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Résumé / Abstract 
 

Dans le présent document, nous avons recours aux modèles hétéroscédastiques asymétriques avec 

mélange de distributions normales pour ajuster les données sur les rendements et fixer les prix des 

options. Les modèles peuvent être estimés directement par le maximum de vraisemblance, ils 

comportent un ajustement statistique élevé quand ils sont utilisés sur les données de rendement de 

l’indice S&P 500, et ils permettent de tenir compte d’une asymétrie négative importante et des 

moments d’ordre élevé variant dans le temps liés à la distribution du risque nul. Dans le cas des 

prévisions hors-échantillonnage concernant une vaste gamme d’options sur indice entre 1996 et 2009, 

nous constatons des améliorations substantielles, par rapport à plusieurs modèles de référence, en 

termes de pertes exprimées en dollars et de capacité d’expliquer le caractère ironique des volatilités 

implicites. En général, la racine de l’erreur quadratique moyenne du modèle de référence à 

composantes le plus efficace est 39 % plus grande que dans le cas du modèle à mélange. Dans le 

contexte de la récente crise financière, cette différence augmente à 69 %. 

 

Mots clés : modèles hétéroscédastiques asymétriques, modèle à mélanges finis, fixation des 
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This paper uses asymmetric heteroskedastic normal mixture models to fit return data and to price 

options. The models can be estimated straightforwardly by maximum likelihood, have high statistical 

fit when used on S&P 500 index return data, and allow for substantial negative skewness and time 

varying higher order moments of the risk neutral distribution. When forecasting out-of-sample a large 

set of index options between 1996 and 2009, substantial improvements are found compared to several 

benchmark models in terms of dollar losses and the ability to explain the smirk in implied volatilities. 

Overall, the dollar root mean squared error of the best performing benchmark component model is 

39% larger than for the mixture model. When considering the recent financial crisis this difference 

increases to 69%. 
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1 Introduction

While the Black-Scholes-Merton (BSM) model of Black and Scholes (1973) and Merton

(1973) remains a standard tool for practitioners, when it comes to option pricing many

attempts have been made on extending the model to obtain a better fit to actually observed

prices. Several studies show that the BSM model, which assumes constant volatility and

Gaussian returns, severely underprices out of the money options, particularly those with

short maturity. In terms of implied volatilities, this leads to the well-known smile or smirk

across moneyness, which is found to be particularly pronounced for index options. Intuitively,

such findings can be the result of either non constant volatility or non Gaussian returns, or

a combination of the two. Thus, extensions to the BSM model have been developed focusing

on relaxing these assumptions. In this paper, we provide a new approach that accommodates

flexible conditional return distributions with time varying volatility.

Several studies have examined models which allow for more flexible specifications of the

volatility process compared to the BSM model. In particular, the stochastic volatility (SV)

models have successfully been applied, see Hull and White (1987), Johnson and Shanno

(1987), Scott (1987), Stein and Stein (1991), Wiggins (1987), Amin and Ng (1993), and

Heston (1993). When comparing these models to the BSM model, empirically support is

found for the stochastic volatility specification. This is documented in Bakshi, Cao, and Chen

(1997), Bates (2000), and Nandi (1996) when considering options on the S&P 500 index or

the index futures. In addition to the SV models, the generalized autoregressive conditional

heteroskedasticity (GARCH) framework has been used for option pricing using the model of

Duan (1995). This model has also been used with success for empirical option pricing by,

among others, Christoffersen and Jacobs (2004), Heston and Nandi (2000), and Hsieh and

Ritchken (2005). A recent contribution is Christoffersen, Jacobs, Ornthanalai, and Wang

(2008) where the volatility is allowed to have both short and long run components. These

studies have all analyzed options on the S&P 500 index and found that the GARCH models

diminish the mispricings found when using the constant volatility BSM model. Stentoft
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(2005) documents the same findings using a sample of individual stock options and options

on the S&P 100 index.

However, while the improvements in option pricing performance of SV and GARCH

models are important, mispricings still exist when comparing these models to actual option

data as documented by e.g. Nandi (1996). This has led to the development of option

pricing models which rely on alternative conditional distributions in addition to having non

constant volatility. In the SV literature, jumps have been introduced in the return and

volatility processes. Classical references are, among others, Bakshi, Cao, and Chen (1997),

Bakshi, Cao, and Chen (2000), Bates (1991), Bates (2000), Pan (2002), and Eraker (2004).

When examining the empirical performance of these models, most of the above papers find

support for the existence of jumps again when looking at S&P 500 index options. One

exception is Bakshi, Cao, and Chen (2000) which, however, analyzes long term options and

finds only small gains of allowing for jumps. In addition to the jump-diffusion processes,

models based on infinite activity Lévy processes have been proposed in Barndorff-Nielsen

and Shephard (2001) and Carr, Geman, Madan, and Yor (2003), and on time changed Lévy

processes in Carr and Wu (2004) with applications to currency options in Carr and Wu

(2007) and Bakshi, Carr, and Wu (2008).

