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Résumé / Abstract 
 

Au cours des récentes années, les modèles multivariés utilisés pour évaluer les rendements de l’actif 

ont suscité beaucoup d’intérêt, plus particulièrement les modèles qui tiennent compte de la volatilité 

variant dans le temps. Dans le présent document, nous explorons les modèles de cette catégorie et 

examinons leur potentiel en matière de fixation du prix des options. Plus précisément, nous établissons 

la dynamique risque neutre pour une catégorie générale de modèles hétéroscédastiques à variables 

multiples et proposons un moyen réaliste de fixer le prix des options à l’intérieur de cette structure. 

Notre cadre de référence peut être utilisé sans égard à la distribution et la dynamique sous-jacentes 

possibles. Il prend également en compte de nombreux cas spéciaux importants. Nous proposons une 

application aux options selon un minimum de deux indices. Nos résultats révèlent non seulement 

l’importance de la corrélation en ce qui a trait à ces options, mais aussi l’importance d’une corrélation 

qui soit dynamique. De plus, nous illustrons, dans le cas du modèle général, que l’exposition au risque 

de corrélation comporte une prime importante et que, si cet aspect est négligé, l’évaluation du prix des 

options est alors erronée. Enfin, nous démontrons qu’en faisant peu de cas des caractéristiques non 

gaussiennes des données, l’évaluation du prix des options comporte des écarts importants. 

 

Mots clés : primes de risque à variables multiples, fixation du prix des options, 

modèles GARCH 

 

 

In recent years multivariate models for asset returns have received much attention, in particular this is 

the case for models with time varying volatility. In this paper we consider models of this class and 

examine their potential when it comes to option pricing. Specifically, we derive the risk neutral 

dynamics for a general class of multivariate heteroskedastic models, and we provide a feasible way to 

price options in this framework. Our framework can be used irrespective of the assumed underlying 

distribution and dynamics, and it nests several important special cases. We provide an application to 

options on the minimum of two indices. Our results show that not only is correlation important for 

these options but so is allowing this correlation to be dynamic. Moreover, we show that for the general 

model exposure to correlation risk carries an important premium, and when this is neglected option 

prices are estimated with errors. Finally, we show that when neglecting the non-Gaussian features of 

the data, option prices are also estimated with large errors. 
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1 Introduction

Multivariate models have been used extensively in recent years to model the behavior of

financial data. The resulting dynamics are generally more realistic as they take into account

the interaction and correlation between such assets. Classical applications of such models

have been to model the interaction between stock returns, interest rates and exchange rates,

and the framework has been used for prediction of e.g. asset volatilities. However, mul-

tivariate models are also potentially important for option pricing. In particular, the most

traded options, the index options, are in principle options on an average of multiple assets.

Neglecting the correlation between the constituent assets could provide severe mispricings

of these claims.

Index options however are not the only example of what is also referred to as basket

options. In fact, many other types of options exist where the basket is not an actual index

but rather an arbitrarily chosen portfolio of assets. Options written directly on this portfolio

provide an efficient method of hedging the risk involved in such exposure. Moreover, in

addition to basket options other types of multivariate options exist where the option payoff

is on something different than the the average of the underlying assets. For example, a spread

option derives its value from the difference between the prices of two or more assets. Spread

options can be written on all types of financial products including equities, bonds, currencies,

and commodities, and they are especially important in the market for energy futures. Lastly,

options exist which pay the best or worst of N assets. This type of option, which is also

referred to as a rainbow option, often occur as an element of structured products.

Although the literature on multiple asset options is somewhat limited as the survey by

Broadie and Detemple (2004) shows, we are not the first to consider pricing these claims. In

fact pricing formulas in constant volatility Gaussian models were proposed by among oth-

ers Margrabe (1978), Stulz (1982), Johnson (1987), and Boyle, Evninie, and Gibbs (1989)

for European claims, and results on American options have been provided by Broadie and

Detemple (1997), Detemple, Feng, and Tian (2003), and Villaneuve (1999). However, the as-

sumption of constant volatility and correlations stands in stark contrast to empirical findings,

and more recently this assumption has been relaxed and models with time varying volatility
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have been used. In particular, models with conditional heteroskedasticity have been used in

e.g. Werker, Genest, and van den Goorbergh (2005) and Zhang and Guégan (2008) together

with dynamic copulas and in Duan and Pliska (2004) together with co-integrated asset prices.

However, common to all of the previous papers is that they treat the risk neutralization on

an individual stock basis. Considering the empirical evidence on the presence of correlation

between financial assets the assumption that exposure to this risk carries no price may seem

counterintuitive. In fact, this assumption is at odds with the fundamental theories in finance

such as the modern portfolio theory and the capital asset pricing model. Moreover, the

existing papers all assume a Gaussian model. However, it is often found that financial asset

returns are skewed and leptokurtic and therefore this restriction may be an unreasonable

assumption.

In this paper we provide a theoretical framework for pricing options in a general mul-

tivariate framework. To be specific, building on work by Christoffersen, Elkamhi, Feunou,

and Jacobs (2010) we derive the risk neutral dynamics for a general class of multivariate

heteroskedastic models, and we provide a feasible way to price options in this framework.

Our approach can be used to price any of the multivariate options mentioned above as well

as any other type of multivariate claim, and it can be used in any dimension. The framework

allows for very general specifications of the risk premia, and it is easily applicable with non-

Gaussian models. To our knowledge this is the first paper to consider multivariate option

pricing at this level of generality.

A class of volatility models of particular interest are multivariate GARCH models. These

models are essentially multivariate extensions of the generalized autoregressive conditional

heteroskedastic (GARCH) framework of Engle (1982) and Bollerslev (1986), and they are

used extensively in practice because they are relatively easy to estimate. In particular,

they have been extensively used to model volatility spillovers and in applications such as

conditional CAPM and futures hedging. Examples are respectively Karolyi (1995), Bali

(2008) and Moschini and Meyers (2002). Moreover, with this type of models forecasting

multivariate volatility is straightforward since the conditional variance matrix is modeled as

a function of past innovations. In this paper, we use our theoretical framework together with

multivariate GARCH models for option pricing.
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In our application, we consider options written on the minimum of the two indices. We

first analyze the importance of dynamic correlations on the estimated option prices. Our

results show that neglecting correlation has an important effect on the price obtained, and

we conclude that models with conditional heteroskedasticity and time varying correlation

are important for multivariate option pricing. Secondly, we incorporate a risk premium on

correlations and show that this is also important to consider in pricing this type of options.

Our results show that neglecting the risk premium on correlations leads to poorly estimated

prices of out of the money options. Thus, we conclude that appropriate riskneutralization is

important for option pricing in a multivariate setting. Finally, we consider a generalization

of the Gaussian model where the conditional distribution is a multivariate mixture of nor-

mals. Our results show that neglecting the non-Gaussian features of the data leads to very

poor estimates of the option prices. Thus, the final conclusion of the paper is that taking

non-Gaussian features into consideration is extremely important when pricing options in a

multivariate setting.

