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Résumé / Abstract 

 
Cet article introduit le régularisateur à entropie minimum pour l'apprentissage d'étiquettes 
partielles.  Ce problème d'apprentissage incorpore le cadre non supervisé, où une règle de décision 
doit être apprise à partir d'exemples étiquetés et non étiquetés. Le régularisateur à entropie 
minimum s'applique aux modèles de diagnostics, c'est-à-dire aux modèles des probabilités 
postérieures de classes. Nous montrons comment inclure d'autres approches comme un cas 
particulier ou limité du problème semi-supervisé.  Une série d'expériences montrent que le critère 
proposé fournit des solutions utilisant les exemples non étiquetés lorsque ces dernières sont 
instructives.  Même lorsque les données sont échantillonnées à partir de la classe de distribution 
balayée par un modèle génératif, l'approche mentionnée améliore le modèle génératif estimé 
lorsque le nombre de caractéristiques est de l'ordre de la taille de l'échantillon. Les performances 
avantagent certainement l'entropie minimum lorsque le modèle génératif est légèrement mal 
spécifié.  Finalement, la robustesse de ce cadre d'apprentissage est démontré : lors de situations où 
les exemples non étiquetés n'apportent aucune information, l'entropie minimum retourne une 
solution rejetant les exemples non étiquetés et est aussi performante que l'apprentissage supervisé. 
 

Mots clés : apprentissage discriminant, apprentissage semi-supervisé, entropie 
minimum. 

 
This paper introduces the minimum entropy regularizer for learning from partial labels. This 
learning problem encompasses the semi-supervised setting, where a decision rule is to be learned 
from labeled and unlabeled examples. The minimum entropy regularizer applies to diagnosis 
models, i.e. models of the posterior probabilities of classes. It is shown to include other 
approaches to the semi-supervised problem as particular or limiting cases. A series of 
experiments illustrates that the proposed criterion provides solutions taking advantage of 
unlabeled examples when the latter convey information. Even when the data are sampled from the 
distribution class spanned by a generative model, the proposed approach improves over the 
estimated generative model when the number of features is of the order of sample size. The 
performances are definitely in favor of minimum entropy when the generative model is slightly 
misspecified. Finally, the robustness of the learning scheme is demonstrated: in situations where 
unlabeled examples do not convey information, minimum entropy returns a solution discarding 
unlabeled examples and performs as well as supervised learning. 

 
Keywords: discriminant learning, semi-supervised learning, minimum entropy. 
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1. Introduction

In the classical supervised learning classification frame-
work, a decision rule is to be learned from a learning set
Ln = {xi, yi}

n
i=1. Each example is described by a pattern

xi ∈ X and by the response of a supervisor yi ∈ Ω =
{ω1, . . . , ωK}. This response variable is supposedly the
correct class among the finite set of exclusive classes Ω.1

This paper proposes an estimation principle applicable to
probabilistic classifiers when the learning set includes ex-
amples whose class is not precisely known. We consider
the situation where the goal of learning is still to provide a
decision rule at any point of the input space X , but where,
instead of answering the correct class, the supervisor only
returns a subset of possible classes which is supposed to
include the correct solution. This kind of information is
sometimes a more faithful description of the true state of
knowledge when labeling is performed by an expert. For
example, in medical diagnosis, a physician is sometimes
able to discard some diseases, but not to pinpoint the pre-
cise illness of his patient. Last but not least, some examples
may not be labeled at all: in particular, semi-supervised
learning2 is a special case of partially labeled problem,
where all examples are either precisely labeled or unla-
beled, i.e. with labels allowing the whole Ω.

Partial labeling has been investigated in the frameworks of
probability and Dempster-Shafer theories (Ambroise et al.,
2001). Dempster-Shafer theory enables to reason on be-
liefs expressed on subsets of Ω without distributing them
to singletons. Its description is out of the scope of this pa-
per, which focuses on the probabilistic framework. The
reader is referred to (Ambroise et al., 2001), where clas-
sifiers based on Dempster-Shafer theory are compared to
probabilistic mixture models.

