m sufficiently large,
or equivalently for sufficiently short sampling intervals. The basic intuition
driving the results is that returns, rm,t/

√
RAm,t, over short intervals appear

like approximately i.i.d. with zero conditional mean and finite conditional
variance and have regular tail behavior. Using the range, instead of a rolling
sample estimator of instantaneous volatility, as advocated by Foster and Nel-
son, removes the requirement of a smooth volatility process, so that jumps
can be accommodated. It should also be noted that we can accommodate
leverage effects with the range.

The above high-frequency volatility filters have important implications
for our change-point analysis for the following reasons:

(i) The semimartingale framework allows us to nest many of the volatil-
ity models proposed for modeling financial asset processes. Hence we do not
have to a priori specify a given parametric model for the conditional variance
before change-point analysis can be applied. This obviously avoids the possi-
bility of spurious change-point detection due to misspecification in the func-
tional form of the conditional moments or the dynamics of the process. In a
parametric model misspecification of the conditional variance function would
in general invalidate the consistent estimation. Hence under a misspecified
parametric model the standardization would be incorrect, even asymptoti-
cally, which would influence the test properties. The above high-frequency
QVm,t and PVm,t filters are shown to be consistent estimators for alternative
semimartingale models as opposed to for instance QMLE or other estimators.

(ii) The derivation of the quadratic and power variation estimators of
volatility and their limiting distributions as described above do not impose
existence of the fourth moment as required by the QMLE GARCH estimates
- a condition that is often challenged empirically. Related is the stylized fact
of heavy tailed distributions for returns for which Hall and Yao (2003) show
that the QMLE has a multivariate stable limiting distribution and exhibits
poor rates of convergence. In contrast, under heavy tailed distribution such as
Lévy processes the integrated volatilities of power p not only enjoy standard
rates of convergence but also provide the flexibility for allowing the pth power
to vary according to the jump activity (Woerner, 2002).

(iii) The information set of QVm,t and PVm,t exploits the intra-day in-
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formation of usually a day. Andreou and Ghysels (2002a) consider high
frequency estimators over a longer horizon of usually two days presented by
the Historical Quadratic Variation (HQV) which is defined as the sum of m
rolling QV estimates. The distinguishing feature of all high-frequency volatil-
ity estimators is that they do not involve aggregation or smoothing over long
horizons like daily data driven estimators such as the 26-day rolling volatil-
ity in Foster and Nelson (1996) and the RiskMetrics (used by practitioners)
or IGARCH which is essentially an exponentially weighted moving average
filter. It is shown in the simulation section that these inter-day filters, as
opposed to the intra-day ones, smooth out the change points in the volatility
dynamics and tails and thereby yield poor power for the change point tests
considered.

2.3 EDF tests and temporal dependence

As shown by Horvath et al. (2001), Koul (2002) and Koul and Mukher-
jee (2002), despite the dependence in residuals created by estimation error
one can still apply EDF-based tests. It is important to note, however, that
parametric specifications assume a strong GARCH process, using the termi-
nology of Drost and Nijman (1993). More specifically, they impose that the
(true) normalized returns (without estimation error) are i.i.d. for a particular
sampling frequency. Strong GARCH models do not temporally aggregate,
so that imposing an i.i.d. assumption at one frequency results in temporal
dependence at another frequency. Consequently, parametric models come
with a restrictive distributional assumption. Obviously, it is important to
acknowledge that the process X̂t ≡ r1,t/

√
QVm,t is not the same as εt from

the estimation of (2.2)-(2.3) via say QMLE. Do high-frequency data volatil-
ity processes carry similar restrictions? Temporal dependence may indeed
exist in X̂t ≡ r1,t/

√
QVm,t or X̂t ≡ r1,t/

√
PVm,t due to the following three

sources: (i) measurement or estimation error, (ii) misspecification and (iii)
temporal aggregation. Consequently the properties of residual-based tests
may be affected depending on the degree of temporal dependence in X̂t. It
turns out that there are some conditions required for returns normalized by
high-frequency volatility estimators to be i.i.d. and this is the subject we
discuss here.

Given the above properties of high-frequency volatility filters we consider
the normalized returns X̂t based on the QVm,t. Andreou and Ghysels (2003b)

use the result in (2.13) to show that X̂t is i.i.d. if P 4
m,t/[P 2

m,t] is i.i.d. This

13



process involves verifying that the normalized returns is independent if the
intra-day sum of the fourth power of absolute returns scaled by QVm,t squared
is also independent.

It is clear that some appealing features of high-frequency filters emerge
here. For parametric specifications we have to assume as strong GARCH
specification and carry out change-point tests. For high-frequency filters we
have some empirical processes (namely P 4

m,t/[P 2
m,t]) that allows us to verify

certain conditions that warrant the assumption i.i.d. and hence applicability
of EDF tests.

As a first step towards establishing the dependence structure of normal-
ized returns by high-frequency volatility filters we apply the Hong and Lee
(2003) test which examines the following null hypotheses: (H1). Martingale
difference, (H2). Serial correlation under heteroskedasticity, (H3). ARCH-in-
mean under heteroskedasticity, (H4). Skewness-in-mean under heteroskedas-
ticity, (H5). Kurtosis-in-mean under heteroskedasticity. This test is applied
to normalized returns for alternative high-frequency volatility filters as well
as to intraday normalized returns such as those at hourly and six-hourly fre-
quency (discussed further below). Note that other temporal dependence can
also be applied to X̂t. However, they all assume that the process is station-
ary. Therefore it is useful to investigate via a simulation study the Hong and
Lee test results relating to the temporal dependence of X̂t. In the presence of
no support against the null hypothesis the properties of the EDF test are not
expected to be violated due to temporal dependence. However, if support is
found against any of the null hypotheses (H1) to (H5) then the bootstrap ap-
proach can provide results regarding the effects of weak temporal dependence
on the EDF change-point test. Simulation evidence is provided regarding the
properties of these tests in the next section.

2.4 Simulation evidence for the EDF test

The objective is to examine the properties of the EDF-based test is examined
for the squared normalized returns of a general family of ARCH processes and
high-frequency estimators. This subsection is organized as follows: First, we
outline the Monte Carlo design. Second, we present simulation results that,
based on the Hong and Lee (2003), test that assess the temporal dependence
structure of normalized returns. Third we examine via simulations the size
and power of EDF tests for alternative normalized returns processes.