It should be noted that an alternative to the discrete time framework used here is models

formulated in continuous time. In particular, such models often benefit from allowing elegant

option pricing formulas. However, while there is an abundance of univariate continuous

time option pricing models, the number of multivariate extensions is limited. This is most

likely due to the complexity of such models, and their implementation is quite challenging

compared to the discrete time framework. In particular, existing applications often rely

on having option data readily available also for model calibration. Contrary to this, the

framework used here can be implemented using straightforward estimation techniques and

requires only observations on the underlying assets. As many multivariate options are traded

over the counter, and therefore the available data is limited, the discrete time framework

may in fact provide the only consistent way to price such claims.

The rest of the paper proceeds as follows: In Section 2 we introduce the multivariate

heteroskedastic model and we derive the risk neutral dynamics for this class of models. In

Section 3 we provide detailed results on some important special cases of our framework.

In Section 4 we introduce the data and the particular volatility models to be used in the

empirical application in Section 5. Finally, Section 6 contains concluding remarks.
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2 Multivariate heteroskedastic asset return dynamics

Letting Ft denote the information set up to time t, we assume that the underlying return

process Rj,t = ln(Sj,t/Sj,t−1) for j = 1, . . . , N can be characterized by

Rj,t = µj,t − Ψt (−ej) + εj,t, (1)

where Sj,t is the price level of asset j on day t. The term Ψt (·) denotes the conditional

cumulant generating function, and ej is an N dimensional vector of zeros except for position

j where it is 1. Thus, we have that ln (Et−1 [exp (εj,t)]) = Ψt (−ej), and it follows that

Et−1 [Sj,t/Sj,t−1] = Et−1 [exp (µj,t − Ψt (−ej) + εj,t)]

= exp (µj,t) . (2)

The specification in (1) hence implies that µj,t can be interpreted as the expected gross rate

of return for asset j.

While the above holds irrespective of the assumed dynamics for εt, for now we will restrict

attention to the case of multivariate heteroskedastic models which can be written as

εt = Htzt, (3)

where Ht is a Ft-measurable N ×N matrix of full rank, and where zt is i.i.d. and admits an

absolutely continuous N -variate distribution function P () with E[zt] = 0 and E[ztz
′

t] = IN .

The model implies that the covariance matrix of εt conditional on Ft−1 is given by Σt = HtH
′

t,

which is symmetric. It is of full rank because Ht is of full rank. This also implies that Σt is

positive definite.

2.1 Specification of an equivalent martingale measure

In the multivariate heteroskedastic model markets are incomplete and hence there is no

unique way to derive the equivalent martingale measure, or EMM, needed for option pricing.

However, by making additional assumptions it becomes possible to derive such a unique

characterization. Our additional assumption is that the relevant measure can be derived

from an exponential affine Radon-Nikodym derivative of the following form

dQ

dP

∣

∣

∣

∣

Ft = exp

(

−

t
∑

i=1

(ν ′

iεi + Ψi (νi))

)

, (4)
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where νi is a N -dimensional vector sequence. The specification in (4) may be seen as a

multivariate generalization of the suggested Radon-Nikodym derivative from Christoffersen,

Elkamhi, Feunou, and Jacobs (2010).

We now proceed to show that it is possible to derive an EMM from the above. To do

this, we proceed in two steps. The first step is to show that (4) is in fact a Radon-Nikodym

derivative. The following lemma provides the details.

Lemma 1 dQ
dP

∣

∣Ft = exp
(

−
∑t

i=1 (ν ′

iεi + Ψi (νi))
)

is a Radon-Nikodym derivative.

Proof We first of all need to show that dQ
dP

∣

∣Ft > 0. However, due to the exponential affine

structure this is immediate. Next we need to show that EP
0

[

dQ
dP

∣

∣Ft

]

= 1. However, using

the law of iterated expectations we obtain the following

EP
0

[

dQ

dP

∣

∣

∣

∣

Ft

]

= EP
0

[

exp

(

−

t
∑

i=1

(ν ′

iεi + Ψi (νi))

)]

= EP
0

[

EP
1 ...EP

t−1 exp

(

−
t
∑

i=1

ν ′

iεi −
t
∑

i=1

Ψi (νi)

)]

= EP
0

[

EP
1 ...EP

t−2 exp

(

−
t−1
∑

i=1

ν ′

iεi −
t
∑

i=1

Ψi (νi)

)

EP
t−1 exp (−ν ′

tεt)

]

= EP
0

[

EP
1 ...EP

t−2 exp

(

−

t−1
∑

i=1

ν ′

iεi −

t
∑

i=1

Ψi (νi)

)

Ψt (νt)

]

= EP
0

[

EP
1 ...EP

t−2 exp

(

−

t−1
∑

i=1

ν ′

iεi −

t−1
∑

i=1

Ψi (νi)

)]

.

Iterating on this yields the required result since

EP
0

[

dQ

dP

∣

∣

∣

∣

Ft

]

= EP
0 [exp (ν ′

1ε1 + Ψ1 (ν1))]

= exp (−Ψ1 (ν1)) exp (Ψ1 (ν1)) = 1.

This completes the proof. �

Having completed the first step, the second step is to show that the resulting measure is

in fact an EMM, i.e. that under the transformed measure discounted returns are martingales.

The following proposition shows that this is the case provided the vector sequence νt satisfy

a specific set of conditions.

Proposition 1 The probability measure Q defined by the Radon-Nikodym derivative in (4)
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is an EMM if and only if

0 = Ψt (νt − ej) − Ψt (νt) − Ψt (−ej) + µj,t − rt, (5)

for all j = 1, ..., N .

Proof We need to show that under Q the expected asset returns equals the risk free interest

rate, i.e. that discounted asset prices are martingales. To do this we proceed by consid-

ering asset j for which we have to show that EQ
t−1

[

Sj,t

Sj,t−1

]

= exp (rt), or equivalently that

EQ
t−1

[

Sj,t

Sj,t−1

exp (−rt)
]

= 1. Using (4) we obtain

EQ
t−1

[

Sj,t

Sj,t−1
exp (−rt)

]

= EP
t−1

[(

dQ
dP

∣

∣Ft

dQ
dP

∣

∣Ft−1

)

Sj,t

Sj,t−1
exp (−rt)

]

= EP
t−1 [exp (−ν ′

tεt − Ψt (νt)) exp (µj,t − Ψt (−ej) + εj,t) exp (−rt)]

= exp (−Ψt (νt) + µj,t − Ψt (−ej) − rt) EP
t−1

[

exp
(

(ej − νt)
′ εt

)]

= exp (−Ψt (νt) + µj,t − Ψt (−ej) − rt + Ψt (νt − ej)) .

Thus, it follows that if we construct the probability measure Q from the proposed Radon-

Nikodym derivative and ensure that

0 = Ψt (νt − ej) − Ψt (νt) − Ψt (−ej) + µj,t − rt,

for all j = 1, ..., N , then the probability measure is in fact an EMM since it makes discounted

asset prices martingales. This completes the proof. �

2.2 The risk neutral dynamics

Having derived the appropriate restrictions on the sequence νt, conditional on the specifi-

cation of the Radon-Nikodym derivative, we can now derive the risk neutral dynamics. In

order to do this, the first step is to derive the conditional moment generating function under

Q. The following lemma provides the details.

Lemma 2 The conditional moment generating function under Q is given by

EQ
t−1 [exp (−u′εt)] = exp (Ψt (νt + u) − Ψt (νt)) .