In the probabilistic framework, partial labels can be mod-
eled as a missing data problem, which can be adressed by
generative models such as mixture models thanks to the
EM algorithm and extensions thereof (McLachlan, 1992;
Ambroise et al., 2001). Generative models apply to the
joint density of patterns and class (X,Y ). They have ap-
pealing features: besides discrimination, they can be used
for other tasks, such as outlier detection. However, they
also have drawbacks. Their estimation is much more de-
manding than discriminative models, since the joint den-

1Note that correct labels do not imply that the Bayes error is
null; examples described by the same pattern x may have different
labels. This diversity is not supposed to be generated by errors in
supervisor’s response, but to arise from the limited description of
examples provided by the pattern x.

2In the terminology used here, semi-supervised learning refers
to generalizing (i.e. learning a decision rule) from labeled and un-
labeled data. We do not consider the related but distinct problem
of predicting labels on a set of predefined patterns.

sity model of (X,Y ) is necessarily more complex than the
conditional model of (Y |X). This means that more pa-
rameters are to be estimated, resulting in more uncertainty
in the estimation process. In addition, the fitness measure
for joint density models is not discriminative, which means
that better models are not necessarily better predictors of
class labels. Finally, the generative model being more pre-
cise, it is more likely to be misspecified. These difficulties
have lead to proposals aiming at exploiting partially labeled
data in the framework of probabilistic classification by di-
agnosis models, i.e. models of the posterior class probabil-
ities (Grandvalet, 2002; Jin & Ghahramani, 2003).

In this paper, we first formalize the partial labeling problem
in the probabilistic framework. At this point, we empha-
size the necessary assumptions pertaining to the generation
of partial labels. The conditional likelihood shows that un-
labeled data are not informative in the diagnosis paradigm.
We thus look at theoretical results guiding the search for
a sensible induction bias to be made in this setting. The
latter is encoded by a prior distribution in the maximum
a posteriori framework. The maximization of the poste-
rior is then shown to be related to previous existing ap-
proaches such as self-learning or semi-supervised support
vector machines. We finally demonstrate the performance
of discriminant models trained with this criterion of on a se-
ries of semi-supervised problems, taylored to be favorable
to a well-founded challenger: generative mixture models.

2. Derivation of the criterion

2.1. Likelihood

We first look at how the partial labeling problem fits the
likelihood estimation principle. The learning set is now
Ln = {xi, zi}

n
i=1, where z ∈ {0, 1}K denote the dummy

variable representing partial labels. It is the indicator of the
subset returned by the supervisor, where zk = 1 means that
ωk is in the subset (i.e. is a possible label), whereas zk = 0
means that the true label y is definitely not ωk.

Besides the fact that the possible label always includes the
true label (i.e. P (z|x, ωk) = 0 if zk = 0), we assume that
the labeling information is missing completely at random
(i.e (∀(x,x′) ∈ X 2,∀z : zk = z` = 1) P (z|x, ωk) =
P (z|x′, ω`)). Note that the first assumption (which could
be relaxed) does not mean that the Bayes error is null: one
may observe two identical patterns with incompatible par-
tial labels provided P (ωk|x) and P (ω`|x) are strictly pos-
itive.

From the above-mentioned assumptions, we derive

P (ωk|x, z) =
zkP (ωk|x)

∑K

`=1 z`P (ω`|x)
, (1)

i.e. P (ωk|x, z) is the the Kullback-Leibler projection of



P (ωk|x) on the set of distribution compatible with z.

Assuming independent examples, the conditional log-
likelihood of P (Z|X) on the observed sample is

L(θ;Ln) =
n
∑

i=1

log

(

K
∑

k=1

zikfk(xi; θk)

)

+ h(zi) , (2)

where h(z) is only affected by the missingness mecha-
nism, regardless of P (X,Y ) and fk(x; θk) is the model
of P (ωk|x) parameterized by θk, and θ = {θk}

K

k=1.

The conditional log-likelihood is referred to as “minimum
commitment” by Grandvalet (2002) because it assumes
minimal requirements on the distribution of Z; it is also
named the EM model by Jin and Ghahramani (2003) since
it can be optimized by the EM algorithm. This criterion
is a concave function of fk(xi; θk), and for simple models
such as the ones provided by logistic regression, it is also
concave in θ, so that the global solution can be obtained by
the Newton-Raphson algorithm.