14



2.4.1 The Monte Carlo design

The simulated returns process r(m),t sampled at frequency 1/m is generated
by a GARCH(1,1) model (e.g. Bollerslev et al. 1994):

ln pt − ln pt−1/m ≡ r(m),t = µ(m),t + σ(m),t · z(m),t

σ2
(m),t = b0,(m) + b1,(m)r

2
(m),t−1/m + γ(m)σ

2
(m),t−1/m, t = 1, ..., T.

(2.15)

where z(m),t is i.i.d.(0, 1) and σ2
(m),t is the volatility process. The Data Gen-

erating Processes (DGP) at the 5-minute frequency are defined by a low
persistent GARCH (DGP1) where b0,(m) = 0.1, b1,(m) = 0.3, γ(m) = 0.3 and
by a high persistent GARCH (DGP2) b0,(m) = 0.00044, b1,(m) = 0.06341,
γ(m) = 0.93482 which can be considered representative processes of financial
asset returns. Note that at the 5-minute frequency m = 288 for the 24-hour
traded markets. A one year sample is considered equivalent to Tdays = 250
and T5 min s = 72000 daily and 5-minute observations, respectively. The small
sample choice is related not only to the evaluation of the finite sample prop-
erties of the aforementioned change-point tests but also to the financial regu-
lators directive which recommends that the banking institutions use at least
a year of historical data for evaluating their risk exposure (in an attempt
to avoid extreme events and structural changes in long historical samples).
Based on the GARCH process in (2.15) generated at the 5-minute inter-
val we temporally aggregate returns at other frequencies such as daily and
hourly without imposing the assumption that at those frequencies the data
are driven by a GARCH process with i.i.d. errors. The reason being that we
do not wish to impose the strong GARCH process assumption (Drost and
Nijman, 1993) at all frequencies given that these do not temporally aggre-
gate. For instance, the daily returns and high-frequency volatility filters are
based on a simple aggregation of the 5-minute returns generated from the
DGP in (2.15) and are therefore not i.i.d. by construction.

The process in (2.15) is driven by a homogeneous white noise with neither
breaks in the conditional variance nor level shifts denotes the process under
the null hypothesis.5 The returns process is de-volatilized using methods
discussed in section 2.2.6 Under the alternative hypothesis the normalized

5It is assumed that µ(m),t = 0 for simplicity purposes and for focusing on scale and tail
change point alternatives that are more challenging to detect as opposed to mean shifts.

6Some simulation evidence regarding the dependence structure of X̂t = rt/σ̂t, under
the null hypothesis, for alternative data driven estimators is reported in Andreou and
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returns process is assumed to exhibit change-points and the following inde-
pendent simulated processes are generated for the evaluation of the tests’
power. We start by examining breaks in the conditional variance dynam-

ics (σ(m),t) which can be thought as permanent regime shifts in volatility
at point πT (where π = .8 represents an end-of-sample instability). Such
breaks may be due to an increase in the intercept, b(m),t, or a shift in the
volatility persistence, b1,(m) + γ(m) or both. Second, we consider a change in

the tails of the d.f. from N(0, 1) to t(0, 1; ν) or from t(0, 1; ν1) to t(0, 1; ν2).
For high-frequency processes we also consider a change point from a Lévy
to a Cauchy innovation.7 The distribution shift is an interesting alternative
for financial stock returns due to the plethora of empirical evidence for dif-
ferent heavy-tailed distributions proposed to model stock returns. Also it is
often common practice to fit such alternative distributions to asset returns
assuming (and rarely testing) that the sample is homogeneous ignoring the
possibility that certain distributional characteristics (such as heavy tails or
asymmetries) may spuriously exist due to breaks. Similarly, spurious effects
of volatility persistence and long memory in stock returns have been reported
due to ignored structural change effects.

A number of alternative data-driven volatility filters are considered be-
low which differ in terms of the estimation method, sampling frequency
and information set. These high-frequency estimators, namely QVm,t and
PVm,t, RAm,t and HQVm,t, were discussed in the previous section.8 We com-
plement the high-frequency filters with daily data-driven volatility estima-
tors in order to compare the sampling frequency aspect and Kokoszka and
Teyssièrre (2002) analysis. The daily frequency filters are: (i) The Exponen-
tially Weighted Moving Average (EWMA) volatility or RiskMetrics (RM)
is defined following the industry standard introduced by J.P. Morgan (see
Riskmetrics Manual, 1995) as: RMt = λRMt−1 + (1 − λ) r2

t , t = 1, ..., Tdays,
where λ = 0.94 for daily data, rt is the daily return and Tdays is the number
of trading days. This is an IGARCH process. (ii) The Rolling Volatility

Ghysels (2003b). The interested reader may refer to the aformentioned paper Tables 1
and 5 which present simulation evidence and Table 7 provides empirical results, regarding
the distributional and dependence properties of data-driven de-volatilized returns using
the Riskmetrics, Rolling Volatility and Quadratic Variation filters. Further analysis is
worth pursuing for the Power Variation standardized returns.

7In all cases the simulated innovation process is a standardized process.
8We will henceforth often drop the m subscripts to facilitate the discussion and therefore

refer to QVt and PVt, RAt and HQVt.
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with a 26-day window is proposed in Foster and Nelson (1996). All volatil-
ity filters except the Rolling Volatility were also estimated using intraday
sampling of 1- and 6-hours. Moreover, the intraday frequency is further ex-
ploited by examining transformations of block minima processes, denoted by
R min, involving the 1- and 6-hours block samples. This process is defined
as R min = min1≤j≤b(r(t−1)b+j), where b is the block size.9

2.4.2 Simulation results for temporal dependence in normalized
returns

The Hong and Lee (2003) test simulation results for daily as well as hourly
normalized returns based on the aggregation of the 5-minute return process
simulated as described above are reported in Table 1. The values refer to
the simulated mean test statistic and its respective p-value for each of the
temporal dependence null hypotheses (H1)-(H5). The results show that there
is no support against the null hypothesis. The simulations reported use the
Bartlett kernel. The second column in Table 1 presents the residuals of the
GARCH model at the daily frequency which support (as expected) the null
hypotheses in the Hong and Lee test. The same results are obtained for the
daily and hourly Quadratic and Power variation normalized returns. There-
fore at these frequencies there is simulation evidence that supports the null
hypotheses of temporal indenpendence using the Hong and Lee test. These
results are robust to (1) other kernel-based estimators such as the Parzen ker-
nel, (2) choosing the bandwidth, (3) alternative intraday sampling frequen-
cies such as half-daily, (4) lag lengths as well as to (5) transformations of the
normalized returns process such as X̂2

t . The Hong and Lee test is also applied

to the higher order process P̃
4,(m)
[t−1,t]/[P̃

2,(m)
[t−1,t]] as it reflects the Barndorff-Nielsen

and Shephard condition for temporal dependence in QV(m),t normalized re-
turns. These results are reported in the last column of Table 1 and also do
not present support against the null hypotheses. Therefore, it appears these
normalized returns processes can be used as a representative control process
for detecting change-points using the EDF based test.