Within the GARCH literature extensions include the use of distributions which are either

skewed or leptokurtic, or both, as is done in Duan (1999) and Christoffersen, Elkamhi,

Feunou, and Jacobs (2010). For empirical applications of this framework, see Christoffersen,

Heston, and Jacobs (2006), Christoffersen, Jacobs, Dorion, and Wang (2010) and Stentoft

(2008). Although Christoffersen, Jacobs, Dorion, and Wang (2010) find little improvement

for the non-normal models Christoffersen, Heston, and Jacobs (2006) observe that allowing

for non-normal innovations is important when pricing out of the money put options on

the S&P 500 index. Moreover, Stentoft (2008) documents improvements for both call and

put options in terms of fitting the smile across moneyness for a sample of individual stock

options as well as for options on the S&P 100 index. In addition to models with non Gaussian
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innovations, GARCH models with jumps have been developed by Duan, Ritchken, and Sun

(2006) and Christoffersen, Jacobs, and Ornthanalai (2008). The latter of these papers also

examines the empirical performance and shows that jumps are important empirically when

pricing S&P 500 index options.

The discussion above documents that important advances have been made in the em-

pirical option pricing literature when it comes to extending the BSM model. However, it

is also clear that there is still much room for improvements as discussed in the reviews by

Bates (2003) and Garcia, Gysels, and Renault (2010). In particular, the existing research has

shown that there are large differences between the conditional distribution of the underlying

asset and the distribution implied from option pricing. One difference is that the volatility

implied by at the money options is significantly different from that observed over the life

of the option. However, much more importantly is the finding that the implied volatility

curve, that is the implied volatility plotted against moneyness, is not only asymmetric but

also changes through time. The first of these findings implies substantial negative skew-

ness, more than is often found in the underlying process, whereas the latter indicates that

moments of higher order are time varying.

In the present paper, we price options using asymmetric heteroskedastic normal mixture

models, and we argue that our proposed model can address the above points. In particular,

the type of finite mixture model we use is flexible enough to approximate arbitrarily well

any kind of conditional distribution, for example highly skewed and leptokurtic, and to allow

for stochastic volatility of the returns on the underlying asset of the option contract. By

proposing a NGARCH in mean mixture model we suggest a feasible way for option pricing

within this general framework and we derive the appropriate risk neutral dynamics. In our

application, we show that our model allows for significant negative skewness and time varying

higher order moments.

We use our model to forecast out-of-sample prices of a large sample of options on the S&P

500 index from 1996 through 2009 and compute dollar losses and implied standard deviation
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losses. Our results show that the added flexibility of the finite mixture model in terms of both

skewness and excess kurtosis provides important improvements for predicted option prices.

Overall, the dollar root mean squared error of the best performing benchmark component

model is 39% larger than for the mixture model. In particualar, improvements are found for

all categories of maturity and moneyness. Next, using implied volatility losses, we show that

the heteroskedastic normal mixture model performs significantly better. Moreover, when

the losses are considered across moneyness it is observed that our model does a much better

job than the benchmark models in explaining the smirk found in our sample of options.

Finally, when considering separately the dot-com bubble and burst, the subsequent calm

period, and the financial crises starting in 2008 the performance of the mixture model is

particularly stable compared to the benchmark models. In particular, when considering the

financial crisis beginning in 2008 the dollar root mean squared error of the best performing

benchmark component model relative to the mixture model increases to 69%.

Finite mixture models, which are convex combinations of densities, are becoming a stan-

dard tool in financial econometrics. They are attractive because of the parsimonious flexi-

bility they provide in the specification of the distribution of the underlying random variable,

which gives them a semiparametric flavor. In this framework, each distribution in the mixture

can have its own mean and conditional variance process. Moreover, if required by the data,

some conditional variance processes may even be weakly nonstationary, for example to cap-

ture turbulent periods, while the overall conditional variance remains weakly stationary. Fi-

nite mixture textbooks are for example McLachlan and Peel (2000) and Frühwirth-Schnatter

(2006). Early applications are Kon (1982) and Kim and Kon (1994) who investigate the sta-

tistical properties of stock returns using mixture models. Boothe and Glassman (1987),

Tucker and Pond (1988), and Pan, Chan, and Fok (1995) use mixtures of normals to model

exchange rates. Recent examples are Wong and Li (2000) and Wong and Li (2001) who

model the conditional return distribution, extended by Haas, Mittnik, and Paolella (2004)

with an application of value at risk prediction, and Bauwens and Rombouts (2007) for the
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clustering of financial time series. Durham (2007) investigates the power of finite mixtures of

normal densities with stochastic volatility to model the return of the S&P 500 index. Using

statistical criteria such as QQ-plots, goodness-of-fit tests and information criteria he finds

that the finite mixture can capturing most of the salient features of the data. We extend

his work by analyzing the performance of finite mixtures in out-of-sample option pricing.

Hence, we focus both on the statistical and financial properties of the finite mixture model.

In doing so, we examine both the physical and risk neutral measures.

Option pricing with our approach is straightforward since we only use historical data

on the underlying asset, and therefore the model can be estimated directly by maximum

likelihood. However, historical option prices themselves contain important information on

the model parameters. Therefore, an alternative approach is to infer these parameters either

from historical option data alone or by using both returns and options data. For example,

this can be done by calibrating the option pricing model to existing option data, as detailed

in Chernov and Ghysels (2000). For this to be feasible option pricing models within the affine

class are considered, a choice which is motivated by the existence of closed or semiclosed

form pricing formulas. However, this class of models could be considered as restrictive since

many of the well known specifications within for example the GARCH framework are non-

affine. Moreover, research has shown that in terms of option pricing, non-affine models

often perform better than affine models, see for example Hsieh and Ritchken (2005) and

Christoffersen, Jacobs, Dorion, and Wang (2010).

