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Résumé / Abstract 
 
Nous décrivons une application du principe d'apprentissage local à l'estimation de densité.  Le 
lissage pondéré localement d'une gaussienne utilisant une matrice de covariance pleine et 
régularisée conduit à un estimateur de densité ayant un comportement amélioré lorsque la 
masse de probabilité est concentrée le long d'une variété de basse dimension.  Même si 
l'estimateur proposé n'est pas garanti d'intégrer à 1 sur un ensemble de données fini, nous 
prouvons la convergence asymptotique de la vraie densité. Les résultats expérimentaux 
illustrant les avantages de cet estimateur sur les estimateurs non paramétriques classiques sont 
présentés. 
 

Mots clés : estimation de densité, modèles non paramétriques, modèles de 
variétés, convergence des estimateurs de densité. 

 
 
 
We describe an interesting application of the principle of local learning to density estimation. 
Locally weighted fitting of a Gaussian with a regularized full covariance matrix yields a 
density estimator which displays improved behavior in the case where much of the probability 
mass is concentrated along a low dimensional manifold. While the proposed estimator is not 
guaranteed to integrate to 1 with a finite sample size, we prove asymptotic convergence to the 
true density.  Experimental results illustrating the advantages of this estimator over classic 
non-parametric estimators are presented. 

 
Keywords: density estimation, non-parametric models, manifold models, 
convergence of density estimators. 

                                                 
* Yoshua Bengio, Université de Montréal et CIRANO, tél. : (514) 343-6804, Yoshua.Bengio@cirano.qc.ca  
† Pascal Vincent, ApSTAT Technologies Inc., tél. : (514) 343-9119 #219, vincentp@apstat.com  



1 Introduction

Most machine-learning problems, as they occur in nature, are posed in a very high dimen-
sional space. However, overcoming the curse of dimensionality has been an open problem
since it was first described in (Bellman, 1961). The popularity of the new generation of
kernel methods, in particular the Support Vector Machines (Boser, Guyon and Vapnik,
1992; Vapnik, 1995), is due in part to relatively good performance on high dimensional
problems, while the traditional kernel methods (s.a. Parzen windows (Parzen, 1962))
often perform more poorly. Another, recently revived, and very promising research trend
in dealing with the curse, is that of manifold learning. It is based on the idea that the data
lives on (or close to) a non-linear manifold of much lower dimensionality, embedded in the
high dimensional space. This trend is exemplified by Locally Linear Embedding (Roweis
and Saul, 2000) and Isomap (Tenenbaum, de Silva and Langford, 2000) but also underlies
the idea of mixtures of factor analyzers and similar algorithms (Ghahramani and Hinton,
1996; Hinton, Revow and Dayan, 1995; Tipping and Bishop, 1999; Ghahramani and Beal,
2000).
Our line of research attempts to integrate the notions of manifold modeling with the tradi-
tional non-parametric kernel and distance based methods such as k-nearest-neighbors and
Parzen windows. We have already proposed improved algorithms for classification (Vin-
cent and Bengio, 2002) and density estimation (Vincent and Bengio, 2003) but the latter
one suffers from serious practical difficulties1. In this paper, we propose a different ap-
proach to density estimation which does not pose the same memory requirement problems
as (Vincent and Bengio, 2003), and is based on a general principle taking the point of view
of local learning.
Local learning (Bottou and Vapnik, 1992; Atkeson, Moore and Schaal, 1997; Ormoneit
and Hastie, 2000). can be understood as a general principle that allows to extend learning
techniques designed for simple models, to the case of complex data for which the model’s
assumptions would not necessarily hold globally, but can be thought as valid locally. A
simple example is the assumption of linear separability, which in general is not satisfied
globally in classification problems with rich data. Yet any classification algorithm able to
find only a linear separation, can be used inside a local learning procedure, yielding an
algorithm able to model complex non-linear class boundaries.
Similarly, for density estimation, while it is in general unreasonable to assume that the
data follows a Gaussian distribution globally, the Gaussian approximation holds locally.
Note that if the data lies close to a low dimensional manifold, then the shape of that local
Gaussian will be a flattened pancake, and it’s crucial to use a non-spherical Gaussian, to
capture the local principal directions of the manifold.
Traditional parametric density estimation can be formulated as the question: “What is the
likelihood of a test point x under a model fitted to the whole training data”. We formulate
the principle of locally weighted density estimation in a similar manner as “What is the