9Block maxima processes can be treated in the same way. We focus on the block
minima returns process since it has negative effects on portfolio returns which are of more
fundamental concern to risk managers and investors.
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2.4.3 Simulation results for the EDF test

We study the EDF-based change-point tests in Horvath et al. (2001) and Koul

(2002) for X̂2
t based on alternative volatility estimators especially using high-

frequency data. In the spirit of the classical Kolmogorov-Smirnov statistic
the weighted difference between the sequential EDFs:

sup
1≤Ts≤T

sup
x∈R

√
T

(
Ts

T

(
1 − Ts

T

)) ∣∣∣∣∣
1

Ts

Ts∑

t=1

1{X̂2
t ≤ x} − 1

T − Ts

T∑

t=Ts+1

1{X̂2
t ≤ x}

∣∣∣∣∣
(2.16)

is written in a less computationally intensive format as given by the second
equality:

KS = sup
1≤Ts≤T

sup
x∈R

1√
T

∣∣∣∣
Ts∑
t=1

1{X̂2
t ≤ x} − Ts

T

T∑
t=1

1{X̂2
t ≤ x}

∣∣∣∣ (2.17)

which yields asymptotically a Kiefer process {K(x, s), 0 ≤ x, s ≤ 1}. Hence-
forth we refer to this test as KS.

The simulation results for the KS statistic are reported in Table 2. All
tests are applied to daily normalized returns based on alternative volatility
fitlers. The simulation results refer to the daily returns scaled by data-
driven volatility fitlers using daily data (RMt, RVt) and high-frequency data
(QVt, HQVt, RAt, PVt). The two reported numbers for each case represent
the mean number of rejections at the 5% and 10% nominal levels, respectively.
The KS test appears to have mild size distortions due the small effective
sample of Tdays = 200 used (given that the first 0.2Tdays observations were
ignored due to the 26-day window involved in the Rolling Volatility and the
erratic behavior due to the normalization at the beginning of the sample).
The size distortions are relatively higher for PVt normalized returns and for
all high-frequency filters when generated by a Lévy process.10

It should be noted that the finite sample properties of the Kolmogorov-
Smirnov test is found to exhibit relatively low power for the QMLE GARCH
squared residuals (Kokoszka and Teyssière, 2002) which is verified here by
alternative daily data-driven volatility filters based on the quadratic variation
and using either daily or high-frequency estimators. In contrast, we find
the interesting result that the Power Variation substantially improves the
performance of the EDF test results for conditional variance and conditional

10The KS test for the Lévy process generated GARCH and RMt and RVt normalized
returns yield more serious size distortions and are therefore not considered here.
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distribution changes. The daily data-driven filters (RMt, RVt) have some
power in detecting change points in the dynamics of the GARCH and changes
in the degrees of freedom of the t distribution. We mention that the power
for the de-volatilized returns by the RMt is comparable with the QMLE
GARCH estimators used in Kokoszka and Teyssière (2002).11 In contrast,
the daily returns scaled by the high-frequency filters QVt, HQVt, RAt do not
seem to have any power for the KS statistic in detecting any of change-point
alternatives except the fat tailed alternative from Lévy to Cauchy. Note
that increasing the sample size does not alter these results. These poor
power performance of the KS is altered by the PVt normalized returns which
has very good power properties in detecting volatility parameter changes.
In order to challenge the robustness of this result we simulate very small
changes in the GARCH parameters that yield the reported results in Table
2.12 In addition, the KS test also has good power properties for the PVt

scaled returns in detecting changes in the conditional distribution except for
changes from Normal to t distribution.13

3 CUSUM tests for volatility shifts

So far we examined tests involving the process X̂t ≡ g[(rt)/σ̂t] using both
parametric and data-driven estimators. We now change the object of interest,
namely we focus on the volatility process σt. This implies that we examine
a different type of null hypothesis, instead of studying change-points in the
distribution of normalized returns rt/σt we examine distributional changes
in the volatility process. Naturally, we may expect that the tests proposed
in this section also have power in detecting distributional shifts. Conversely,
the EDF-based tests based for normalized returns are expected also to have
power in detecting changes in the volatility dynamics. These issues are ad-
dressed by the Monte Carlo investigation. We provide a brief discussion of

11Note the differences involved are that RMt is an IGARCH process with fixed pa-
rameters and that here we consider a smaller sample size and a break at the end of the
sample.

12These parameter changes are from γ1,0 = 0.99 to γ1,1 = 0.89 for DGP1 and from
γ1,0 = 0.93 to γ1,1 = 0.83 for DGP2 and also from b0,0 = 0.000093 to b0,1 = 0.00093 for
DGP1 and from b0,0 = 0.00044 to b0,1 = 0.0044 for DGP2 at πT .

13Further simulation results for a larger sample size of Tdays = 500 establish that the
above results for PVt normalized returns improve. For conciseness we do not report them
here.

19



the Kokoszka and Leipus (2000) where the process monitored for homogene-
ity is |r1,t|δ, δ = 1, 2. Andreou and Ghysels (2002b) in the context of their
empirical analysis apply this test to the (H)QVt type filters for the 5-minute
YN/US$ series. Since the process of interest Xt = |rt|δ for δ = 1, 2 represents
an observed measure of the variability of returns we may use high-frequency
volatility filters e.g. Xt = QVt, HQVt, PVt and RAt as discussed in the pre-
vious section which are locally smoothed filters of the quadratic and power
variation. Recall that in the context of the SV and GARCH models {rt}
represents a β-mixing process and that the measurable functions of mixing
processes are mixing and of the same size (White, 1984, Theorem 3.49).
Similarly the high-frequency returns process {r(m),t} generated by (2.12) is
β-mixing and the high-frequency filters are Xt = G(r(m),t, .., r(m),t−τ ), for fi-
nite τ , are also β-mixing. Different considerations exist for the choice the
transformation of the returns process. The absolute returns process is em-
pirically found also to exhibit long memory properties (Ding et al., 1993).
Similarly the absolute rather than the squared returns process is preferred for
the study of the autocorrelation properties of heavy tailed ARCH processes
when E(r4