The rest of the paper is organized as follows: Section 2 presents the asymmetric het-

eroskedastic normal mixture model and details how options can be priced using this frame-

work. Section 3 reports estimation results and explores the implications for the risk neutral

dynamics. Section 4 contains the results of the empirical application to options on the

S&P 500 index, and Section 5 investigates the performance through time and in the recent

financial crisis. Finally, Section 6 contains the conclusion.
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2 Model and risk neutral dynamics

Letting Ft denote the information set up to time t, we assume that the underlying return

process Rt ≡ ln (St/St−1) can be characterized by

Rt = mt (·) − Ψt (−1) + εt, (1)

where St is the index level on day t, and where εt| Ft−1 ∼ P (0, σ2
t ) with σ2

t being the

conditional variance and P () is a continuous distribution function. In (1), the term Ψt (·)

denotes the conditional cumulant generating function. This, on the other hand, corresponds

to the logarithm of the conditional moment generating function and is given by

Ψt (u) = ln (Et−1 [exp (−uεt)]) . (2)

Evaluating this at u = −1 it is seen that

Et−1 [St/St−1] = Et−1 [exp (mt (·) − Ψt (−1) + εt)]

= exp (mt (·)) . (3)

Thus, it makes indeed sense to define the return process as above since with this particular

specification mt (·) can be interpreted as the expected gross rate of return. In Section 2.3 we

specify functional form for mt (·) that allows us to perform option pricing.

2.1 The asymmetric heteroskedastic normal mixture model

We propose to use a mixture of normals coupled with an asymmetric heteroskedastic spec-

ification for the conditional distribution P (0, σ2
t ). In particular, we specify the conditional

distribution of εt is a combination of K densities

P (εt|Ft−1) =
K
∑

k=1

πkΦ

(

εt − µk

σk,t

)

, (4)

where

σ2
k,t = ωk + αk(εt−1 + γσk,t−1)

2 + βkσ
2
k,t−1, (5)
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and Φ(·) is the standard Gaussian distribution. We denote this the asymmetric heteroskedas-

tic normal mixture (MN-NGARCH) model, since the conditional variance specification in (5)

corresponds to the well known NGARCH model of Engle and Ng (1993). The MN-GARCH

model developed by Haas, Mittnik, and Paolella (2004) corresponds to the case when γ = 0

in (5). We note that from an econometric point of view the mixture model is attractive since

a common innovation term εt feeds in the K conditional variance equations. Therefore,

evaluation of the likelihood function is possible since there is no path dependence problem

as would be the case in a Markov switching GARCH model.

In the MN-NGARCH model at each t the innovation εt is drawn from one of the K

conditional distributions with probabilities π1, . . . , πK . Consequently, the parameter πk is

restricted to be positive for all k and
∑K

k=1 πk = 1, which is imposed by setting πK =

1 −
∑K−1

k=1 πk. Moreover, the zero mean assumption on εt is ensured by the restriction

µK = −
K−1
∑

k=1

πkµk

πK

. (6)

Note that this zero mean restriction does not imply a symmetric distribution. A symmetric

distribution would obtain only if all µK ’s are zero, something that can be tested.

The MN-NGARCH provides are very flexible model which can capture, for example,

conditional skewness and kurtosis. In particular, in the MN-NGARCH model conditional

moments of εt are combinations of the K distribution moments in (4). The conditional

variance of εt is given by

σ2
t =

K
∑

k=1

(

πkµ
2
k + πkσ

2
k,t

)

. (7)

The conditional third moment is given by

Et−1(ε
3
t ) =

K
∑

k=1

(

πkµ
3
k + 3πkσ

2
k,tµk

)

, (8)

and the conditional fourth moment is given by

Et−1(ε
4
t ) =

K
∑

k=1

(

πkµ
4
k + 6πkµ

2
kσ

2
k,t + 3πkσ

4
k,t

)

. (9)
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These formulas illustrate that we can have flexible dynamics compared to the classical

GARCH model which arises when K = 1. For example, the skewness of the conditional

distribution would be forced to zero in the latter case.

Moreover, note that to have an overall variance process that is weakly stationary, only

one of the conditional variance processes is required to be weakly stationary. The other K−1

conditional variance processes are allowed to be explosive (αk(1 + γ2
k) + βk > 1) as long as

their combined probability is not too high. More formally, the weak stationarity condition

for the model is

[ K
∑

k=1

πk

(1 − βk)

(

1 − αk(1 + γ2
k) − βk

)] K
∏

k=1

(1 − βk) > 0. (10)

More details on the unconditional moments of the symmetric heteroskedastic normal mixture

model can be found in Haas, Mittnik, and Paolella (2004).

It should be noted that the parameters of the mixture model are not identified as such

because of the label switching problem which leaves the model likelihood unchanged when

we change the order of the distributions in the finite mixture. This is not a problem if the

objects of interest are label invariant, an example would be the predictive density of future

returns. However, if we want to give a financial interpretation of the parameters, like in this

paper, we add an identification restriction like π1 ≥ π2 ≥ . . . > πK . Other restrictions, for

example on the mean of the distributions, are possible as explained in Hamilton, Zha, and

Waggoner (2007).