1Its memory requirement scales in O(n.d
2) where d is the input dimensionality, and n is the number of

training samples, making it impossible to use with large, high dimensional data sets.
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likelihood of a test point x under a simple model fitted only to the local training data in
the neighborhood of x.”
Notice that locally weighted density estimation yields an unnormalized density estimate:
in general it won’t integrate to 1, as is also the case of several classical non-parametric
density estimators, similar in spirit, like the nearest neighbor density estimator (Fix and
Hodges, 1951; Loftsgaarden and Quesenberry, 1965). (see (Inzenman, 1991) for a survey
of non-parametric density estimation techniques).
Local learning typically comes in two flavors, depending on the notion of “neighborhood”.
The neighborhood is always based on some a-priori measure of locality (such as the Eu-
clidean distance in input space), but it can be either defined as a “hard” neighborhood (the
set of k nearest neighbors of x for instance), or as a “soft”, weighted neighborhood (the set
of all training points, but with an associated weight given by a prior, continuous weighting
kernel K, centered on x). The former can be seen as a special case of the latter, with a
particular discontinuous weighting kernel giving only weights of 0 or 1). We would like
to stress the importance of using a “soft” neighborhood to avoid discontinuities in the es-
timate, a problem that plagues the nearest neighbor density estimator. Indeed, while some
statistics of the set of k neighbors (such as the distance to the kth neighbor) vary smoothly
with x, the set of k neighbors doesn’t: a small variation in x may yield a totally different
kth neighbor, and thus lead to a discontinuous estimate, if a “hard” neighborhood is used.
Consequently the local model fitting procedure should accommodate sample weights.
For previous work on local learning applied to non-parametric density estimation, see
also (Hjort and Jones, 1996).

2 The Locally Weighted Density Estimatior

Let D = {x1, . . . , xn} a data set with xi sampled i.i.d. from an unknown distribution
with continuous density f(x).
Let K(xi;x) a weighting Kernel centered on x, used to give a weight to every xi.
In addition, we suppose that it is easy to fit a simple parametric model M to a data set
endowed with sample weights (e.g. the maximum of the log-likelihood can be found
analytically or cheaply).
The locally weighted density estimation principle computes an estimate f̂(x) of the den-
sity at a given test point x as follows:

• Associate a weight K(xi;x) to every xi ∈ D

• Fit model M to the weighted data.

• The estimate is f̂(x) = 1
ZM(§) with Z a normalization factor to try to make f̂(x)

integrate to 1 over the domain of x (at least asymptotically).

In our particular case we use K(xi;x) = N (xi;x, σ2
n(x)I), with σn(x) = αd(x, xvk

),
where xvk

denotes the kth neighbor of x according to the Euclidean distance d. i.e. the
width of our weighting kernel is proportional to the distance from its center to its kth

neighbor.
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The model M we fit to the weighted training samples is a Gaussian with a regularized full
covariance matrix, i.e.: M(§) = N (§;µ\(§), C\(§)), where µn(x) = 1

∑

i K(xi;x)

∑

i K(xi;x)xi

is the weighted sample mean, and Cn(x) = 1
∑

i K(xi;x)

∑

i K(xi;x)(xi − µn(x))(xi −
µn(x))′ + γ2

nI is the weighted sample covariance with an additional regularization pa-
rameter γn.
N (x;µ,Σ) denotes the density of x under a multivariate Normal density with center µ
and covariance matrix Σ:

N (x;µ,Σ) =
e−

1
2 (x−µ)′Σ−1(x−µ)

(2π)d/2|Σ|1/2
(1)

We denote the resulting estimator fWN ,

fWN (x) =
1

Z
N (x;µn(x), Cn(x)), (2)

and will prove its asymptotic convergence to the true density f(x), when the normalization
factor is estimated with Z = nVd(1)

kn(2π)d/2αd , with Vd(r) being the volume of a d-ball of

radius r in R
d, i.e. Vd(r) = rdVd(1) = rd πd/2

Γ(1+ d
2 )

.

A slight variant of the above fWN will also be considered (in particular for the conver-
gence proof) in which µn(x) is fixed on µn(x) = x rather than on the weighted sample
average.

3 Other Classical Estimators Considered

In addition we’ll consider the following classical non-parametric estimators, using the
above definitions.

1. The fixed width Parzen density estimator (Parzen, 1962):

fFP (x) =
1

n

n
∑

i=1

N (x;xi, r
2
nI). (3)

2. The fixed width nearest neighbor density estimator (Parzen, 1962):

fFN (x) =
|N(x, rn)|
nVd(rn)

(4)

where N(x, rn) = {xi ∈ D : ||x−xi|| < rn} are the neighbors of x closer than rn

and |N(x,rn)|
n estimates unbiasedly the probability of falling in the d-ball of radius

rn around x.

3. The k-nearest neighbor density estimator (Fix and Hodges, 1951; Loftsgaarden and
Quesenberry, 1965):

fKN (x) =
kn

nVd(σn(x))
(5)

where kn

n estimates the probability of falling in the d-ball of radius σn(x) around
x, and we select α = 1 in σn(x).