t ) < ∞ (Davis and Mikosch, 1998, Mikosch and Starica, 2000). Wo-
erner (2002) also shows that the quadratic variation will give more weigth
to extreme observations like jumps and outliers as opposed to the absolute
variation. Hence the choice of the rth power becomes an important point
when detecting for changes in the volatility dynamics but especially the tail
of the process since we would like a process that is robust to outliers in order
to detect the actual change-points. We also consider the process of block
minima Xt = |R min |δ δ = 1, 2 where R min is used in extreme value theory
for tail estimation. These are defined as R min = min1≤j≤b(r(t−1)b+j), where
b is the block size. The properties of this process for GARCH sequences
are found in Mikosch and Starica (2000) and are expected to have power in
detecting change points in the tails of the process since they focus on tail
observations. The block maxima process can be thought in the same way.

In order to test for breaks in an ARCH(∞) Kokoszka and Leipus (1999,
2000) consider the following process:

UT (k) =

(
1/
√

T

k∑

j=1

Xj − k/(T
√

T )

T∑

j=1

Xj

)
(3.18)

where 0 < k < T , Xt = r2
t . The returns process {rt} follows an ARCH(∞)

process, rt = ut

√
ht, ht = b0 +

∑∞
j=1 bjr

2
t−j, a ≥ 0, bj ≥ 0, j = 1, 2, with finite
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fourth moment and errors that can be non-Gaussian. The CUSUM-type
estimator k̂ of a change point k∗ is defined as:

k̂ = min{k : |UT (k)| = max
1≤j≤T

|UT (j)|} (3.19)

The estimate k̂ is the point at which there is maximal sample evidence for a
break in the squared returns process. In the presence of a break it is proved
that k̂ is a consistent estimator of the unknown change-point k∗. It is more
convenient to state the results in terms of the estimator of τ ∗ of τ̂ = k̂/T
with P{|τ ∗ − τ̂ | > ε} ≤ C/(δε2

√
T ), where C is some positive constant and

δ depends on the ARCH parameters and |τ ∗ − τ̂ | = Op(1/T ) (Kokoszka and
Leipus, 1998, 2000). Under the null hypothesis of no break:

UT (k) →D[0,1] σB(k) (3.20)

where B(k) is a Brownian bridge and σ2 =
∑∞

j=−∞ Cov(Xj, X0). Conse-
quently, using an estimator σ̂, one can establish that under the null:

sup{|UT (k)|}/σ̂ →D[0,1] sup{B(k) : kε[0, 1]} (3.21)

which establishes a Kolmogorov-Smirnov type asymptotic distribution.
The computation of the Kokoszka and Leipus (1999, 2000) test is rel-

atively straightforward, with the exception of σ̂ appearing in (3.21). The
authors suggest to use a Heteroskedasticity and Autocorrelation Consistent
(HAC) estimator applied to the Xj process. Andreou and Ghysels (2002b)
experimented with a number of estimators in addition to the procedure of
Den Haan and Levin (1997) who propose a HAC estimator without any kernel
estimation, which is called the Autoregression Heteroskedasticity and Auto-
correlation Consistent (ARHAC) estimator. This estimator has an advan-
tage over any estimator which involves kernel estimation in that the circular
problem associated with estimating the optimal bandwidth parameter can
be avoided. Some further results relating this estimator are presented in the
simulations section.

3.1 Simulation results for the CUSUM test

The simulation analysis of the CUSUM test is based on the simulation design
described in section 2.4.1 and aims to extend the Kokoszka and Leipus (1999,
2000) CUSUM-type test in two directions. First we examine the performance
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of the test for processes beyond the absolute and squared returns to alterna-
tive volatility processes that can also be used as subordinate, observed series
for detecting change points in the conditional variance dynamics. The alter-
native volatility processes are found to be crucial for the power properties
of the test. Second we evaluate whether the test has power in detecting not
only scale but shape changes relating to tail changes in the innovation. Note
that here we detect changes in the unconditional distribution. Other trans-
formations of returns that relate to tail observations such as block minima
processes (used in the estimation of extremes) also yield power. All these
processes satisfy the mixing conditions required by the Kokoszka and Leipus
test. When these processes are combined with the high-frequency data they
are practically useful in that they multiply the size of the sample which is
crucial for change-point tests and tail analysis. However, the stylized fact
that the higher frequency yields a more persistent process may challenge the
stationarity and moment conditions of the tests and their performance. In
general it is expected that it may be more difficult to detect breaks in a
highly persistent process. Hence we examine via simulations the tradeoff be-
tween the good size/power of the CUSUM test and the intraday frequency
processes.

Tables 3-5 present the Kokoszka and Leipus CUSUM test simulation re-
sults defined in (3.18)-(3.21) and referred to as KL. These results are sum-
marized as follows:

Daily volatility processes. The KL test was proposed for |rt|δ where obvi-
ous choices are δ = 1, 2 to represent the absolute and quadratic variations as
subordinate observed processes of volatility. The simulation results for these
processes are reported in Table 3 where it is evident that these transfor-
mations and especially the absolute returns process have power in detecting
changes in the volatility parameters whereas they have less power in de-
tecting changes in the innovation distribution of the GARCH process. We
enlarge the scope of the KL test for the daily high-frequency volatility filters
(QVt, HQVt, RAt, PVt). These results also appear in Table 3 for which the
KL test appears to have good size properties and in some cases to be rather
conservative especially for the high persistent 5-minute GARCH driven by
Normal and Student’s t innovations. The exceptions to this result are for the
Lévy driven process where the test is undersized. Power appears to be good
in detecting volatility dynamic changes as shown by the first three rows in
the power panel for all processes and filters expect for the QVt and HQVt
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when the process is persistent (even for a large drop in b1).
14 The KL test

is also evaluated for changes in the distribution of innovations (shown in the
last three rows of Table 3) and it is found that the test has power in detecting
changes in the tail of a Student’s t distribution from 6 to 3 degrees of freedom
using any of the high-frequency filters except the RAt. The other relatively
more subtle distributional alternatives (from Normal to t(6) and from Lévy
to Cauchy) are not detected by the KL test except when that is applied to the
PVt for the low persistence GARCH. There is an interesting comparison to
be made in the simulations results for the PVt that show how the persistence
of the GARCH affects the power of the test in detecting distributional shifts.
Overall the process PVt filter seems to yield the best power in detecting con-
ditional variance and distribution changes in a low persistent high-frequency
GARCH process. These KL test results appear to be robust to the ARHAC
parameters relating to the alternative criteria of lag length selection. Related
results in the literature are by Woerner (2002) who shows that theoretically
power variation is more robust relative to quadratic variation and Mikosch
and Starica (2003) who find absolute returns to perform better than squared
returns for estimating the autocorrelation function when the fourth moment
is not finite.