Finally, we note that the mixture model can incorporate extreme events by having a

distribution with very low probability and with a large mean and a small constant variance,

for example. Moreover, the model can be modified if needed by considering other conditional

variance models. Examples include, but are not restricted to, the GJR-GARCH model

of Glosten, Jagannathan, and Runkle (1993) or the EGARCH model of Nelson (1991).

Finally, other distributions than the normal can be considered in the finite mixture like the

exponential power distribution proposed by Bouaddi and Rombouts (2009).
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2.2 Risk neutral dynamics

In the MN-NGARCH model markets are incomplete and hence there is no unique way to

derive the equivalent martingale measure (EMM) needed for option pricing. In this paper,

we follow the approach of Christoffersen, Elkamhi, Feunou, and Jacobs (2010) in which a

candidate EMM is specified from the following Radon-Nikodym derivative

dQ

dP

∣

∣

∣

∣

Ft = exp

(

−

t
∑

i=1

(νiεi + Ψi (νi))

)

, (11)

where Ψt (u) is the conditional cumulant generating function from above. It is immediately

observed that by using a Radon-Nikodym of this type we are guaranteed that the two

measures are equivalent as they have the same null sets. Moreover, to ensure that discounted

asset prices are martingales under the risk neutral measure it can be shown that the sequence

νt has to satisfy the following equation

0 = Ψt (νt − 1) − Ψt (νt) − Ψt (−1) + mt (·) − rt. (12)

Finally, it can be shown that under the risk neutral measure the conditional cumulant gen-

erating function of εt is given by

ΨQ
t (u) = Ψt (νt + u) − Ψt (νt) . (13)

For more details and proofs see Christoffersen, Elkamhi, Feunou, and Jacobs (2010). Using

the Inversion Theorem (see for example Billingsley (1995, Theorem 26.2) or Davidson (1997,

Theorem 11.12)) the expression in (13) can be used to obtain the distribution under Q.

Note that an alternative method to the one used here which would provide a similar set of

conditions is to specify a candidate stochastic discount factor directly as is done in Gourier-

oux and Monfort (2007). For a discussion of the relationship between the two probability

measures P and Q and the corresponding stochastic discount factor see Bertholon, Monfort,

and Pegoraro (2008). One can also work within a general equilibrium setup as is done in

Duan (1999). While this method also yields the dynamics to be used for option pricing, the
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specification is generally less explicit. In particular, an actual application of the method is

computationally complex (see e.g. Stentoft (2008)), and this approach therefore appears to

be more restrictive.

2.2.1 Riskneutralization of asymmetric heteroskedastic normal mixture models

Conditional on (11), equations (12) and (13) completely characterize the risk neutral process

and hence this is, in fact, all that is needed for option pricing purposes. In particular,

equation (12) provides a link between the original measure P and a risk neutral measure Q

through the sequence νt and (13) characterizes the risk neutral distribution in terms of this

sequence. Thus, in order to apply the method for pricing all that is left is to derive these

dynamics explicitly.

In the case of the MN-NGARCH model the conditional cumulant generating function is

given by

Ψt(u) = ln

(

K
∑

k=1

πi exp

(

−uµk +
u2σ2

k,t

2

)

)

. (14)

This is just the logarithm of a convex combination of Gaussian moment generating functions

and thus very simple to calculate. For option pricing purposes, the fact that it may easily be

calculated is very convenient. Substituting (14) into (13) the conditional cumulant generation

function of εt under the risk neutral measure Q is easily obtained as

ΨQ
t (u) = Ψt(νt + u) − Ψt(νt)

= ln





∑K

k=1 πi exp
(

−(νt + u)µk +
(νt+u)2σ2

k,t

2

)

∑K

k=1 πi exp
(

−νtµk +
ν2

t σ2

k,t

2

)





= ln

(

K
∑

k=1

π∗

i exp

(

−uµ∗

k +
u2σ2

k,t

2

)

)

, (15)

where

µ∗

k,t = µk − νtσ
2
k,t, (16)
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and

π∗

k,t =
πk exp

(

−νtµk +
ν2

t σ2

k,t

2

)

∑K

k=1 πk exp
(

−νtµk +
ν2

t σ2

k,t

2

) , (17)

for k = 1, .., K. Thus, the risk neutral distribution of εt remains within the family of normal

mixtures. Using the stochastic discount factor principle of Gourieroux and Monfort (2007)

similar results are derived by Bertholon, Monfort, and Pegoraro (2006) in the particular

restricted case with K = 2 and for the GARCH specification only.

We remark that for the risk neutral distribution, the weak stationarity condition in (10)

is not appropriate anymore, since the finite mixture under Q has time varying distribution

probabilities π∗

t . Therefore, it can in principle occur, that the physical distribution is weakly

stationary, but the risk neutral distribution is not.

2.2.2 Interpreting the impact of riskneutralization

Equations (16) and (17) show that in the special case with no unit risk premium the risk

neutral distribution correspond to the original distribution. However, in general the distri-

bution of εt will have changed means and probabilities under Q. In particular, with respect

to the risk neutral means from (16), it is immediately seen that the correction is very similar

to what is obtained with a Gaussian model, where the mean of εt under Q is equal to −νtσ
2
t .

The intuition behind this is the following: If volatility risk carries a positive premium, then

in the risk neutral world the mean of the innovations is shifted downwards to compensate

for this.