6



Proof The proof follows easily by substituting the values from the specification of the

Radon-Nikodym derivative and rearranging as follows:

EQ
t−1 [exp (−u′εt)] = EP

t−1

[(

dQ
dP

∣

∣Ft

dQ
dP

∣

∣Ft−1

)

exp (−u′εt)

]

= EP
t−1 [exp (−ν ′

tεt − Ψt (νt)) exp (−u′εt)]

= EP
t−1

[

exp
(

− (νt + u)′ εt

)

− Ψt (νt)
]

= exp(Ψt (νt + u) − Ψt (νt)).

This completes the proof. �

Next, using the above lemma it follows easily that under the risk neutral measure the con-

ditional cumulant generating function of εt is given by

ΨQ
t (u) = Ψt (νt + u) − Ψt (νt) . (6)

Using the Inversion Theorem (see for example Billingsley (1995, Theorem 26.2) or Davidson

(1997, Theorem 11.12)) the conditional cumulant generating function can be used to obtain

the distribution under Q, provided that this is recognized as belonging to a known family of

distributions.

As a verification we note that for any choice of νt we can substitute (5) and (6) into the

mean equation in (1). Doing so, we obtain the following specification of the risk neutral

dynamics

RQ
j,t = rt − ΨQ

t (−ej) + εQ
j,t, (7)

where the superscript Q indicates that the variables are considered under the risk neutral

distribution. From (7), we can calculate the gross rate of return on asset j under Q as

EQ
t−1 [Sj,t/Sj,t−1] = EQ

t−1

[

exp
(

rt − ΨQ
t (−ej) + εj,t

)]

= exp (rt) . (8)

Thus, it equals the risk free interest rate as required.

With the derived EMM claims may now be priced as the expected value, under the EMM,

of their future cash flows discounted using the risk free interest rate. For example, the price of

7



a European option at time t with maturity T and terminal payoff function ̺α(S1,T , ..., SN,T ),

α being the set of parameters like e.g. the strike price, can be computed as the following

discounted expectation

Ct(T, ̺α) = e−r(T−t)

∫

∞

0

. . .

∫

∞

0

̺α(S1,T , . . . , SN,T )fQ(S1,T , . . . , SN,T )dS1,T . . . dSN,T ,(9)

where fQ(S1,T , . . . , SN,T ) is the density of the underlying asset prices at expiration under the

EMM.

2.3 Feasible option pricing

Equations (5) and (6) above completely characterize the risk neutral process and hence

this is, in fact, all that is needed for option pricing purposes. In particular, equation (5)

provides the link between the distributional properties under the original measure P and the

riskneutral distribution under Q from the sequence νt, and equation (6) then characterizes

the risk neutral distribution in terms of this sequence. Thus, in order to apply the method for

pricing all that is left is to derive the sequence and the dynamics explicitly given the choice

of dynamics and underlying distribution. However, unless the cumulant generating function

is of a simple form this is potentially problematic since it involves solving (5) in order to

obtain the actual sequence of νt. The multivariate Gaussian distribution we consider below

is a special case where it is in fact possible to solve (5) directly for any given specification

of µj,t. However, it is obvious that this may not always be the case for a general choice of

distribution.

An alternative way to proceed is to realize that we may equally well use equation (5) to

provide a link between a particular choice of sequence νt and the distributional properties

under the original measure P instead. Say, we could impose constant values for νt through

time or we could let νt depend on the level of the conditional variances and covariances. For

any choice we can then derive the restriction on the gross rate of return by rearranging (5)

as

µj,t = rt − Ψt (νt − ej) + Ψt (νt) + Ψt (−ej) . (10)

From (10), we note that for any choice of νt a closed form expression exist for µj,t given that

the cumulant generating function exists. Substituting this into the return equation in (1)

8



we obtain

Rj,t = rt − Ψt (νt − ej) + Ψt (νt) + εj,t. (11)

Since this only depends on known parameters it can be used for estimation directly and it

thus provides a method for option pricing.

It should be noted that for most choices of distribution and hence cumulant generating

functions evaluation of the expression in (11) is easy and hence estimation based on this

specification is not only theoretically possible but also feasible in practice. Moreover using

the estimated parameters, option pricing can be easily performed since this again depends

only on parameters identified from estimating the model on historical data on the underlying

assets. Hence no procedure of calibrating the model to option data is required. In particular,

if the options under consideration are European style, price estimates can be obtained very

quickly using a simulation approach as averages of predicted payoffs at maturity using the

risk neutral dynamics.

3 Important special cases

In this section we explore several special cases of our general framework which are of partic-

ular interest and which will be used in our application in Section 5. The first example is the

case of a multivariate Gaussian distribution, of which the bivariate case is of particular in-

terest. The second example is a generalization of this benchmark case where the innovations

are from a multivariate mixture of normals.

3.1 The multivariate Gaussian distribution

When εt is multivariate Gaussian distributed, the conditional cumulant generating function

is given by

Ψt(u) =
1

2
u′Σtu. (12)

This very simple form means that option pricing is straightforward even in the case with

conditional heteroskedasticity.

9



First of all, under the assumption of a multivariate Gaussian distribution we may solve

(5) directly for any specification of µj,t. This can be done by substituting (12) into (5) upon

which we obtain the following

0 = Ψt (νt − ej) − Ψt (νt) − Ψt (−ej) + µj,t − rt

=
1

2

[

(νt − ej)
′ Σt (νt − ej) − ν ′

tΣtνt − e′jΣtej

]

+ µj,t − rt

= −e′jΣtνt + µj,t − rt,

for all j = 1, ...N . Solving for νt and writing this in vector form we obtain

νt = Σ−1
t (µt − rt), (13)

where µt and rt are the corresponding vectors of the gross rate of return and the interest

rate, respectively. Thus, for a given choice of µt it is possible to solve explicitly for νt.

Secondly, under the multivariate Gaussian assumption the risk neutral dynamics needed

for option pricing to proceed are easily obtained. In particular, as already mentioned these

may be derived from the cumulant generating function under P using the specification in

(6). Substituting (12) into (6) we obtain

ΨQ
t (u) = Ψt (νt + u) − Ψt (νt)

=
1

2
(νt + u)′ Σt (νt + u) −

1

2
ν ′

tΣtνt

= u′Σtνt +
1

2
u′Σtu. (14)

Moreover, using the expression in (13) the following characterization of the distribution

under Q is obtained

ΨQ
t (u) = u′(µt − rt) +

1

2
u′Σtu. (15)

Thus, it follows that the risk neutral dynamics remain Gaussian although with a shifted

mean. The shift in the mean is exactly what is required to compensate investors for the risk

associated with investing in the underlying risky assets.

The general formulations above show that it is possible to choose the specification of µt

freely in the multivariate Gaussian framework since the νt sequence can always be obtained

10



from (13). Alternatively, one could use the technique of implying the conditional mean µt

for a given choice of νt using (10). However, unless one chooses the sequence of νt in a clever

way this may lead to a complicated specification of µt, which could be difficult to estimate.

3.1.1 A simple mean specification

We start by considering a simple specification in which the conditional mean is given by

µt = rt + diagΣtλ, (16)

where diagΣt is the matrix containing only the diagonal elements of Σt. In this specification

the compensation for asset j only depends on the asset’s own variance, and λ is readily

interpreted as the unit risk premium. Compared to a more general specification this as-

sumption has the effect of making estimation easier. In particular, conditional on the choice

of dynamics and underlying distribution, estimation can sometimes be done for each asset

individually.