The diagnosis paradigm, where the conditional log-
likelihood (2) is maximized, corresponds to maximizing
the complete likelihood if no assumption whatsoever is
made on P (X) (McLachlan, 1992). In this framework, un-
labeled data convey no information and thus do not affect
the likelihood. More generally, any distribution with con-
stant mass mi =

∑K

k=1 zikfk(xi; θk) achieves the same
value of the criterion.

In the Bayesian maximum a posteriori (MAP) framework,
Seeger (2002) shows that unlabeled data are useless regard-
ing discrimination when the priors on P (X) and P (Y |X)
factorize. In other words, observing x does not inform
about y, unless the modeler assumed that it should be the
case. Hence, if we are willing to benefit from unlabeled
examples in the diagnosis paradigm, we have to assume
some relationship between x and y. In the Bayesian frame-
work, this relationship is encoded by a prior distribution.
There is however no such thing like a universally relevant
prior knowledge. Here, we chose to look for an assump-
tion which should be able to take advantage of unlabeled
examples when the latter are known to be beneficial.

2.2. When Are Unlabeled Examples Informative?

There has been little theoretical work in the general set-
ting of partial labeling. Even in the semi-supervised case,
theory gives little backup for the numerous experimental
evidences (e.g. (Ambroise et al., 2001; Bennett & Demiriz,
1999; Grandvalet, 2002; Jin & Ghahramani, 2003; Nigam
et al., 2000; Nigam & Ghani, 2000)) showing that unla-
beled examples can help the learning process.

Theory has been mostly developed at the two extremes
of the statistical learning paradigm: in parametric statis-

tics where examples are known to be generated from
a known class of distribution, and in the distribution-
free Structural Risk Minimization (SRM) or Probably Ap-
proximately Correct (PAC) frameworks. Semi-supervised
learning, in the terminology used here, does not fit the
distribution-free SRM or PAC frameworks: no positive
statement can be made without distributional assumptions,
since one can find distributions P (X,Y ), for which learn-
ing from labeled data is easy and unlabeled data are non-
informative.In this regard, generalizing from labeled and
unlabeled data differs from transductive inference, where
the goal is to infer the label of known patterns from a set of
labeled examples (Vapnik, 1998, chapter 8).

In parametric statistics, some theoretical studies have
shown the benefit of unlabeled examples in the paramet-
ric setting, either for specific distributions (O’Neill, 1978),
or for general mixtures of the form P (x) = pP (x|ω1) +
(1 − p)P (x|ω2), when the estimation problem is essen-
tially reduced to the one of estimating the mixture parame-
ter p (Castelli & Cover, 1996). These studies confirm what
intuition suggests: the (asymptotic) information content of
unlabeled examples decreases as classes overlap.3 Thus,
the assumption that classes are somewhat separated is sen-
sible if we expect to take advantage of unlabeled examples.

The conditional entropy of class labels conditioned on the
observed variables

H(Y |X,Z) = −EXY Z [log P (Y |X,Z)] , (3)

is a measure of class overlap. It has the advantage of being
invariant to the parameterization of the model.

In the Bayesian framework, assumptions are encoded by
means of a prior on the model parameters. Stating that we
expect a high conditional entropy does not uniquely define
the form of the prior distribution, but the latter can be de-
rived by resorting to the maximum entropy principle.4 Let
(θ,ψ) denote the joint model parameters, the maximum
entropy prior verifying EΘΨ[H(Y |X,Z)] = c, where c is
the constant quantifying how small the entropy should be
on average, takes the form

P (θ,ψ) ∝ exp (−λH(Y |X,Z))) , (4)

where λ is the positive Lagrange multiplier corresponding
to the constant c.

3This statement appears explicitly in (O’Neill, 1978), and is
also formalized, though not stressed in (Castelli & Cover, 1996),
where the Fisher information for unlabeled examples at the esti-
mate p̂ is clearly a measure of the overlap between class condi-

tional densities: Iu(p̂) =
∫ (P (x|ω1)−P (x|ω2))2

p̂P (x|ω1)+(1−p̂)P (x|ω2)
dx.

4Here, maximum entropy refers to the construction principle
which enables to derive distributions from constraints, not to the
content of priors regarding entropy.