With respect to the risk neutral probabilities, the relationship is somewhat less straight-

forward. Thus, for simplicity we now consider the special case where K = 2 in which (17)

simplifies to

π∗

t =
π exp

(

−νtµ1 +
ν2

t σ2

1,t

2

)

π exp
(

−νtµ1 +
ν2

t σ2

1,t

2

)

+ (1 − π) exp
(

−νtµ2 +
ν2

t σ2

2,t

2

) . (18)
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Moreover, by dividing through with exp
(

−νtµ1 +
ν2

t σ2

1,t

2

)

, it is seen that

π∗

t T π if exp

(

−νtµ1 +
ν2

t σ
2
1,t

2

)

T exp

(

−νtµ2 +
ν2

t σ
2
2,t

2

)

. (19)

Thus, if we further assume that the variance term
ν2

t σ2

k,t

2
is negligible compared to the mean

term −νtµk, for k = 1, 2, this restriction simplifies to

π∗

t T π if νtµ2 T νtµ1. (20)

However, by construction µ2 < µ1 and hence the effect on the probabilities depends entirely

on the sign of the unit risk premium. Since we expect this premium to be positive, it follows

that we will in general have that π∗

t < π. The intuition behind this result is the following:

If volatility risk carries a positive premium then the probability attributed to the explosive

part, that is 1 − π∗

t , is increased in the risk neutral world to compensate appropriately for

this.

2.3 Feasible option pricing

As mentioned above, we effectively choose the appropriate EMM by solving (12) for νt given

mt (·) and the assumed distribution of εt. However, this is potentially complicated due to

the nonlinearity of this relationship and an analytical expression for νt may therefore not

be available in general. In particular, this is the case with the asymmetric heteroskedastic

normal mixture model used here, and it may thus seem to be impossible to derive the EMM

given mt (·) for this model.

However, (12) may equally well be solved for mt (·) given νt and the assumed distribution

of εt as

mt = rt − Ψt (νt − 1) + Ψt (νt) + Ψt (−1) . (21)

From this, we note that for any choice of νt a closed form expression exist for mt given that

the cumulant generating function exists. Substituting this into the return equation in (1)

12



we obtain

Rt = rt − Ψt (νt − 1) + Ψt (νt) + εt, (22)

which can be used for estimation directly. In fact, the model we use for option pricing is a

NGARCH-in-mean mixture model.

Note that this way of implying the gross rate of return mt, given a particular specification

of νt, is used in Stentoft (2008) in the Normal Inverse Gaussian framework using the option

pricing model of Duan (1999). However, it is equally applicable here and the method allows

us to incorporate coherently a risk premium in the MN-NGARCH. This was, for instance,

neglected in Badescu, Kulperger, and Lazar (2008).

2.3.1 Interpreting νt in the Gaussian special case

It should be noted that, depending on the specification of νt and the assumed distribution

of εt, we may interpret the relationship in (22) differently. We now illustrate this for the

Gaussian case in which (22) corresponds to

Rt = rt −
1

2
σ2

t (vt − 1)2 +
1

2
σ2

t (vt)
2 + εt

= rt −
1

2
σ2

t + νtσ
2
t + εt. (23)

Hence, we see that νt is directly related to the unit risk premium. In particular, if we were to

specify νt = ν, that is as a constant, the implied mean specification corresponds to assuming

a unit risk premium proportional to the level of the variance. Alternatively, if νt = ν/σt, the

unit risk premium becomes proportional to the level of the standard deviation, and finally

with νt = ν/σ2
t a constant unit risk premium independent of the level of the variance is

obtained.

Thus, while it may appear that we, by implying the gross rate of return through (22), are

constraining the potential mean specification in an unreasonably way from an econometric

point of view, this is in fact not the case. In particular, all of the specifications used in

13



the existing literature can be implemented. Also note that νt = 0 is permitted, and which

particular specification is the most appropriate one can be tested by simple likelihood ratio

type tests.

2.3.2 Interpreting νt in the general case

In the general case, i.e. with the asymmetric heteroskedastic normal mixture model, the

relation is less obvious. However, we may analyze the effect of νt using a Taylor series

expansion in (22). To do this, we first note that the two terms involving the cumulant

generating functions may be approximated by

Ψt(νt − 1) ≈ Ψt(0) + Ψ′

t(0) (νt − 1) +
1

2
Ψ′′

t (0) (νt − 1)2

+
1

6
Ψ′′′

t (0) (νt − 1)3 +
1

24
Ψ′′′′

t (0) (νt − 1)4 (24)

and

Ψt(νt) ≈ Ψt(0) + Ψ′

t(0)νt +
1

2
Ψ′′

t (0)ν2
t +

1

6
Ψ′′′

t (0)ν3
t +

1

24
Ψ′′′′

t (0)ν4
t , (25)

respectively. Furthermore, by the definition of εt as a zero mean random variable with

conditional variance σ2
t we have that Ψ′

t(0) = 0 and Ψ′′

t (0) = σ2
t . Moreover, by the definition

of Ψt(u), we have that Ψ′′′

t (0) = −skewtσ
3
t and Ψ′′′′

t (0) = exkurttσ
4
t , where skewt and exkurtt

denotes the conditional skewness and excess kurtosis at time t respectively.