The particular choice of conditional mean also implies that the risk neutral dynamics are

simple. To see this, substitute (16) into (15) to obtain

ΨQ
t (u) = u′diagΣtλ +

1

2
u′Σtu. (17)

Thus, for the particular choice the risk neutral mean equals −diagΣtλ, which is readily

interpreted as the compensation an investor requires for holding the risky assets with λ

interpreted as the unit price of risk.

The particular specification used in (16) is a straightforward generalization of the uni-

variate specification used in Heston and Nandi (2000). Note however, that we could equally

well let the unit risk premium be proportional to the volatility or to be constant also with-

out any loss of generality. The first of these specifications, which corresponds to setting

µi,t = rt + σi,tλi, is a straightforward generalization of the univariate specification used in

in Duan (1995). This also corresponds to the approach used in e.g. Werker, Genest, and

van den Goorbergh (2005) and Zhang and Guégan (2008) in a multivariate context.
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3.1.2 A general mean specification in the bivariate case

The above specification corresponds in terms of the risk neutralization to what is used in the

existing bivariate option pricing literature, and is a special case of our more general frame-

work. In particular, the above specification eliminates any consideration of the correlation

between assets and the risk associated with exposure to the risk stemming from this. This

may seem counterintuitive considering that the models used often allow for time varying

correlations or covariances.

Although various specifications are possible, we will consider the case where both volatil-

ity and correlation risk caries a premium. For notational convenience we limit the exposition

to the bivariate case, but all the results easily generalize to the N -dimensional situation. To

be specific, we consider the following specification of the conditional mean for the i’t asset

µi,t = rt + σ2
i λi,i + ρi,jλi,j. (18)

Substituting (18) into (15) it is easily seen that with this more general mean specification

the risk neutral distribution is again Gaussian but with a mean which is changed in order to

compensate investors for holding the asset which is exposed to the two sources of risk. Note

that it is also possible to include σ2
j in the above equation for asset i, although this makes

less sense from a theoretical point of view.

It should be noted that while the case with correlation risk is easily accommodated using

our framework this is not the case in the existing literature. In particular, the approach based

on riskneutralization on an equation by equation basis cannot be used with a more general

mean specification. Whether these extra terms are important is, off course, essentially an

empirical question.

3.2 The multivariate mixed normal distribution

As convenient as it is, the Gaussian distribution on the innovations is often not suitable

because it is symmetric and has a kurtosis equal to three. In particular, this is the case for

financial asset returns which are often found to be skewed and leptokurtic and it is therefore

desirable to use a more flexible distribution. One alternative is to use finite mixtures of
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Gaussian distributions which are extremely flexible and which are becoming a standard tool

in financial econometrics. This choice is attractive because of the parsimonious flexibility

it provides in the specification of the distribution of the underlying random variable, which

has a semiparametric flavor. Recently, finite mixtures have been used for option pricing,

although in a univariate framework, by Badescu, Kulperger, and Lazar (2008), Bertholon,

Monfort, and Pegoraro (2006), Durham (2007), and Rombouts and Stentoft (2009).

In the multivariate mixed normal framework, the conditional distribution of εt is a com-

bination of K densities

F (εt|Ft−1) =

K
∑

k=1

πkΦ (µk, Σk,t) , (19)

where Φ(·) is the standard multivariate Gaussian distribution. For each t in this finite

mixture framework, εt is drawn from one of the K conditional distributions with probabil-

ities π1, . . . , πK . Consequently, the parameter πk is restricted to be positive for all k and
∑K

k=1 πk = 1, which is imposed by setting πK = 1 −
∑K−1

k=1 πk. The zero mean assumption

on εt is ensured by the restriction

µK = −

K−1
∑

k=1

πkµk

πK
. (20)

For more on the theoretical properties of the multivariate mixed normal distribution see

Bauwens, Hafner, and Rombouts (2007).

When εt has a multivariate mixed normal distribution, the conditional cumulant gener-

ating function is given by

Ψt(u) = ln

(

K
∑

k=1

πi exp

(

−u′µk +
u′Σk,tu

2

)

)

. (21)

That is, the conditional moment generating function is a convex combination of multivariate

Gaussian moment generating functions. The fact that the expression in (21) remains simple

is convenient when it comes to option pricing since this is needed to obtain the appropriate

risk neutral dynamics. To be specific, the conditional cumulant generation function of εt

under the risk neutral measure Q is easily obtained by substituting (21) into (6) which
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yields

ΨQ
t (u) = Ψt(νt + u) − Ψt(νt)

= ln





∑K
k=1 πi exp

(

−(νt + u)′µk +
(νt+u)′Σk,t(νt+u)

2

)

∑K
k=1 πi exp

(

−ν ′

tµk +
ν′

tΣk,tνt

2

)





= ln

(

K
∑

k=1

π∗

i,t exp

(

−u′µ∗

k,t +
u′Σk,tu

2

)

)

, (22)

where

µ∗

k,t = µk − Σk,tνt, (23)

and

π∗

k,t =
πk exp

(

−ν ′

tµk +
ν′

tΣk,tνt

2

)

∑K
k=1 πk exp

(

−ν ′

tµk +
ν′

tΣk,tνt

2

) , (24)

for k = 1, .., K. Thus, the risk neutral distribution of εt remains within the family of

multivariate normal mixtures.

With respect to the risk neutral means from (23), it is immediately seen that the cor-

rection is very similar to what is obtained with the Gaussian model, where the mean of εt

under Q is equal to rt − µt = −Σtνt. The intuition behind this is the following: If variance

and covariance risk carries a positive premium, i.e. νt is positive, then in the risk neutral

world the mean of the innovations is shifted downwards to compensate for this.

4 Data and volatility models

In this section we introduce the return data, the particular choice of variance dynamics which

will be used, and we explain how options can be priced in the empirical application of the

multivariate heteroskedastic model. We note though that the framework introduced in this

paper is not restricted to the particular choice of data, dynamics, or of options to be priced.
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Figure 1: Return time series

This figure plots the time series of returns for the NASDAQ and NYSE indices for the period from

February 5, 1971, through November 27, 2009.

4.1 Data

In this paper we use data on the NASDAQ and NYSE composite indices, which are among

the most important financial indices in the world. Both of these indices are market-value

weighted, which means that they are easy to replicate and therefore potentially investable.

Options written directly on these indices are therefore potentially important for hedging

as well as for speculative purposes. However, the two indices reflect the performance of

two quite distinct markets. In particular, NASDAQ is heavy on technology stocks, such as

Microsoft and Intel, whereas NYSE contains a large fraction of mostly well established large

industrial companies, such as General Electric and Ford. Thus, when modeling the dynamics

of these two time series a multivariate model is clearly needed.

Figure 1 plots the time series of returns for the two indices and clearly shows that they

share similar properties. In particular, for both time series the classical pattern of time

varying volatility and volatility clustering are found. However, the figure also shows that

there are differences between the NASDAQ and the NYSE when it comes to the effect of

two of the most important events in the last 25 years, the crash in 1987 and the dot-com

bubble. To be specific, looking at the figure we see that the NYSE was much more affected

by the crash in 1987, whereas the dot-com bubble effected the NASDAQ much more than

the broader based NYSE index. The most recent financial crises, on the other hand, appears
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Table I: Descriptive statistics for the NASDAQ and NYSE indices

This table provides descriptive statistics for the two indices using data from

February 5, 1971, through November 27, 2009.