This prior requires a model of the joint distribution
P (X,Y, Z) when the choice of the diagnosis paradigm
is motivated by the possibility to limit modeling to con-
ditional probabilities. The additional modeling can be
avoided by applying the plug-in principle, i.e. by replacing
the expectation with respect to (X,Z) by the average over
the training sample. This substitution can be interpreted as
“modeling” P (X,Z) by its empirical distribution.

Hemp(Y |Ln) = −
1

n

n
∑

i=1

K
∑

k=1

P (ωk|xi, zi)

log P (ωk|xi, zi) .

(5)

This empirical measure is invariant to the parameterization
of the model of conditional probabilities. When plugged
in for H(Y |X,Z) in (4), it defines an empirical prior (i.e
whose form is partly defined from data, see Berger (1985)
for other examples) on parameters θ.

2.3. Minimum Entropy Criterion

Recalling that fk(x; θk) denotes the model of P (ωk|x), the
model of P (ωk|x, z) (1) is defined as follows:

gk(x, z;θ) =
zkfk(x; θk)

∑K

`=1 z`f`(x; θ`)
.

From now on, we drop the reference to parameters in func-
tions fk and gk to lighten notation. The MAP estimate is
the maximizer of the posterior distribution, i.e. the maxi-
mizer of

C(θ, λ;Ln) = L(θ;Ln) − λHemp(Y |Ln)

=

n
∑

i=1

log

(

K
∑

k=1

zikfk(xi)

)

+

λ

n
∑

i=1

K
∑

k=1

gk(xi, zi) log gk(xi, zi) ,

(6)

where the constant terms in the log-likelihood (2) and log-
prior (4) have been droppped.

For a labeled example, gk(xi, zi) = zik, and for an un-
labeled example, gk(xi, zi) = fk(xi). Hence, in semi-
supervised learning, Hemp(Y |Ln) is only affected by the
value of fk(x) on unlabeled examples. More generally, this
part of the criterion is only influenced by the predicted dis-
tribution of probability masses within the subset of possible
labels. In this sense, the role of Hemp(Y |Ln) is orthogonal
to the one of likelihood.

Entropy regularization biases models toward less ambigu-
ity. The posterior probabilities are drived to {0, 1}, i.e.
toward over-confidence. Hence, C should be regarded
as a decision-oriented criterion. Let D(P‖Q) denote the
Kullback-Leibler divergence between distributions P and

Q. Up to an irrelevant constant, C can be written as fol-
lows:

C(θ, λ;Ln) = L(θ;Ln) + λ

n
∑

i=1

D(g(xi, zi)‖π) , (7)

where π = (1/K . . . 1/K . . . 1/K)T is the uniform dis-
tribution. This writing shows that C pushes probability
masses away from uniformity. This behavior is sensible for
the {0, 1}-loss function, for which the decision boundary
is defined by arg maxk fk(x), but other reference distribu-
tions could be considered for other loss functions.

Finally, note that, in the experimental section below, we
added a constraint EΘ[S(Θ)] = c′ to build the prior, in
order to encode smoothness assumptions on the posterior
probabilities. This constraint simply appears as a third ad-
ditional term in the criterion C (6) with its corresponding
Lagrange multiplier ν. It is important to formalize such a
smoothness assumption, which may take different forms,
in order to prevent the estimate of posterior probabilities
fk(xi) to be driven to {0, 1} by the minimization of en-
tropy.

3. Related Work

3.1. Self-Training

Self-training (Nigam & Ghani, 2000) is an iterative pro-
cess, where a learner imputes the labels of examples which
have been classified with confidence in the previous step.
Amini and Gallinari (2002) analyze this technique and
shown that it is equivalent to a version of the classification
EM algorithm. The classification EM algorithm (Celeux
& Govaert, 1992) minimizes the likelihood deprived of the
entropy of the partition. In the context of conditional like-
lihood with labeled and unlabeled examples only, the crite-
rion is

n
∑

i=1

log

(

K
∑

k=1

zikfk(xi)

)

+

K
∑

k=1

fk(xi) log fk(xi) ,

which is recognized as an instance of the criterion (6) with
λ = 1.