Intradaily volatility processes. The properties of the KL are further inves-
tigated for high-frequency processes pertaining not only to intraday absolute
and squared returns as well as hourly volatility filters but also for block min-
ima processes. These processes also share the same mixing properties as the
daily returns and daily volatility filters but they have the advantage that they
increase the sample size to the intraday one which may turn out to impor-
tant in detecting tail changes in the process. Yet, it is expected that intraday
returns processes and their transformations may in some cases be more noisy
and also exhibit more persistence. This point is related to the optimal choice
of m. The results for the 5-minute GARCH with low and high persistence
are reported in Tables 4 and 5, respectively. Table 4 shows that the KL test
still appears rather conservative for hourly volatilities except for absolute
transformations of the returns process and hourly block minima where the
simulated size is very close to the nominal one. However, these processes

14It is worth noting that neither of the daily sampled filters RMt and RVt have any
power in detecting volatility coefficient changes and hence these results are not reported
in Table 3. One interpretation could be that these involve more smoothing and aggregation
than in the absolute and squared returns (that form the basis of this CUSUM test) as well
as the high-frequency filters presented here.

23



appear to be undersized when the GARCH model is driven by Lévy innova-
tions. In Table 4 size distortions are observed for the 5-minute absolute and
square transformations of the low persistence 5-minute GARCH process. For
the high-persistence GARCH in Table 5 the KL seems to have very serious
size distortions for the raw 5-minute transformations, the hourly range, the
hourly absolute returns as well as hourly block minima transformations. For
exposition purposes we show the results for the latter three processes. This
result is not surprising for such approximate IGARCH process given the the-
oretical finite second moment condition required in the KL test. Since such a
condition is likely to be violated by high-frequency processes we recommend
that the raw transformations of absolute and squared returns suggested in
KL be avoided for these processes. Instead it seems that some level of ag-
gregation and smoothing as it is involved for instance in the 6-hour absolute
returns and block minima as well as high-frequency filters will solve the size
distortions of the KL test when applied to the observed 5-minute highly
persistent returns process. Related is the evidence in Barndorff-Nielsen and
Shephard (2003) which shows that for m > 48 the QVt and PVt asymptotic
approximations become quite accurate.

With these aggregation and filtering considerations involved in the KL
test for high-frequency processes we now turn to evaluate the test’s power
results. The overall picture sketched in Tables 4 and 5 suggests that the
absolute 6-hour returns and block minima have good power for all alternatives
except for the subtle change from Normal to t(6) innovations in the low
persistence GARCH. It is noteworthy that these processes capture the change
from a Lévy to Cauchy innovation a result that is not surprising for the
block minima process is essentially based on such extreme tail observations.
Although the 1-hour and 6-hours Range and Quadratic Variation filters seem
to be doing better in terms of capturing the Normal to the t tail changes,
they have no power in differentiating between the two heavy alternatives
(Lévy to Cauchy). The volatility filter that seems to yield the best power for
the KL under all alternatives is the Power Variation for both high and low
persistent GARCH processes and even for small samples of 1 and 6 hours.
Comparing the KL test results for the PVt (in Tables 3, 4 and Table 3) we
conclude that although m = 288 in the daily PVt as opposed to m = 12 and
72 in the 1- and 6-hours PVt, respectively, the latter appear to yield better
power for the KL (with no size distortions) under all alternatives considered.
This points to an interesting tradeoff between intraday sample information
for the estimation of PVt and sample size considerations for change-point
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tests. Finally we add that the KL statistic for the 6-hour filtered processes
and the 1-hour PVt and QVt is robust to the ARHAC parameters as opposed
to the 5-minute and 1-hour transformations (such as absolute returns, RMt

and RAt) that highly sensitive to the alternative lag length choices (whether
these are the AIC and SC or a fix lag length). This presents an additional
reason in favor of using high-frequency volatility estimators instead of simply
the observed squared and absolute returns in the KL test or filters that are
too smooth (e.g. the hourly RMt) or ignore most of the intraday information
(e.g. the hourly RAt).

Summarizing and combining the results from different change-point tests,
simulated processes, alternative structural break hypotheses, volatility filters
and returns transformations, we find that for the KL test the daily Power
Variation yields better power (under all the alternatives hypotheses con-
sidered) followed by the absolute daily returns process. However, the KL
test for intraday absolute returns for persistent 5-minute simulated GARCH
processes as well as their transformations up to an hour suffer serious size
distortions. Aggregating to 6-hour absolute returns intraday process as well
as high-frequency volatility filters such as the Range, Quadratic and Power
Variations enjoy good size and power properties even for high-persistent pro-
cesses. The 6-hour absolute returns, block minima, absolute returns and
Power Variation yield power under both volatility and distribution change
points. These results are robust to the alternative parameter choices of the
ARHAC estimator used for standardizing the sup of the CUSUM statistic.
Comparatively the EDF test for normalized returns appears to yield less
power in detecting change-points in GARCH processes using either daily or
high-frequency data-driven volatility estimators except for the Power Vari-
ation scaled returns. Some explanation involved in this interesting result
can be fact that the Power Variation attaches less weight to outliers as op-
posed to the Quadratic Variation and yields a more robust (or less noisy)
process to jumps and therefore makes it possible to detect changes in the
scale and shape of the process. Moreover, we find by observing the simulated
Power Variation normalized returns process that undergoes volatility param-
eter changes as well as some tail changes that there is a dinstict mean shift
in this process before and after the change-point. The ability of this trans-
formation to interpret scale and shape changes into mean shifts may also
explain partly why it enjoys better change-point power than other quadratic
variation filters. It is well-known in the change-point literature that mean
shifts are relatively easier to detect as opposed to variance or tail changes.
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We conclude by acknowledging that little is known about the theoretical
properties of the power variation normalized returns. Yet, the above posi-
tive simulation results regarding power variation and the normalized power
variation returns for change point analysis encourages further research in the
area.