Index min mean max stddev skewn kurt

NASDAQ -0.12043 0.000313 0.13255 0.012608 -0.27920 13.268
NYSE -0.21286 0.000258 0.11526 0.010391 -1.15310 31.186

to have had a similar effect on both indices.

Table I provides descriptive statistics for first four moments of the two indices. The

table shows that the two series are negatively skewed and very leptokurtic. Again this is in

line with previous research which has documented these properties for other financial asset

returns. However, the table also shows that while the means and variances are of similar

magnitude this is not so for the third and fourth moments. In particular, when comparing

the two time series the table shows that NYSE is much more skewed and leptokurtic than

NASDAQ. Again this is due to the larger effect of the crash in 1987 on the NYSE index

which caused a negative return of 21%.

4.2 Multivariate heteroskedastic models

Considering Figure 1 and Table I it is obvious that multivariate heteroskedastic models

provide an interesting framework for this type of series. In this paper we chose to specify

the conditional variance matrix Σt by multivariate GARCH models for which estimation is

easily done by maximum likelihood. Although many types of models exist, see Bauwens,

Laurent, and Rombouts (2006) and Silvennoinen and Terasvirta (2008) for surveys, they all

deliver very similar out-of-sample forecasts. Therefore, we will limit our attention to two

well known models that we define next.

First, a general formulation of Σt has been proposed by Bollerslev, Engle, and Wooldridge

(1988). In the general VEC model, each element of Σt is a linear function of the lagged

squared errors and cross products of errors and lagged values of the elements of Σt. To be

specific, the dynamics are given by

σt = c + A ηt−1 + B σt−1, (25)
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where σt = vech (Σt), ηt = vech (ǫtǫ
′

t) with ǫt defined in (3), and vech (·) denotes the operator

that stacks the lower triangular portion of a N×N matrix as a N(N +1)/2×1 vector. A and

B are square parameter matrices of order (N + 1)N/2 and c is a (N + 1)N/2× 1 parameter

vector. Given the large number of parameters, this general model is typically estimated only

when N = 2.

Second, the dynamic conditional correlation model (DCC) in the formulation of Engle

(2002) is defined as

Σt = D
1/2
t RtD

1/2
t (26)

Dt = diag(σ2
11,t, . . . , σ

2
NN,t) (27)

Rt = diag(q
−1/2
11,t . . . q

−1/2
NN,t)Qtdiag(q

−1/2
11,t . . . q

−1/2
NN,t) (28)

Qt = (1 − θ1 − θ2)Q̄ + θ1ut−1u
′

t−1 + θ2Qt−1, (29)

where ui,t = ǫi,t/σi,t define the devolatilized innovations and Q is the N × N unconditional

variance matrix of ut. The DCC model is a generalization of the constant conditional corre-

lation (CCC) model of Bollerslev (1990) which fixes Rt = R. In our application we use the

GARCH model of Bollerslev (1986) for σ2
ii,t.

Estimation of both multivariate GARCH models is done by maximum likelihood using

the full sample. Under the Gaussian innovation assumption the sample log-likelihood is

given, up to a constant, by

−
1

2

T
∑

t=1

log | Σt | −
1

2

T
∑

t=1

ǫ
′

tΣ
−1
t ǫt, (30)

where T denotes the sample size. We maximize numerically for the parameters in ǫt and Σt.

The particular structure of the DCC model in (26) allows to split the loglikelihood function in

two parts making estimation easier from a numerical viewpoint. The first part depends only

on Dt implying that estimation of each of the conditional variances can be done separately.

Given the conditional variances, the second part involves the conditional correlation process

for which only θ1 and θ2 have to be estimated (the matrix Q̄ is fitted in advance using the

devolatized innovations). This two step approach is particularly convenient when N is large.

For the mixture model, which allows incorporating departures from normality, the estimation
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of the parameters is necessarily done in one step given the more involved likelihood which is

directly implied by (19).

4.3 Option pricing methodology

In this paper we consider European put options on the minimum of two indices. The theo-

retical value at time t of this option with a strike price equal to K and maturity in T days

is

Ct(T, K) = e−r(T−t)EQ
t [max[K − min(S1,T , S2,T ), 0]], (31)

where EQ
t means that the expectation is taken under the risk neutral measure Q as specified

by (9) and where S1,T and S2,T are the values at time T of the two indices, respectively. While

closed form solutions to (31) do exist in a few cases, i.e. the constant volatility Gaussian

case, this is not so for more general specifications of the underlying dynamics. Even in this

case, however, it remains possible to price the options using numerical methods together

with the dynamics derived in this paper.

We choose to use a Monte Carlo approach which is easy to implement in the current

setting as the models are simple to simulate from under the risk neutral distribution. For

the European option example in (31), an estimate of the price is given by

Ĉt(T, K) = e−r(T−t) 1

M

M
∑

j=1

max
(

K − min(S
(j)
1,T , S

(j)
2,T ), 0

)

, (32)

where S
(j)
1,T and S

(j)
2,T are the terminal index values simulated under the risk neutral dynamics

for M paths. In our empirical application we use M = 20, 000 paths, and for the time

being we do not use any variance reduction techniques such as the ones suggested in e.g.

Barraquand (1995) or Duan and Simonato (1998). More generally, the advantages of this

approach is that it can be used in any dimension. In addition, with a Monte Carlo approach

American options could also be priced using e.g. the Least-Squares Monte Carlo method

of Longstaff and Schwartz (2001), for which the mathematical foundation was provided in

Stentoft (2004).

The bivariate options we consider are, however, not readily traded at exchanges, and

therefore we consider a set of artificial options. To be specific, we consider options with 5
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different maturities: 21, 42, 63, 126 and 252 days to maturity. This corresponds to options

with 1, 2, 3, 6, and 12 months to maturity. For each of these maturities we consider 9

different strike prices from 80 to 120 in increments of 5. Moreover, in order to put the two

indices on equal footing it will be assumed that the starting values are 100 for both indices.

Doing this has the effect of essentially considering options on the worst performing of the

indices.

5 Empirical application

In this section we report results on three empirical applications which not only illustrate the

flexibility of our framework but also examines several important issues related to the pricing

of multivariate options. To be specific, in the first section we examine the importance of

allowing for dynamic correlations. In the second section we consider the effect of having

priced correlation risk. In the final section we analyze the importance of allowing for non-

Gaussian distributed innovations.

5.1 The importance of dynamic correlation

In this section we consider the case where risk neutralization is done on an equation by

equation basis. That is, we specify the conditional mean as

µt = rt + diagΣtλ. (33)

For the dynamics we choose the DCC model as this allows us to estimate the model separately

for each of the underlying assets. This also means that the same dynamics are used for the

individual variances irrespective of the dynamics used for the correlations. We compare the

results of the DCC model to the CCC model and to a model without correlation, the NoC

model, where Rt in (28) is fixed to the identity matrix.