3



4 Asymptotic Convergence Analysis

To prove convergence, a number of the quantities defined above will be subscripted with n.
We have to impose conditions on the rate of modification of kn which must increase with
n, and the way it affects σn i.e. limn→∞ kn = ∞ but slower than n, i.e. limn→∞

kn

n = 0.
We let kn increase at a slow enough rate such that nσn(x)d → ∞. Besides, γn must go
to zero faster than σn.
We already know from the classical litterature (Parzen, 1962; Fix and Hodges, 1951;
Loftsgaarden and Quesenberry, 1965) that fFP , fFN and fKN are consistent i.e. that
their limit as n → ∞ is f for every x (with the hyperparameters converging at a proper
rate, as defined above).

Lemma 1 . Let rn be a probabilistic lower bound on σn, i.e. σn(x) > rn with high
probability 1 − δ. Let g(x, y) be a function that is O(ym) and is O(σn(x)−p). The
limit of a locally weighted average of g(x, xi) with σn(x) converges to the same limit as
f(x)

∫

g(x, y)N (y;x, σ2
n(x)I)dy:

lim
n→∞

1

n

∑

i

g(x, xi)N (xi;x, σ2
n(x)I) = f(x) lim

n→∞

∫

g(x, y)N (y;x, σ2
n(x)I)dy (6)

To obtain convergence, then rn must decrease at a slow enough rate such that nr
d+2(p−m)
n →

∞.
Sketch of the Proof
Consider the left-hand-side of 6 with σn(x) replaced by rn (even in g). Its expected
value is

∫

f(y)g(x, y)N (y;x, rn(x)2I)dy. Let us show that the average converges to its
expected value. For this we will show that the average error (i.e. the variance) goes to 0.
Below we will show that for a data-independent spread rn in the local weighting kernel
N , the variance of the average is inversely proportional to a power of rn. Therefore with
probability 1 − δ, the variance of the average using σn(x) is less than the variance of
the average using rn. Since the latter will be shown to converge to zero we will obtain
convergence to zero of the variance of the desired average. Consider the variance of the
average with data-independent spread rn:

V ar[
1

n

∑

i

g(x, xi)N (xi;x, r2
nI)] =

V ar[g(x, xi)N (xi;x, r2
nI)]

n

<

∫

f(y)g(x, y)2N (y;x, r2
n)2dy

n

where the variance is over D, and we simply dropped E[g(x, xi)N (xi;x, r2
nI)]2. Let

us now make the change of variable z =
√

2(y − x)/rn (this is a vector in R
d, i.e.

dy1 . . . dyd = 2−d/2rd
ndz1 . . . dzd), yielding the bound on the variance

1

(2π)d/2n2d/2rd
n

∫

f(
rnz√

2
+ x)g(x,

rnz√
2

+ x)2N (z; 0, 1)dz

using N (y;x, r2
n)2 = e−||y−x||2/r2

n

(2π)dr2d
n

= 1
(2π)d/2r2d

n

e−
||z||2

2

(2π)d/2 = 1
(2π)d/2r2d

n
N (z; 0, 1). If g

4



varies with n in 1
rp

n
and in the power m of its second argument, then the integrand varies

in 1

r
2(p−m)
n

: the condition on rn is indeed nr
d+2(p−m)
n → ∞.

Q.E.D.

Note that as a special case we obtain the convergence of fFP , with g(x, xi) = 1.

Lemma 2 If nσd+1
n (x) → ∞ and σn(x) → 0 the locally weighted version of µn(x)

converges to x and µn(x)−x
σn(x) converges to 0, in probability:

lim
n→∞

∑

i xiN (xi;x, σ2
n(x)I)

∑

i N (xi;x, σ2
n(x)I)

= x

and

lim
n→∞

µn(x) − x

σn(x)
= 0,

in probability.
Proof
The denominator of µn(x) times 1

n is fFP , which converges to f(x). For the numerator,
we apply Lemma 1 with g(x, xi) = xi−x

σn(x) (i.e. p = m = 1) and obtain f(x) limn→∞

∫

y−x
σn(x)N (y;x, σn(x)2I)dy.

We apply the change of variable z = y−x
σn(x) and obtain f(x) limn→∞

∫

σn(x)dzN (z; 0, I)dz =
0.
Q.E.D.

Lemma 3 The locally weighted covariance Cn(x) has the same limit as σ2
n(x)I .

Proof
We rewrite the numerator and denominator in the first term of Cn as averages. Using
Lemma 1 and Lemma 2 the numerator has the same limit as

f(x)

∫

(x − y)(x − y)′N (y;x, σ2
n(x)I)dy.

Apply the change of variable z = y − x, yielding

f(x)

∫

zz′N (z; 0, σn(x)2I)dz → f(x)σn(x)2I.

As in previous proofs, the denominator converges to f(x).