4 Conclusions

The scope of the paper was to evaluate the performance of several recently
proposed change-point tests applied to conditional variance dynamics and
conditional distributions of asset returns. These are CUSUM-type tests for
beta-mixing processes and EDF-based tests for the residuals of such nonlin-
ear dependent processes. Hence the tests apply to the class of ARCH and
SV type processes as well as data-driven volatility estimators using high-
frequency data. It was shown that some of the high-frequency volatility
estimators substantially improve the power of the structural breaks tests
especially for detecting changes in the tail of the conditional distribution.
First, for the EDF-type tests we consider different conditional variance es-
timators based on high-frequency data-driven volatility filters and find that
using high-frequency data filters, particularly Power Variation, leads to im-
proved power. We also examine the potential impact of estimation error due
to the use of high-frequency data and find no evidence this should be an issue
of concern. We also examine both daily and intra-daily sampling schemes,
both yielding similar results.

Regarding CUSUM tests, we find that for the KL test the daily Power
Variation yields better power (under all the alternatives hypotheses con-
sidered) followed by the absolute daily returns process. However, the KL
test for intraday absolute returns for persistent 5-minute simulated GARCH
processes as well as their transformations up to an hour suffer serious size
distortions, whereas 6-hour absolute returns intraday process as well as high-
frequency volatility filters such as the Range, Quadratic and Power Variations
enjoy good size and power properties even for high-persistent processes. The
6-hour absolute returns, block minima, absolute returns and Power Varia-
tion yield power under both volatility and distribution change points. These
results are robust to the alternative parameter choices of the ARHAC estima-
tor used for standardizing the sup of the CUSUM statistic. Comparatively
the EDF test for normalized returns appears to yield less power in detect-
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ing change-points in GARCH processes using either daily or high-frequency
data-driven volatility estimators except for the Power Variation scaled re-
turns.

The paper enlarges the scope of the change-point CUSUM test as well
as the residual based EDF tests in Horvath et al. (2001) for high-frequency
volatility estimators and returns transformations for which the tests enjoy
good power. Futher investigation into the properties of some of these volatil-
ity filters as well as the sample of extremes and their relation to change-point
analysis of strongly dependent processes is one direction of future research.
Others involve the application of the above procedures for financial risk man-
agement.
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Table 1: Hong and Lee (2003) test simulation results for normalized returns.

Normalized returns based on the following Volatilities

GARCH QV1d PV1d QV1h PV1h P̃
4,(m)
[t−1,t]

/[P̃
2,(m)
[t−1,t]

]

Low-persistence GARCH
5-minute GARCH(1,1): b0 = 0.1, b1 = 0.3, γ = 0.3

Lags: 20 20 20 20 20 20

Hypotheses:
H1 -0.009 (.514) -0.185 (.569) -0.177 (.562) -0.074 (.548) -0.045 (.533) 0.099 (.499)
H2 0.037 (.504) -0.078 (.551) -0.078 (.549) -0.071 (.538) 0.048 (.524) 0.338 (.450)
H3 -0.053 (.532) -0.052 (.532) -0.022 (.538) 0.074 (.518) 0.066 (.502) 0.333 (.443)
H4 0.100 (.466) -0.066 (.535) 0.041 (.505) -0.022 (.530) 0.014 (.509) 0.301 (.439)
H5 -0.009 (.506) -0.025 (.522) 0.009 (.509) 0.083 (.513) -0.010 (.521) 0.250 (.443)

Notes: The normalized returns for various volatility filters are considered. The volatility

filters Q̃
(m)
[t−1,t] and P̃

(m)
[t−1,t] use intra-daily five minute data and are defined respectively as

∑m−1
j=0 [r

(m)
t−j/m]2 and

∑m−1
j=0 |r(m)

t−j/m| (see section 2.2 for details). The Hong and Lee (2003)

test examines the various null hypotheses of temporal independence H1-H2 (discussed in

the paper). The reported test statistics results use the Bartlett kernel (results with Parzen

kernel are similar but not reported), with their respective p-values in the parenthesis. The

tests are also performed for the squared de-volatilized returns and various lag lengths

(from 5 and 20) and similar qualitative results are obtained.
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Table 2: Kolmogorov Smirnov test for Daily Scaled Returns using daily and

high-frequency volatility filters
Squared de-volatilized returns based on the following Volatilities

RM1d RV26d QV1d HQV1d RA1d PV1d

Low-persistence GARCH
5-minute GARCH(1,1): b0 = 0.1, b1 = 0.3, γ = 0.3

Size
N(0,1) 0.10, 0.18 0.08, 0.12 0.08, 0.14 0.08, 0.12 0.10, 0.17 0.18, 0.22
t(0,1;6) 0.12, 0.20 0.10, 0.13 0.07, 0.10 0.08, 0.12 0.07, 0.14 0.19, 0.32
Lévy - - 0.02, 0.09 0.31, 0.38 0.08, 0.14 0.18, 0.20
Power
b0,1 to b0,2 0.15, 0.24 0.13, 0.15 0.06, 0.12 0.11, 0.16 0.03,0.07 0.77, 0.90
b1,1 to b1,2 0.72, 0.81 0.54, 0.65 0.09, 0.17 0.11, 0.20 0.10, 0.19 1.00, 1.00
b0,2, b1,2 0.38, 0.47 0.26, 0.42 0.08, 0.16 0.11, 0.16 0.05, 0.13 0.27, 0.40
N(0,1) to t(6) 0.15, 0.23 0.09, 0.16 0.07, 0.12 0.05, 0.14 0.07, 0.16 0.18, 0.31
t(6) to t(3) 0.23, 0.32 0.23, 0.33 0.07, 0.14 0.10, 0.14 0.13, 0.23 0.37, 0.44
Lévy to Cauchy - - 1.00, 1.00 1.00, 1.00 1.00, 1.00 0.99, 0.99

High-persistence GARCH
5-minute GARCH(1,1): b0 = 0.00044, b1 = 0.93482, γ = 0.06341