5.1.1 Estimation results

Table II shows the estimation results for the univariate variance processes for each of the two

indices as well as the results for the DCC model defined in (26)-(29). Comparing the first
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Table II: Estimation results for DCC model using the NASDAQ and NYSE

indices

This table reports the univariate GARCH estimation results and results for the

DCC model defined in (26)-(29). Estimation is done with Maximum Likelihood

using both variance and correlation targeting.

Dynamics α̂1 SE(α̂1) β̂1 SE(β̂1) ν̂1 SE(ν̂1)

NASDAQ 0.10799 (0.00617) 0.88840 (0.00687) 3.3806 (0.73415)
NYSE 0.07639 (0.00470) 0.91360 (0.00570) 3.0226 (0.90739)
Correlation 0.02557 (0.00244) 0.96790 (0.00343)

two rows we see that the estimated parameters for the conditional variances are generally of

similar size. In particular, although the estimated α is somewhat higher for NASDAQ than

for NYSE the opposite is true for the estimated β, and overall this leads to a persistency,

given by the sum of α and β, of similar magnitude for the two series. The last row, which

reports the estimates of the DCC specification, shows that these parameters are also of

similar size as those from the individual variance equations. In particular, this holds when

considering the overall persistency of the time series. Finally, the table shows that the risk

premia are estimated to be significantly positive for both indices, and taking these into

account is clearly important. Moreover, because of this the dynamics under the risk neutral

measure differ from those under the original measure and appropriately riskneutralization is

important.

The estimation results thus indicate that there is a high degree of persistency in the

conditional volatilities and in the conditional correlation. In Figure 2 we plot these three

time series and the plots confirm this. The two top plots, Figure 2(a) and 2(b), are for the

conditional variances, and show that these vary a lot through time and do not always move

together. This is reflected in Figure 2(c), which plots the conditional correlation time series,

and shows that the conditional correlation changes through time. In fact, while it is positive

through the entire sample it varies between roughly 40% and 95%. The minimum value

of 38.9% is found on April 4, 2000, which is right after the climax of the dot-com bubble

which happened on March 10 that year with the NASDAQ peaking at 5132.52. This again

reflects the fact that this event was primarily something that effected the technology heavy
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NASDAQ index.

Based on the estimation results and the plotted conditional variances and correlations

it should be clear that using a model which treats conditional correlations, or for that sake

conditional variances, as constant is clearly not in line with the data. While this holds

true from a statistical point of view the results tells us nothing about the effects on option

prices. This is explored in the the next section, where we examine the importance of dynamic

correlations for option pricing. We choose to price the options on three dates which reflect

different levels of the conditional correlation: April 4, 2000, as this is the minimum correlation

observed, the last observation in the sample on November 27, 2009, for which the correlation

is 91.6% and close to the maximum correlation, and March 10, 2005, which is right between

these two dates since at this day the correlation is very close to the unconditional correlation

of 78%.

5.1.2 Pricing results

In order to perform option pricing with the above models the appropriate risk neutral dy-

namics have to be derived. However, this is easily done for the model considered here and

the result is given in (17), which shows that the innovations remain Gaussian, although with

a mean shifted such that investors are compensated sufficiently for being exposed to variance

risk. Instead of reporting the estimated prices, in Figure 3 we plot the relative error surfaces

as a function of maturity and moneyness. The errors are calculated as the difference between

the true price from the DCC model and the CCC model price, respectively the NoC price,

divided by the true DCC price. Thus, the values may be interpreted as the errors that would

be committed when using a wrong model, i.e. the CCC or the NoC model, when the true

model is in fact the DCC model. The left hand panels are for the CCC model and the right

hand panels are for the NoC model. From top to bottom the plots are for the three dates:

April 4, 2000, March 10, 2005, November 27, 2009.

The first thing to notice from Figure 3 is that errors are clearly committed when assuming

constant correlations or when neglecting correlations altogether. In particular, this holds

irrespective of the assumed model and the time period considered, and errors are committed

for all combinations of moneyness and maturity. The errors are clearly important and may
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Figure 2: Conditional variances and correlations

This figure plots the time series of filtered conditional variances and correlations from the DCC

model for the period from February 5, 1971, through November 27, 2009.
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(b) Errors for NoC model in 2000
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(c) Errors for CCC model in 2005
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(d) Errors for NoC model in 2005
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(e) Errors for CCC model in 2009
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(f) Errors for NoC model in 2009

Figure 3: Pricing errors with CCC and NoC models

This figure plots the pricing errors for the constant correlation model, the CCC model, and the

model without correlation, the NoC model, compared to the true dynamic conditional correlation

model, the DCC model. The left hand panels are for the CCC model and the right hand panels

are for the NoC model. From top to bottom the plots are for April 4, 2000, March 10, 2005, and

November 27, 2009.
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be as large as 10% when neglecting correlation dynamics and exceed 40% when neglecting

correlation altogether. Moreover, when considering the pricing errors from e.g. the NoC

model in the right hand panels the figures show that the errors increase with the actual

value of the correlation as expected. Finally, while the errors are slightly less important for

the short term options they increase with maturity and when the option becomes out of the

money.

When considering the pricing errors from the CCC model in the left hand panels, Figure

3 show that for this model the errors are in all cases smaller than for the NoC model. The

smallest errors are found on March 10, 2005 as Panel 3(c) shows, although this is to be

expected since at this date the conditional correlation is close to the unconditional level

used in the CCC model. However, while the sign of the errors and their magnitude change

through time the shape of the error surface remains remarkably stable and shows a smirk

across moneyness akin to the one often found empirically in implied volatilities. This smirk

though is purely correlation induced as the variance dynamics are the same for all models.

It is important to note that that the correlation smirk does not vanish with maturity as is

often the case with the implied volatility smirk.

In conclusion, Figure 3 shows that neglecting correlation altogether leads to large pric-

ing errors when pricing multivariate options. However, even when allowing for correlation

important errors occur when the dynamics are neglected. Thus, the results in this section

show that correctly modeling the dynamics of the conditional correlation is important for

all options irrespective of the moneyness or the maturity.

5.2 The importance of correlation risk

In this section we examine the results when the correlation risk, in addition to the vari-

ance risk, is priced. That is, for each stock i we consider the following specification of the

conditional mean

µi,t = rt + σ2
i λi,i + ρi,jλi,j. (34)

In addition to this mean specification we consider two restricted versions: the first of which

sets λi,j = 0 for i 6= j, and the second where λi,j = 0 for all i and j. That is, the first
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Table III: Estimation results for the bivariate VEC model for NASDAQ and

NYSE indices with correlation and variance risk premia

This table reports the estimation results for the VEC model with estimates of both variance

and covariance premiums in Panel A, the full model, for the restricted model with only variance

risk premiums in Panel B, and for the model without risk premia in Panel C. The estimates

of the correlations risk premia has been multiplied by 100. Estimation is done with Maximum

Likelihood using both variance and correlation targeting.