Self-confident logistic regression (Grandvalet, 2002) is an-
other algorithm optimizing the criterion for λ = 1. Us-
ing smaller λ values is expected to have two benefits: first,
the importance of unlabeled examples can be controlled,
in the spirit of the EM-λ (Nigam et al., 2000), and sec-
ond, slowly increasing λ defines a deterministic annealing
scheme (Rose et al., 1990) which should help the optimiza-
tion process to avoid poor local minima of the criterion.



3.2. Minimum entropy methods

Minimum entropy regularizers have already been used in
other contexts to encode learnability priors (see e.g. Brand
(1999)). In a sense, Hemp can be seen as a poor’s man way
to generalize this approach to continuous input spaces.

3.3. Input-Dependent Regularization

Our criterion differs from input-dependent regularization
(Seeger, 2002; Szummer & Jaakkola, 2003) in that it is ex-
pressed only in terms of P (Y |X,Z) and does not involve
P (X). However, we stress that for unlabeled data, the
regularizer agrees with the complete likelihood provided
P (X) is small near the decision surface. Indeed, whereas
a generative model would maximize log P (X) on the un-
labeled data, the minimum entropy criterion minimizes the
conditional entropy on the same points. In addition, when
the model is regularized (e.g. with weight decay), the con-
ditional entropy is prevented be too small close to the deci-
sion surface. This will favor putting the decision surface in
a low density area.

3.4. Maximal Margin Separators

Maximal margin separators are well founded models which
have shown great success in supervised classification. For
linearly separable data, they have been shown to be a lim-
iting case of probabilistic hyperplane separators (Tong &
Koller, 2000). In the framework of transductive learning,
Vapnik (Vapnik, 1998) proposes to broaden the margin def-
inition to unlabeled examples, such as the margin is the
smallest Euclidean distance between any (labeled and un-
labeled) training point to the classification boundary. The
following theorem generalizes (Tong & Koller, 2000) to the
margin defined in transductive learning.

Theorem 1 In the two-class linear separable case, the
minimum entropy criterion applied to the regularized logis-
tic regression model converges toward a maximum margin
separator (with maximal distance from labeled and unla-
beled examples) as the regularization term goes to zero.

Sketch of proof – Consider the logistic regression
model parameterized by θ = (w,b): fk(x;θ) =

1
1+exp(−wT (x−b))

. Let (w∗,b∗) be the maximum of

C(θ, λ;Ln) − ν‖w‖2.

The first term on the right-hand-side of (6) is only affected
by labeled data, and goes to its maximum, zero, when these
examples are all correctly classified and that the responses
of the model are saturated (2zik − 1)(2fk(xi) − 1) → 1.
The second term is only affected by unlabeled examples
and also goes to zero provided |2fk(xi) − 1| → 1. These
two objectives can be pursued at the same time in the limit
of ν → 0, where logistic regression may converge toward

any arbitrarily hard linear separator as ‖w‖2 → ∞. Hence,
at (w∗,b∗), there should be no misclassified examples. Let
mi = wT (xi−b) denote the margin for example i. For la-
beled samples, the gradient as (2zik−1)(2fk(xi)−1) → 1
goes exponentially to 0: ∂C/∂mi → exp(−mi) if mi

is positive and ∂C/∂mi → − exp(mi) if mi is negative;
for unlabeled samples, the gradient as |2fk(xi) − 1| → 1
goes exponentially to 0: ∂C/∂mi → λmi exp(−mi) if mi

is positive and ∂C/∂mi → λmi exp(mi) if mi is nega-
tive. Therefore, once the labeled examples are hardly sep-
arated, the influence of examples on C decreases exponen-
tially with their distance to the decision boundary. Thus
the decision boundary is essentially determined by the ex-
amples with smallest margin (whether they are labeled or
unlabeled), the so-called support vectors. Furthermore, the
cancellation of the contribution of support vectors to the
gradient requires that they should all be at the same dis-
tance from the decision boundary.

Hence, the minimum entropy solution can closely mimic
the semi-supervised SVM (Bennett & Demiriz, 1999),
which partially solves the enumeration problem of the orig-
inal solution proposed by Vapnik. Note however that our
criterion is not concave, so that the convergence toward the
global maximum cannot be guaranteed. To our knowledge,
this apparent fault is shared by all semi-supervised algo-
rithms learning a decision rule and dealing with large sam-
ples of unlabeled data in reasonable time. Since generative
and diagnosis algorithms consist in imputing labels explici-
etly or implicitly, avoiding enumeration involves some kind
of heuristic process which may fail.