Size
N(0,1) 0.12, 0.19 0.09, 0.20 0.08, 0.11 0.07, 0.11 0.10, 0.16 0.12, 0.20
t(0,1;6) 0.10, 0.21 0.14, 0.21 0.08, 0.17 0.05, 0.10 0.07, 0.13 0.10, 0.17
Lévy - - 0.10, 0.22 0.20, 0.29 0.08, 0.14 0.12, 0.18
Power
b0,1 to b0,2 0.12, 0.22 0.16, 0.28 0.09, 0.16 0.07,0.12 0.09, 0.15 0.81, 0.87
b1,1 to b1,2 0.28, 0.38 0.18, 0.24 0.09, 0.16 0.08,0.16 0.10, 0.18 1.00, 1.00
b0,2, b1,2 0.12, 0.26 0.10, 0.13 0.10, 0.15 0.05, 0.14 1.00, 1.00
N(0,1) to t(6) 0.12, 0.25 0.17, 0.29 0.08, 0.15 0.11, 0.16 0.12, 0.17 0.11, 0.22
t(6) to t(3) 0.49, 0.55 0.30, 0.42 0.07, 0.15 0.04,0.09 0.09, 0.15 0.39, 0.56
Lévy to Cauchy - - 1.00, 1.00 1.00, 1.00 1.00, 1.00 1.00, 1.000

Notes: The critical values for the KS test are c5 = 0.775 and c10 = 0.712. The break point occurs at

k = 0.8T and sample=0.2T:T. The following coefficient details for the Data Generating Processes apply:

(1) Persistent GARCH: 5minute GARCH parameters: c0 = 0.000093 and c1 = 0.093 and b0 = 0.99055 and

b1 = 0.5. These processes are simulated for obtaining the high-frequency volatility filters (QV1, HQV1,

Range). Non-persistent GARCH Daily GARCH parameters: b0 = 0.1 and c1 = 0.2 and b0 = 0.3 and

b1 = 0.6. 5-minute GARCH parameters: c0 = 0.00044 and b1 = 0.0044 and b0 = 0.93482 and b1 = 0.46.

For the PV1d normalized returns we choose more challenging change points for the GARCH parameters as:

b1 = 0.00093 and b1 = 0.0044, in the 5-minute persistent and non-persistent GARCH models. b1 = 0.89

and b1 = 0.83, in the 5-minute persistent and non-persistent GARCH models.
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Table 3: Kokoszka and Leipus CUSUM-type test based for various intraday
asset returns processes using daily volatility filters

(Rd)
2 |Rd| QV1d HQV1d RA1d PV1d

Low-persistence GARCH
5-minute GARCH(1,1): b0 = 0.1, b1 = 0.3, γ = 0.3

Size
N(0,1) 0.03, 0.07 0.04, 0.07 0.04, 0.08 0.01, 0.05 0.06, 0.09 0.04, 0.11
t(0,1;6) 0.03, 0.07 0.05, 0.09 0.03, 0.08 0.01, 0.05 0.02, 0.05 0.05, 0.12
Lévy 0.00, 0.00 0.00, 0.02 0.00, 0.01 0.00, 0.00 0.00, 0.01 0.00, 0.01
Power
b0,1 to b0,2 0.64, 0.75 0.58, 0.69 0.99, 0.99 0.60, 0.88 1.00, 1.00 1.00, 1.00
b1,1 to b1,2 0.99, 1.00 0.99, 0.99 0.99, 0.99 0.78, 0.89 1.00, 1.00 0.80, 0.96
b0,2, b1,2 0.99, 0.99 1.00, 1.00 0.95, 0.98 0.57, 0.72 1.00, 1.00 0.18, 0.41
N(0,1) to t(6) 0.04, 0.08 0.04, 0.09 0.07, 0.09 0.04, 0.08 0.08, 0.19 0.99, 1.00
t(6) to t(3) 0.04, 0.10 0.03, 0.10 0.29, 0.34 0.25, 0.32 0.10, 0.20 1.00, 1.00
Lévy to Cauchy 0.01, 0.02 0.19, 0.25 0.05, 0.07 0.03, 0.06 0.04, 0.07 0.66, 0.70

High-persistence GARCH
5-minute GARCH(1,1): b0 = 0.00044, b1 = 0.93482, γ = 0.06341

Size
N(0,1) 0.02, 0.06 0.04, 0.07 0.01, 0.02 0.00, 0.00 0.02, 0.04 0.00, 0.01
t(0,1;6) 0.02, 0.05 0.02, 0.06 0.00, 0.03 0.00, 0.01 0.01, 0.04 0.02, 0.03
Lévy 0.00, 0.00 0.00, 0.00 0.00, 0.00 0.02, 0.02 0.00, 0.02 0.01, 0.03
Power
b0,1 to b0,2 0.78, 0.85 0.96, 0.98 0.78, 0.85 0.65, 0.77 0.79, 0.89 0.81, 0.89
b1,1 to b1,2 0.31, 0.48 0.95, 0.98 0.00, 0.01 0.01, 0.02 0.40, 0.54 0.78, 0.88
b0,2, b1,2 0.30, 0.44 0.88, 0.93 0.29, 0.42 0.18, 0.29 0.41, 0.53 0.66, 0.80
N(0,1) to t(6) 0.02, 0.04 0.05, 0.09 0.22, 0.36 0.13, 0.24 0.03, 0.05 0.02, 0.05
t(6) to t(3) 0.06, 0.12 0.29, 0.27 0.28, 0.44 0.20, 0.30 0.07, 0.12 0.45, 0.59
Lévy to Cauchy 0.03, 0.05 0.20, 0.27 0.04, 0.06 0.03, 0.05 0.06, 0.09 0.07, 0.08

Notes: All results reported pertain to T = 250 days or 72000 5-minutes. The break

point occurs at k = 0.8T. The two values reported in each cell refer to the mean

number of rejections for the 5% and 10% nominal levels, respectively. (2) Change-

points for the GARCH parameters are defined as follows: For the low-persistence

GARCH we consider b0,2 = 2b0,1 and b1,2 = 2b1,1. For the high-persistence GARCH

we consider b0,2 = 10b0,1 and b0,2 = 0.5b0,1.
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Table 4: Kokoszka and Leipus CUSUM-type test based for various intraday
asset returns processes using intraday volatility filters