Panel A: Full model

Dynamics α̂1 SE(α̂1) β̂1 SE(β̂1) λ̂11 SE(λ̂11) λ̂12 SE(λ̂12)

NASDAQ 0.08157 (0.00205) 0.91164 (0.00226) 1.521 (0.7411) 3.943 (0.9719)
NYSE 0.06898 (0.00193) 0.92170 (0.00224) 2.281 (0.8860) 2.280 (1.0130)
Covariance 0.06956 (0.00152) 0.92155 (0.00167)

Panel B: Restricted model with only variance risk

Dynamics α̂1 SE(α̂1) β̂1 SE(β̂1) λ̂11 SE(λ̂11)

NASDAQ 0.08037 (0.00180) 0.91294 (0.00197) 2.874 (0.6540)
NYSE 0.06855 (0.00173) 0.92222 (0.00198) 2.897 (0.7548)
Covariance 0.06886 (0.00127) 0.92235 (0.00133)

Panel C: Restricted model without risk premia

Dynamics α̂1 SE(α̂1) β̂1 SE(β̂1)

NASDAQ 0.07966 (0.00202) 0.91377 (0.00222)
NYSE 0.06789 (0.00190) 0.92354 (0.00220)
Covariance 0.06743 (0.00151) 0.92359 (0.00165)

alternative specification has no correlation risk but only variance risk premia whereas the

latter specification has no risk premia at all. We use the VEC specification above instead

of the DCC specification because in this model all the dynamics are estimated at once.

This is convenient since the correlations are needed in order to estimate the risk premia

simultaneously.

5.2.1 Estimation results

Table III provides the estimation results for the three versions of the VEC model. In Panel

A the results with the mean specification from (34) are provided. In Panel B results for the

restricted model where only the variance risk carries a premium with it are reported, and

finally in Panel C results for the model with no risk premia is reported. When comparing
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the three panels it is immediately seen that the parameter estimates for α and β are very

similar. Moreover, the estimates are also very close to those found for the DCC model in

Table II. Thus, it is seen that finding time variation and high persistency is not particular

to a specific model or to the assumptions on the risk premia.

However, when comparing the actual estimates of the risk premia between the two pan-

els differences are found. To be specific, it is immidiately seen that when a premium on

correlation risk is included the variance risk premia drops. The decrease in the estimated

variance premia is most pronounced for NASDAQ where the size is roughly half that of the

estimates when this is the only source of risk which is priced. For NYSE the variance risk

premia on the other hand only drops marginally, but for this index the size of the estimated

correlation risk premia is also much smaller than for NASDAQ also.

Thus, Table III clearly shows that it is important to consider a premium on correlations

in addition to that on variances. This finding is in line with the capital asset pricing model,

or CAPM. In particular, interpreting the NYSE as the market portfolio the CAPM would tell

us that the excess returns of any other portfolio should only depend on its correlation with

the market. This is largely what is found above. Moreover, our finding of priced correlation

risk is in line with e.g. Driessen, Maenhout, and Vilkov (2009) who find this using model free

implied variances from option prices. We note that the ability to incorporate such premiums

and to properly risk neutralize with respect to these in a coherent way is possible only in a

framework as general as the one put forth here.

5.2.2 Pricing results

We use the models estimated above to price the same sample of artificial options as in the

previous section after appropriately risk neutralization. The dynamics to be used are easily

derived by substituting the values for λi,j into equation (15). Doing so it is easy to realize

that the innovations, as before, remain Gaussian. However, the distribution now has a mean

which is shifted such that investors are compensated for both the variance risk and the

correlation risk. In Figure 4 we plot the relative errors in the estimated option prices from

using the two restricted models, one without correlation risk premia, the NoCORR model,

and one with neither variance nor correlation premia, the NoRISK model.
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(a) Errors for NoCORR model in 2000
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(b) Errors for NoRISK model in 2000
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(c) Errors for NoCORR model in 2005
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(e) Errors for NoCORR model in 2009
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(f) Errors for NoRISK model in 2009

Figure 4: Pricing errors with NoCORR and NoRISK models

This figure plots the pricing errors for the model with only variance risk, the NoCORR model, and

the model without any risk premia, the NoRISK model, compared to the true model with both

correlation and variance risk premia. The left hand panels are for the NoCORR model and the

right hand panels are for the NoRISK model. From top to bottom the plots are for April 4, 2000,

March 10, 2005, and November 27, 2009.
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The first thing to notice from Figure 4 is that the errors are generally smaller than the

ones in Figure 3, which may indicate that it is more important to incorporate time varying

conditional variances and correlations than the actual risk premia. This is somewhat to

be expected and it corresponds to what is often found when pricing options in a univariate

framework. In particular, in the univariate case the time variation modeled by e.g. a GARCH

process often has a much larger effect on option prices than including the estimated risk

premia (see e.g. Stentoft (2008)).

However, although the errors are smaller they are still present and for some options they

may be quite large in relative terms. This is particularly so for the out of the money options.

Here errors of up to 30% can be observed when neglecting the risk premia altogether as

Panel 4(b) shows. When only the correlation risk premia is neglected the estimated error

is generally smaller, but they may still be as large as 6% of the true estimate of the price

given by the unrestricted VEC model as Panel 4(c) shows. Comparing across maturity all

the panels furthermore show that the mispricings persist even for the options with long

maturities.

In conclusion, Figure 4 shows that neglecting variance and correlation risk premia may

lead to large pricing errors when pricing multivariate options. Moreover, while the variance

risk premia is important so is the premia on correlation risk, and finally when neglecting

the correlation risk premia our results show that the sign of the committed errors depend

on the level of the correlations. Thus, the results in the section show that correctly taking

account of the variance and correlation risk premia is important for all options irrespective

of the moneyness or the maturity.

5.3 The importance of non-Gaussian features

In this section we examine the results when the underlying distribution is allowed to be

non-Gaussian. That is, we consider the pricing results when the multivariate mixed normal

distribution is used. For the present we restrict attention to the case when K = 2 in (19) and

we compare this to the Gaussian case which corresponds to a mixture model with K = 1.

As an additional alternative we consider a restricted version of the two component mixture

model with only one variance component, that is with Σ1,t = Σ2,t in (19). While this model
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has the ability to generate skewness and excess kurtosis, it is less flexible when it comes to

modeling the dynamics of the conditional variances and correlation.

When considering this more general model it is difficult, if not impossible, to derive the

sequence of νt given a generally specified equation for the mean µt. Therefore we use the

method of implying µt given νt instead. To be specific, we assume a constant value for νt

and specify the mean as

Rj,t = rt − Ψt (ν − ej) + Ψt (ν) + εj,t. (35)

Since (35) only depends on known parameters it can be used for estimation directly. We use

a VEC specification for the dynamics and for simplicity we only consider that the conditional

variance risk is priced. Thus, the Gaussian special case corresponds to the restricted VEC

model used previously.

5.3.1 Estimation results

In Table IV we report the estimation results for the multivariate mixed normal model. The

first thing to note from the table is that two distinctly different components are found. The

first of these is very similar to the Gaussian special case, and in this component the estimated

α and β and the implied persistence are of roughly the same size as was found in Panel B

of Table III. The probability of being in this component is very high, 93%. The second

component, however, is very different. In particular, in this component both variance and

covariance processes are explosive. The estimated persistence of this component is 1.38 for

NASDAQ and 1.23 for NYSE and the correlation dynamics. Although the probability of

being in this component is rather low, only around 7%, it remains statistically significant.

In Table V we report the estimation results for the restricted version of the multivariate

mixed normal model with only one specification of the variance and covariance dynamics.