With the above expressions, (22) may be rewritten as

Rt ≈ rt −Ψt(−1) + νtσ
2
t +

(3ν2
t − 3νt)

6
(−skewt)σ

3
t +

(4ν3
t − 6ν2

t + 4νt)

24
exkurttσ

4
t + εt, (26)

where we have collected all the terms which do not involve νt in Ψt(−1). Equation (26)

shows that even in the more general setting it makes sense to interpret νt as the unit risk

premium. In particular, it may be observed that for reasonable values of νt, say larger

than 1, the coefficients above are all positive. In Figure 1, we plot in panels (a) through

(c) the coefficients of the variance term, the skewness term, and the excess kurtosis term
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Figure 1: Unit risk premium effects

This figure plots the coefficients of the variance term, the skewness term, and the excess kurtosis

term in (26) as a function of νt in panels (a) through (c). Panel (d) plots the combined effect. The

dotted line in this panel shows the effect when the higher order terms are neglected.

as a function of νt. Thus, in a general setting, the premium is increasing in the variance,

decreasing in the skewness, and increasing in the excess kurtosis.

In the case of our model for the S&P 500 index, for which we obtain negative skewness and

excess kurtosis, equation (26) shows that the higher the value of νt the larger the premium

required by investors for holding this particular risky asset. Figure 1(d) plots the combined

effect of the three terms with a solid line. Note also, that if we were to neglect these higher

order moment properties of the return process and assume them equal to zero, then to

compensate for this a higher value of νt would be required to generate the same overall level

of compensation for risk. This is clear from the dotted line in Figure 1(d) which shows the
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Table I: Descriptive statistics for S&P 500 index percentage returns

Sample period: July 2, 1962, to August 26, 2009, for a total of 11,869 observations.

Minimum -20.467 Standard deviation 1.016
Mean 0.030 Skewness -0.663
Maximum 11.580 Kurtosis 25.944

effect without the higher order terms.

3 Application to the S&P 500 index

We provide an application of our MN-NGARCH framework to a long sample of data on the

S&P 500 index. We compare several versions of our mixture model to the Gaussian GARCH

and NGARCH models, which are special cases of our MN-GARCH model. We also analyze

the implied dynamics under the risk neutral measure and compare these to what is obtained

under the original measure. In the first section we describe the data. The second section

contains the estimation results, and the last section discusses the implied dynamics to be

used for option pricing.

3.1 Data

As return data, we use the S&P 500 index returns from July 2, 1962, which is the first day

data from CRSP is available, to August 26, 2009, which corresponds to the last week for

which we have option data, for a total of 11,869 observations. Table I provides the standard

descriptive statistics for the S&P 500 index return series. The numbers in this table show

that the return data is negatively skewed and very leptokurtic. Figure 2(a) displays the

sample path and shows the well known pattern of time varying volatility with periods of

high volatility levels followed by periods of low levels of volatility. Figure 2(b) provides

evidence of the strong persistence in squared returns, a proxy of the second moment of the

series. Considering the evidence of Table I and Figure 2 it is clear that a model which allows
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Figure 2: Properties of the S&P 500 returns

This figure plots the sample path and the ACF of squared returns using the sample period from

July 2, 1962 to August 26, 2009, for a total of 11,869 observations.

for conditional heteroskedasticity and non-Gaussian features is needed for this type of data.

3.2 Estimation results

In Tables II and III, we provide maximum likelihood estimation results for the mixture

models with GARCH and NGARCH volatility specifications. The parametrization used is

given by Rt = r − Ψt (ν − 1) + Ψt (ν) + εt, with the distribution of εt defined in (4). In

general, all parameters are statistically significantly different from zero with the exception

of the α’s and the of the most explosive variance process, the γ’s of the most explosive

NGARCH variance process, and the ν’s for the MN2- and MN3-NGARCH models.

In terms of statistical fit, Tables II and III clearly show the value of using the mixture

model. In particular, for both the MN2GARCH and MN2NGARCH specifications the likeli-

hood value, which is shown in the second to last row, increases dramatically. Adding a third

distribution in the mixture also increases the likelihood value although less importantly.

When considering the Bayesian Information Criteria, or BIC, shown in the last row, the best

model is the MN3 model for both volatility specifications. Tables II and III also clearly show

the value of allowing for asymmetries in the volatility specification. In particular, for each
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Table II: Estimation results for the GARCH mixture models

This table reports maximum likelihood estimates for the various GARCH specifications

using percentage returns. A - symbol means that the parameter is set to 0. The

date used is from July 2, 1962, to August 26, 2009, for a total of 11,869 observations.

Robust standard errors are reported in brackets. The row headed Loglik reports the log

likelihood value, and the row headed BIC reports the value of the Bayesian Information

Criteria defined as 2(log(p)−Loglik)/obs, where p is the number of parameters and obs

is the number of observations. The last four rows report the overall pricing errors for

our sample of options (see also Section 4).

MN1GARCH MN2GARCH MN3GARCH

Parameter Estimate S.E. Estimate S.E. Estimate S.E.