(R5m)2 |R5m| (Rmin1h)2 |R1h| |Rmin1h| RA1h

Size
N(0,1) 0.09, 0.20 0.11, 0.22 0.03, 0.08 0.05, 0.10 0.03, 0.09 0.04, 0.09
t(0,1;6) 0.09, 0.19 0.14, 0.23 0.03, 0.07 0.05, 0.10 0.05, 0.09 0.02, 0.07
Lévy 0.00, 0.00 0.18, 0.23 0.02, 0.03 0.00, 0.01 0.03,0.05 0.00, 0.01
Power
b0,1 to b0,2 1.00, 1.00 1.00, 1.00 1.00, 1.00 1.00, 1.00 1.00, 1.00 1.00, 1.00
b1,1 to b1,2 1.00, 1.00 1.00, 1.00 1.00, 1.00 1.00, 1.00 1.00, 1.00 1.00, 1.00
b0,2, b1,2 1.00, 1.00 1.00, 1.00 1.00, 1.00 1.00, 1.00 1.00, 1.00 1.00, 1.00
N(0,1) to t(6) 0.14, 0.25 1.00, 1.00 0.03, 0.08 0.08,0.15 0.09, 0.15 0.09, 0.15
t(6) to t(3) 0.32, 0.41 0.99, 0.99 0.13, 0.23 0.84, 0.91 0.69, 0.79 0.40, 0.51
Lévy to 0.00, 0.00 0.65, 0.70 0.15, 0.20 0.56,0.60 0.55, 0.60 0.09, 0.13
Cauchy

QV1h PV1h |R6h| |Rmin6h| RA6h QV6h PV6h

Size
N(0,1) 0.04, 0.09 0.04, 0.09 0.04, 0.08 0.05, 0.10 0.03, 0.08 0.03, 0.07 0.05,0.11
t(0,1;6) 0.03, 0.07 0.04, 0.11 0.03, 0.08 0.04, 0.09 0.03, 0.08 0.02, 0.05 0.03, 0.09
Lévy 0.00, 0.00 0.00, 0.02 0.00, 0.01 0.01, 0.02 0.00, 0.00 0.00, 0.00 0.01, 0.02
Power
b0,1 to b0,2 1.00, 1.00 1.00, 1.00 1.00, 1.00 1.00, 1.00 1.00, 1.00 1.00, 1.00 1.00, 1.00
b1,1 to b1,2 1.00, 1.00 1.00, 1.00 1.00, 1.00 1.00, 1.00 1.00, 1.00 1.00, 1.00 1.00, 1.00
b0,2, b1,2 1.00, 1.00 1.00, 1.00 1.00, 1.00 1.00, 1.00 1.00, 1.00 1.00, 1.00 1.00, 1.00
N(0,1) to t(6) 0.05, 0.09 0.99, 1.00 0.16, 0.28 0.05,0.12 0.05, 0.08 0.37, 0.44 0.99, 1.00
t(6) to t(3) 0.28, 0.35 1.00, 1.00 0.39, 0.49 0.31, 0.45 0.21, 0.30 0.25, 0.32 1.00, 1.00
Lévy to 0.03, 0.04 0.69, 0.71 0.53, 0.59 0.82, 0.85 0.04, 0.05 0.04, 0.05 0.63, 0.66
Cauchy

Notes: Results based on 5-minute GARCH(1,1): b0 = 0.1, b1 = 0.3, γ = 0.3. For the

(R5m)2, |R5m| and the Lévy process (size and power) we consider the ARHAC estimator

with fix lag length=1. This option yields no size distortion for the above the 5-minute

processes. For the rest of the processes the results are based on AIC lag length selection

of the ARHAC estimator. The break point occurs at k = 0.8T.
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Table 5: Kokoszka and Leipus CUSUM-type test based for various intraday
asset returns processes using intraday volatility filters

(Rmin1h)2 |Rmin1h| |R1h| PV1h

Size
N(0,1) 0.24, 0.30 0.23, 0.32 0.03, 0.96 0.00, 0.00
t(0,1;6) 0.54, 0.68 0.24, 0.33 0.28, 0.38 0.01, 0.02
Lévy 0.00, 0.00 0.00, 0.01 0.01, 0.03 0.01, 0.02

Power
b0,1 to b0,2 0.96, 0.99 1.00, 1.00 1.00, 1.00 0.99, 0.99
b1,1 to b1,2 1.00, 1.00 1.00, 1.00 1.00, 1.00 0.93, 0.99
b0,2, b1,2 0.88, 0.94 0.34, 0.48 0.43, 0.55 0.83, 0.96
N(0,1) to t(6) 0.65, 0.77 0.37, 0.49 0.93, 0.96 0.03, 0.25
t(6) to t(3) 0.90, 0.93 0.79, 0.85 0.31, 0.38 0.04, 0.14
Lévy to 0.11, 0.15 0.60, 0.67 0.53, 0.60 0.68, 0.72
Cauchy

|R6h| |Rmin6h| RA6h QV6h PV6h

Size
N(0,1) 0.00, 0.00 0.04, 0.06 0.09, 0.14 0.00, 0.02 0.00, 0.01
t(0,1;6) 0.16, 0.22 0.17, 0.24 0.07, 0.15 0.01, 0.02 0.00, 0.01
Lévy 0.00, 0.02 0.00, 0.02 0.00, 0.00 0.00, 0.00 0.01, 0.02

Power
b0,1 to b0,2 0.99, 0.99 0.99, 0.99 0.90, 0.94 0.77, 0.84 0.91, 0.95
b1,1 to b1,2 1.00, 0.99 0.99, 0.00 0.70, 0.79 0.35, 0.50
b0,2, b1,2 0.99, 0.99 0.98, 0.98 0.66, 0.76 0.27, 0.42 0.80, 0.86
N(0,1) to t(6) 0.92, 0.95 0.91, 0.94 0.36, 0.53 0.09, 0.17 0.57, 0.74
t(6) to t(3) 0.64, 0.73 0.69, 0.77 0.15, 0.24 0.06, 0.13 0.39, 0.52
Lévy to 0.35, 0.44 0.82, 0.83 0.04, 0.05 0.02, 0.04 0.63, 0.68
Cauchy

Notes: Results based on 5-minute GARCH(1,1): b0 = 0.00044, b1 = 0.93482, γ = 0.06341.

T = 250 days or 72000 5-minutes. The |R5min| and (R5min)2 have distorted size for

high-persistent IGARCH processes and hence are not reported. Note that this result is

also valid for the hourly Range and Quadratic Variation. Note that this result is true for

whatever parameter choice of the ARHAC estimator. (2) The ARHAC is estimated using

the AIC and de-meaning the series for the following processes: RM1h, |R6h|, Range6h,

QV6h and PV6h. The tests are performed for the ARHAC with the fix lag length VAR(1)

and no de-meaning for: (Rmin1h)2, |Rmin1h|, |R1h|, PV1h.
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