Cn(x) → (σ2
n(x)f(x) + γ2

n)I

Since we have assumed γn

σn
→ 0, the second term can be ignored.

Q.E.D.

Theorem 1 The locally weighted full covariance matrix estimator fWN is consistent
(converges to f ) for both versions of µn(x).
Proof
Consider the numerator of N (x;µn(x), Cn(x)) in eq. 1. When µn(x) = x it is simply
equal to e0 = 1. For the other versions, Lemma 2 shows that it converges to 1. Using

5



Lemma 3, and |aB| = ad|B| for a d × d matrix B and a scalar a, the denominator
(2π)d/2

√

|Cn(x)| has the same limit as

(2π)d/2
√

|σ2
n(x)I| = (2π)d/2σd

n(x).

Finally, we use the main result in (Loftsgaarden and Quesenberry, 1965), i.e.

lim
n→∞

kn

nVd(1)σd
n(x)

= f(x).

when α = 1, i.e. equal to f(x)/αd when using a different value of α. Putting these
together with the formula for fWN , we obtain

lim
n→∞

fWN (x) = lim
n→∞

knαd(2π)d/2

nVd(1)
N (x;µn(x), Cn(x))

= lim
n→∞

knαd(2π)d/2

nVd(1)(2π)d/2σd
n(x)

= f(x).

Q.E.D.

5 Experiments

To assess the performance of the proposed algorithm, we performed the following exper-
iment on a 2D spiral problem:
A training set of 300 points, a validation set of 300 points (reserved for tuning hyper-
parameters), and a test set of 10000 points were generated from the following distribution
of two dimensional (x, y) points:

x = 0.04 t sin(t) + εx, y = 0.04 t cos(t) + εy

where t ∼ U(3, 15), εx ∼ N (0, 0.01), εy ∼ N (0, 0.01), U(a, b) is uniform in the interval
(a, b) and N (µ, σ) is a normal density.
As the density estimators under consideration are not guaranteed to integrate to 1 (except
for fF P ), we compute an approximation of their integral by sampling on a 300 × 300
regularly spaced grid (covering the x and y range of the training set plus 10%), and divide
the raw estimators by the obtained integral approximation, yielding normalized estimators
for our comparison study. Evaluation of the estimators over that same grid is also used to
produce the graphs of Figure 1. The performance of each normalized estimator f̂ is then
evaluated using the average log likelihood (ALL) over the test set T (of size m = 10000):

ALL(f̂ , T ) =
1

m

∑

x∈T

log f̂(x)

For each estimator type, we tried several values of the hyper-parameters, keeping the
choice that yielded the largest possible ALL over the validation set.

6



Table 1: Performance of various estimators on the spiral data, measured as average log-
likelihood over the test set (standard errors are in parenthesis).

Estimator Hyper-parameters used ALL on test set
fFP r = 0.0151 1.292 (0.012)
fKN k = 2 1.058 (0.011)
fFN r = 0.065 0.739 (0.018)

fWN fixed σ σ = 0.04, γ = 6e − 5 1.461 (0.006)
fWN α = 0.23, k = 25, γ2 = 3e − 5 1.561 (0.008)

fWN fixed σ, µ = x σ = .045, γ2 = 1e − 9 0.759 (0.003)
fWN , µ = x α = 1, k = 2, γ2 = 1e − 5 1.201 (0.010)

Results are reported in Table 1. fWN (with local σ(x) and using the local average for
µ(x)) appears to perform significantly better than the other classical estimators, indicating
that it was able to more accurately capture and model the underlying true distibution.
The difference between fFP and fWN can also be better appreciated qualitatively in
Figure 1. For fWN , the experiments suggest it is better to use α < 1, which yields a
less variable σ(x), and it is better to use an adaptive σ(x) than a fixed σ. The validation
hyper-parameter selection also chooses a non-zero γ, which suggests that it is also useful.

6 Conclusions

To summarize, we have introduced and analyzed a family of non-parametric locally weighted
density estimators that are appropriate to model the local manifold structure of data, and
experiments suggest that it performs well against classical estimators, in addition to being
much more memory-efficient than the related estimator proposed in (Vincent and Bengio,
2003).
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Fixed Parzen esimator fFP Locally weighted Gaussian fWN

Figure 1: Illustration of the density estimated by ordinary Parzen Windows (left) and
locally weighted Gaussian (right). The top images show the 300 training points together
with an isoline corresponding to a normalized density estimate of 1. The bottom images
show the estimated densities as the elevation. The fWN estimate appears much sharper
along the manifold (thinner walls) and significantly less bumpy. It appears better able to
capture the structure of the underlying distribution, and to successfully “extrapolate” in
regions with few data points but high true density. fFP on the contrary, appears to waste
more probability mass away from the manifold (due to its clearly visible spherical bump
nature).
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