ν 6.088 (0.790) 6.107 (1.096) 5.354 (0.841)

µ1 - - 0.001 (0.009) 0.073 (0.018)
µ2 - - - - -0.675 (0.310)

π1 - - 0.941 (0.019) 0.203 (0.035)
π2 - - - - 0.010 (0.004)

ω1 0.005 (0.001) 0.003 (0.001) 0.027 (0.014)
α1 0.074 (0.004) 0.052 (0.005) 0.014 (0.005)
β1 0.923 (0.004) 0.935 (0.005) 0.932 (0.021)

ω2 - - 0.170 (0.100) 0.751 (0.329)
α2 - - 0.608 (0.197) 1.756 (0.941)
β2 - - 0.779 (0.063) 0.656 (0.163)

ω3 - - - - 0.065 (0.007)
α3 - - - - 0.073 (0.006)
β3 - - - - 0.932 (0.005)

Loglik -14542.66 -14340.78 -14273.69
BIC 2.4508 2.4169 2.4056

$ BIAS 4.193 2.782 2.727
$ RMSE 13.616 13.105 10.925
ISD BIAS 2.729 2.101 2.084
ISD RMSE 7.522 7.660 6.626
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specification when the NGARCH model is used the likelihood value increases dramatically.

When considering the BIC, the NGARCH models are again preferred to the GARCH speci-

fications. Thus, overall the results provide clear support for mixture models with NGARCH

volatility specifications.

When considering the actual volatility processes in the mixture distributions, the esti-

mation results in the Tables II and III show that these are very different, and the second

variance process in the MN2 model is explosive. For the GARCH volatility specification

the persistence, defined as αi + βi, of 1.387. For the NGARCH the persistence, defined as

αi(1 + γ2
i ) + βi, is 1.365. The first distributions in the mixture, which have a probability of

94% and 96%, respectively, are however very similar to what is found in the MN1 Gaussian

models. Given that the probability to be in this state is very large the second order sta-

tionarity condition in (10) is still met. However, it is thanks to the second distribution that

we can accommodate for example the high kurtosis in the index returns. When adding the

third distribution in the mixture, Tables II and III first of all show that the persistence in

the second variance process becomes even larger, that is 2.412 for the GARCH model and

1.851 for the NGARCH model. However, in this specification the persistence of the first

variance process on the other hand decreases to 0.946 for the GARCH model and 0.958 for

the NGARCH model.

In Figure 3, we plot the conditional variances of each of the processes. While all plots

have the same overall shape the differences in persistence is clear. For example, the second

volatility path in the MN2NGARCH model reacts much stronger to the crash in 1987 and

because of this the first volatility path is now somewhat more stable. In the MN3NGARCH

model the 3 conditional volatility paths are also very different. In particular, while the second

path is similar to the conditional volatility path from the NGARCH model the volatility path

of the first variance process is much more stable and the third volatility path much less so.
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Table III: Estimation results for the NGARCH mixture models

This table reports maximum likelihood estimates for the various NGARCH specifica-

tions using percentage returns. A - symbol means that the parameter is set to 0. The

date used is from July 2, 1962, to August 26, 2009, for a total of 11,869 observations.

Robust standard errors are reported in brackets. The row headed Loglik reports the log

likelihood value, and the row headed BIC reports the value of the Bayesian Information

Criteria defined as 2(log(p)−Loglik)/obs, where p is the number of parameters and obs

is the number of observations. The last four rows report the overall pricing errors for

our sample of options (see also Section 4).

MN1NGARCH MN2NGARCH MN3NGARCH

Parameter Estimate S.E. Estimate S.E. Estimate S.E.

ν 1.791 (0.769) -0.250 (1.082) 1.039 (0.808)

µ1 - - 0.037 (0.009) 0.066 (0.021)
µ2 - - - - -0.751 (0.366)

π1 - - 0.962 (0.012) 0.165 (0.038)
π2 - - - - 0.010 (0.004)

ω1 0.007 (0.001) 0.004 (0.001) 0.028 (0.014)
γ1 -0.683 (0.047) -0.815 (0.060) -1.985 (1.127)
α1 0.062 (0.004) 0.050 (0.004) 0.010 (0.006)
β1 0.906 (0.005) 0.910 (0.006) 0.909 (0.044)

ω2 - - 0.242 (0.137) 0.679 (0.270)
γ2 - - -0.303 (0.160) -0.172 (0.295)
α2 - - 0.566 (0.197) 1.104 (0.792)
β2 - - 0.747 (0.084) 0.714 (0.127)

ω3 - - - - 0.072 (0.007)
γ3 - - - - -0.669 (0.058)
α3 - - - - 0.062 (0.005)
β3 - - - - 0.913 (0.006)

Loglik -14404.08 -14208.43 -14159.94
BIC 2.4274 2.3946 2.3865

$ BIAS 2.771 1.145 1.879
$ RMSE 10.418 7.033 9.476
ISD BIAS 1.866 1.019 1.522
ISD RMSE 6.326 4.817 5.542
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Figure 3: Conditional volatility paths

This figure plots the conditional volatility paths for the NGARCH mixture models. For each

mixture model, the paths are plotted in terms of increasing persistence from top to bottom.
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3.3 Implications for the risk neutral dynamics

When it comes to option pricing an important parameter is the risk premium parameter, ν.