Again it is seen that the dynamics are very similar to those found for the Gaussian special

case. Furthermore, when looking at the mixture parameters it is seen that now both mean

parameters are very large numerically and significant. Together with the higher probability,

which is close to the boundary, this could indicate that this type of restricted mixture,

although capable of generating skewness and excess kurtosis, is not very suitable for the
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Table IV: Estimation results for the multivariate mixed normal model for NAS-

DAQ and NYSE indices

This table reports the estimation results for the multivariate mixed normal model. The

top panel reports the results for the first component, the second panel the results for

the second components, the third panel the results for the mixture distribution, and

the bottom panel the risk premia.

Component 1

Dynamics ω̂1 SE(ω̂1) α̂1 SE(α̂1) β̂1 SE(β̂1)

NASDAQ 0.00279 (0.000498) 0.05252 (0.002684) 0.93173 (0.003067)
NYSE 0.00274 (0.000457) 0.04406 (0.002364) 0.94004 (0.002830)
Covariance 0.00377 (0.000587) 0.04477 (0.002599) 0.93955 (0.003086)

Component 2

Dynamics ω̂1 SE(ω̂1) α̂1 SE(α̂1) β̂1 SE(β̂1)

NASDAQ 0.42730 (0.068318) 0.74526 (0.138920) 0.64049 (0.031282)
NYSE 0.31368 (0.071851) 0.51655 (0.100510) 0.70981 (0.045008)
Covariance 0.31796 (0.077974) 0.49360 (0.067608) 0.73205 (0.044121)

Mixture parameters

µ̂1 SE(µ̂1) µ̂2 SE(µ̂2) π̂ SE(π̂)

Mixture -0.01082 (0.010493) -0.01811 (0.013648) 0.93043 (0.007312)

Risk premia

ν̂1 SE(µ̂1) ν̂2 SE(ν̂2)

Risk premia 1.0254 (0.35105) 1.6574 (0.71452)

data considered here.

Lastly, the estimation results show that the risk parameters, that is the vector of ν’s, are

positive and significantly different from zero for both indices and for both types of mixtures.

The estimates are, however, smaller in size than for the Gaussian special case. However, their

smaller size is to be expected as the higher order moments are considered in the multivariate

mixed normal model. Thus, in this model skewness and excess kurtosis affect the risk

premium in addition to the variance through the cumulant generating function in (35). In

the Gaussian model, on the other hand, the variance is the only moment considered. Hence,

if asset returns are in fact non-Gaussian, which is the case here, the estimates will be biased

upward when using a Gaussian model.
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Table V: Estimation results for the restricted multivariate mixed normal model

for NASDAQ and NYSE indices

This table reports the estimation results for the restricted multivariate mixed normal

model. The top panel reports the results for the variances and the covariance dynamics,

the middle panel the results for the mixture distribution, and the bottom panel the risk

premia.

Component 1

Dynamics ω̂1 SE(ω̂1) α̂1 SE(α̂1) β̂1 SE(β̂1)

NASDAQ 0.00915 (0.000720) 0.08157 (0.002615) 0.90904 (0.002662)
NYSE 0.00797 (0.000548) 0.06911 (0.001912) 0.91978 (0.002158)
Covariance 0.00932 (0.000697) 0.07226 (0.001545) 0.91835 (0.002030)

Mixture parameters

µ̂1 SE(µ̂1) µ̂2 SE(µ̂2) π̂ SE(π̂)

Mixture -0.08707 (0.037580) -0.03081 (0.018140) 0.96489 (0.29608)

Risk premia

ν̂1 SE(µ̂1) ν̂2 SE(ν̂2)

Risk premia 0.27512 (0.076209) 1.2524 (0.50986)

5.3.2 Pricing results

Once again, we use the estimated models to price the sample of artificial options after ap-

propriately risk neutralization. The risk neutral dynamics in the multivariate mixed normal

model follow from (22) which shows that the innovations remains within the multivariate

mixed normal model. In Figure 5 we plot the relative errors in the estimated option prices

when using either the restricted two component model, the r2COMP model, or the one com-

ponent model, the 1COMP model, which as already mentioned corresponds to the Gaussian

model used before.

The first thing to notice from Figure 5 is that the errors committed when using a Gaussian

model instead of the correct mixture model are generally large, and as the figure shows these

errors may be as large as 40% . In fact, they are much larger than when neglecting correlation

risk and often they are of similar size as the errors committed when neglecting time varying

correlation altogether. Thus, neglecting the non-Gaussian features of the data can lead

to very poor estimates of the option prices. Moreover, while the errors are smaller when

considering the restricted two component model they remain large in size.
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(a) Errors for r2COMP model in 2000
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(b) Errors for 1COMP model in 2000
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(c) Errors for r2COMP model in 2005
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(d) Errors for 1COMP model in 2005
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(e) Errors for r2COMP model in 2009
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(f) Errors for 1COMP model in 2009

Figure 5: Pricing errors with r2COMP and 1COMP models

This figure plots the pricing errors for the restricted two component model, the r2COMP model,

and the one component model, the 1COMP model, compared to the true two component model,

the 2COMP model. The left hand panels are for the r2COMP model and the right hand panels

are for the 1COMP model. From top to bottom the plots are for April 4, 2000, March 10, 2005,

and November 27, 2009.
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Figure 5 also shows that the pricing errors committed are again relatively largest for

the out of the money options. In fact, in the majority of the panels a smirk in terms of

the pricing errors can be seen. This time though, the smirk is driven by the non-Gaussian

features in the model and occurs in addition to the correlation induced smirk. Lastly, it

should be noted that this smirk does not vanish when considering long term options.

In conclusion, Figure 5 shows that neglecting non-Gaussian features of the underlying

distribution may lead to large pricing errors when pricing multivariate options. Moreover,

the mispricings for the restricted two component model also shows that not only is non-

Gaussian features important but so is allowing for a flexible specification of the dynamics.

Thus, the results of this section show that correctly taking account of non-Gaussian features

in the data is important for all options irrespective of the moneyness and maturity.

6 Conclusion

In this paper we consider option pricing when asset dynamics can be described by multivari-

ate time varying volatility models. We derive the risk neutral dynamics in the general model

and provide detailed results for some special cases which are of particular interest. These

results show that our method can be used for various different specifications of risk premia

and when the model is used with non-Gaussian distributions.

We apply our method to price bivariate options on the minimum of the NASDAQ and the

NYSE indices. We compare the general multivariate model with conditional heteroskedas-

ticity and Gaussian innovations to the various special cases, and find large differences in the

estimated prices. We then use the framework to examine the importance of premiums for

exposure to correlation risk, and find that this has important implications for out of the

money options in particular. Finally, we compare the estimates obtained in the Gaussian

case to those obtained when the conditional distribution is a multivariate mixture of nor-

mals. Again we find very large differences in the estimated prices. Based on these findings

our overall conclusion is that all of the features considered here have potentially important

implications when it comes to option pricing in a multivariate setting and should not be

neglected. A framework, such as the one developed in this paper, which is flexible enough

33



to accommodate each of these issues is therefore clearly required.

With the framework developed in the present paper several issues of interest can be

examined. First of all, we report here results only for minimum options although other

multivariate options could easily be considered. A second interesting question is to apply

the framework to options on a large number of underlying assets. Finally, one could use the

multivariate framework to price options on the individual assets. Considering the importance

of correlations and the premia on this source of risk, this could potentially lead to better

estimates of the price of such options.
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