4. Experiments

For simplicity, we focus on the semi-supervised learning
task which is the most frequently encountered. The experi-
mental setup is simple in order to avoid artifacts stemming
from optimization problems. Our goal is to check to what
extent supervised learning can be improved by unlabeled
examples, and if minimum entropy can compete with gen-
erative models which are usually advocated in this frame-
work.

The minimum entropy criterion is applied to the logistic
regression model, and compared to the EM algorithm for
mixture models. Logistic regression fitted by maximum
likelihood (i.e. ignoring unlabeled data) and logistic regres-
sion with all labels known are also computed for reference.
The former shows what has been gained (or lost) by trying
to benefit from unlabeled data, and the latter shows what
has been lost with the missing labels; it thus provides a
bound on the ultimate performance that one could possibly
achieve. All hyper-parameters (weight-decay for all logis-
tic regression models plus the λ parameter (7) for minimum
entropy) are tuned by ten-fold cross-validation.



4.1. Correct joint density model

In the first series of experiments, we consider two-class
problems in an input space of size 50. Each class is gen-
erated with equal probability from a multivariate normal
distribution. Class ω1 is multivariate normal with mean
(aa . . . a) and unit covariance matrix. Class ω2 is multi-
variate normal with mean −(aa . . . a) and unit covariance
matrix. Parameter a tunes the Bayes error which varies
from 1 % to 20 % (1 %, 2.5 %, 5 %, 10 %, 20 %). The learn-
ing sets comprise nl labeled examples, (nl = 50, 100, 200)
and nu unlabeled examples, (nu = nl×(1, 3, 10, 30, 100)).
Overall, 75 different setups are evaluated, and for each one,
10 different training samples are generated. Generalization
performances are estimated on a test set of size 10 000.

This benchmark provides a comparison for the algorithms
in a situation where unlabeled data are known to convey in-
formation. It is favorable to the generative model in two re-
spects. First, the mixture models use the correct model that
generated data (two Gaussian subpopulations, with iden-
tical covariances). The logistic regression model is only
compatible with the joint distribution, which is a weaker
fulfillment than the correctness. Second, the problem of lo-
cal maxima in the likelihood function is artificially cured
for mixture models: the EM estimation algorithm is initial-
ized with the parameters of the true distribution. This ini-
tialization advantages mixture models, since it guaranties
to pick, among all local maxima of the likelihood, the one
which is in the basin of attraction of the optimal value.

As there is no modeling bias, differences in prediction er-
ror rates are only due to differences in estimation efficiency.
The overall error rates (averaged over all settings) are in fa-
vor of minimum entropy logistic regression (14.1±0.3 %).
The EM algorithm (15.6 ± 0.3 %) does worse in average
than logistic regression (14.9 ± 0.3 %). For reference, the
average Bayes recognition rate is 7.7 % and logistic regres-
sion reaches 10.4 ± 0.1 % when all examples are labeled.
Figure 1 provides more informative summaries than these
raw numbers. The plots represent the recognition rates ver-
sus Bayes error rate and the nu/nl ratio. Each curve re-
ports the results averaged over nl. The first plot shows that
for the generative and the diagnosis models, unlabeled ex-
amples are mostly beneficial when the Bayes error is low
(the classes don’t overlap much). This experimental obser-
vation confirms what intuition and asymptotic theory sug-
gest (Castelli & Cover, 1996; O’Neill, 1978), and validates
the relevance of the minimum entropy assumption. This
graph also illustrates the consequence of the demanding
parametrization of generative models. Mixture models are
outperformed by the simple logistic regression model when
the sample size is low, since their number of parameters
grows quadratically (compared to linearly) with the num-
ber of input features.
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Figure 1. Left: test error vs. Bayes error rate for nu/nl = 10;
right: test error vs. nu/nl ratio for 5 % Bayes error (a = 0.23).
Average results of minimum entropy logistic regression (◦) and
mixture models (+). The performance of logistic regression
(dashed), and logistic regression with all labels known (dash-
dotted) are shown for reference.

The second plot shows that the minimum entropy model
takes quickly advantage of unlabeled data when classes are
well separated. With nu = 3nl, the model considerably
improves upon the one discarding unlabeled data. At this
stage, the generative models do not perform well, as the
number of available examples is low compared to the num-
ber of parameters in the model, which grows quadratically
with the number of variables, while it grows linearly for
the diagnosis model. However, for very large sample sizes,
with 100 times more unlabeled examples than labeled ex-
amples, the generative approach becomes more accurate
than the diagnosis approach.

4.2. Misspecified joint density model

In a second series of experiments, we kept everything fixed,
except that the class-conditional densities are now slightly
corrupted by outliers. For each class, the examples are now
generated from a mixture of two Gaussians centered on the
same mean: a unit variance component gathers 98 % of ex-
amples, while the remaining 2 % are generated from a large
variance component, where each variable has a standard
deviation of 10. The model of the distribution is not mod-
ified in the fitted generative model which is now slightly
misspecified. Again, the EM estimation algorithm is ad-
vantaged by initializing it with the optimal parameters on
the test set.



The results are displayed in the left-hand-side of Figure 2.
They should be compared with the right-hand-side of Fig-
ure 1. The generative model suffers greatly from the
slightly misspecified distribution model and behaves much
worse than logistic regression for all sample sizes. The un-
labeled examples have first a beneficial effect on test error,
but they turn to have a detrimental effect when they over-
whelm the number of labeled examples. On the other hand,
the diagnosis models behave smoothly as in the previous
case, and the minimum entropy criterion improves perfor-
mance.
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Figure 2. Test error vs. nu/nl ratio for a = 0.23. Average results
of minimum entropy logistic regression (◦) and mixture models
(+). The performance of logistic regression (dotted), and logis-
tic regression with all labels known (dash-dotted) are shown for
reference. Left: second experiment with outliers; right: third ex-
periment with uninformative unlabeled examples.

In the last series of experiments, we investigate the robust-
ness with respect to the minimum entropy assumption, by
testing it on distributions where unlabeled examples are not
informative, and where a low density of P (X) does not in-
dicate a boundary region. The examples are drawn from
two Gaussian clusters like in the first series of experiment,
but the label is now independent of this clustering: an ex-
ample x belongs to class ω1 if x2 > x1 and belongs to
class ω2 otherwise. The Bayes decision boundary is now
located in the middle of each cluster. The mixture model is
unchanged. It is now far from the model used to generate
data. We continue to favor the EM estimation algorithm by
initializing it with the optimal parameters on the test set.
The right-hand-side plot of Figure 1 shows that this favor-
able initialization does not prevent the model to be fooled

by unlabeled data: its test error steadily increases with the
amount of unlabeled data. On the other hand, the diagnosis
models behave well, and the minimum entropy algorithm is
not distracted by the two clusters; its performance is identi-
cal to the one of training with labeled data only, which can
be regarded as the ultimate performance in this situation.

5. Discussion

In this paper, we proposed a minimum entropy regularizer
to allow the application of supervised classification tech-
niques in the context of partial labels (a generalization of
the semi-supervised setting in which the target is only given
up to a subset of the classes). In this paper, we proposed a
minimum entropy regularizer to handle partial labels with
supervised classification techniques. This regularizer in-
troduces an induction bias which is motivated by the theo-
retical results showing that unlabeled examples are mostly
beneficial when classes have small overlap. Our approach
encompasses self-learning as a particular case. It was also
shown to approach the solution of semi-supervised SVM in
another limiting case.

The criterion promotes classifiers with high confidence on
the unlabeled examples. The solution is biased regarding
posterior probabilities, but the estimation of the decision
surface can benefit from unlabeled examples.

Our experiments suggest that the minimum entropy regu-
larization may be a serious contender to generative models
in semi-supervised learning. It compared favorably to these
models in three situations: for small sample sizes where
the generative model cannot completely benefit from the
knowledge of the correct joint model; for all sample sizes
when the joint distribution was even very slightly misspeci-
fied; for all sample sizes also when the unlabeled examples
turn out to be non-informative regarding class probabilities.
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