In particular, if this parameter is significant there will be differences between the dynamics

under P and Q. Table II shows that this parameter is in fact statistically significant and

large for all models when considering a GARCH volatility specification. Moreover, the table

shows that the size of the premium tends to decrease when the number of distributions

in the mixture is increased. We note that this is to be expected since the MN1 Gaussian

model neglects the impact of higher order conditional moments. In particular, as it was

mentioned above the higher order terms in (26) varies negatively with conditional skewness

and positively with conditional excess kurtosis for a given level of ν. Hence, when these terms

are neglected, a higher ν is required to compensate investors appropriately for the risk of the

asset. Table III, on the other hand, shows that with a NGARCH volatility specification ν is in

fact no longer statistically significant for the MN2 and MN3 models. For the MN1NGARCH

model the point estimate is much lower than for the GARCH specification. Thus, our results

show that when asymmetries are allowed for and once sufficiently flexible distributions are

used the risk premium becomes insignificant. This again has important implications for

option pricing as the distribution under the physical and risk neutral measures are then

identical.

Figure 4 illustrates the term structure of the skewness and kurtosis of predicted returns

under P and Q until the highest maturity for the last week of the option dateset, i.e. 213

trading days. The plots are shown for the MN2GARCH and MN2NGARCH models only,

using the estimated parameters from Tables II and III. The figures show that for the mixture

models the term structures are very different under P and Q. In particular, this figure shows

that the model has more negative skewness and a higher kurtosis under Q than under P .

These differences are a result of the risk premium parameter ν which drives a wedge between

the physical and risk neutral dynamics, especially so for the MN2GARCH model for which

ν is largest as Table II shows.
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(b) MN2GARCH skewness under Q
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(e) MN2GARCH kurtosis under P
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(h) MN2NGARCH kurtosis under Q

Figure 4: Skewness and Kurtosis term structure under P and Q

This figure plots the term structure of skewness and kurtosis of the predictive returns under P

and Q for the MN2GARCH and MN2NGARCH models. The moments are calculated using 20,000

draws in a Monte Carlo simulation using the parameter estimates from Tables II and III.
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4 Pricing S&P 500 options

We now evaluate our model’s out-of-sample forecast performance by pricing a sample of

27, 137 call option contracts on the S&P 500 index from 1996 through 2009. In the next

section, we describe the option data in detail. We then report detailed results on the pricing

performance using both the dollar losses and the implied standard deviation losses.

4.1 Data and option pricing methodology

In this paper, we follow the literature and use data on call options on the S&P 500 index.

Our data covers the period from 1996 through 2009 which is the entire period for which

data is provided by OptionMetrics. We impose the following standard restrictions on our

sample: Firstly, we consider weekly data only and choose the options traded on Wednesdays.

If Wednesday is not a trading day we pick the date closest to it. This choice is made to

balance the tradeoff between having a long time period against the computational complexity.

We choose Wednesdays as these options are the least affected by weekend effects. Secondly,

we choose to work only with those contracts which had a daily traded volume of at least 100

contracts. Thirdly, we exclude options which have an ask price below 50 cents. Fourthly, we

exclude options with less than 7 or more than 252 calendar days to maturity. Finally, we

eliminate options in the LEAPS series as the contract specifications for these options do not

correspond to that of the standard options. In total, we end up with a sample of 27, 137 call

options.

In Table IV, we provide descriptive statistics for the options in terms of the average

prices, the average implied standard deviations (ISD) from the BSM model, and the number

of options. We tabulate data for various categories of maturity measured in trading days, T ,

and moneyness measured as M = S/ (K exp (−rT )), where S is the value of the underlying,

K is the strike price, and r is the risk free interest rate. The table shows that our data

contains a diverse sample of traded options. First of all, in terms of the number of contracts
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Table IV: Properties of the S&P 500 index options data set

Mean price in USD, mean ISD, and number of contracts in the cells of this table. The

maturity categories are divided into very short term (VST), with T < 22, short term

(ST), with 22 ≤ T < 43, medium term (MT), with 43 ≤ T < 85, long term (LT), with

85 ≤ T < 169, and very long term (VLT), with T ≥ 169. The moneyness categories are

divided into deep out of the money (DOTM), with M < 0.95, out of the money (OTM),

with 0.95 ≤ M < 0.98, at the money (ATM), with 0.98 ≤ M < 1.02, in the money (ITM),

with 1.02 ≤ M < 1.05, and deep in the money (DITM), with M ≥ 1.05.

Maturity

VST ST MT LT VLT ALL
$ 20.05 $ 23.80 $ 34.44 $ 44.12 $ 61.55 $ 30.90

% 17.43 % 17.68 % 18.04 % 17.43 % 16.76 % 17.60
7077 7974 6455 3561 2070 27137

Moneyness

DOTM OTM ATM ITM DITM ALL
$ 10.02 $ 14.07 $ 29.98 $ 58.07 $ 140.53 $ 30.90

% 19.89 % 15.73 % 16.51 % 18.40 % 18.61 % 17.60
7615 5938 9341 2397 1846 27137

even the VLT category contains a large number of options and so does the DITM category.

Naturally, most of the options in our sample are ATM options and most have ST maturity.

Next, in terms of average option prices, the table shows that the these vary from $10.02 to

$140.53 thus spanning a large interval. Finally and most importantly, we observe the well

known volatility smirk, i.e. Table IV shows that the mean ISD is higher for DOTM options

than for DITM options.

In total, we price options for 713 weeks, from January 4, 1996, to August 26, 2009.

However, the average prices, volatilities, and the number of contracts are not constant over

time. In Figure 5 we plot these through our sample on a weekly basis. In terms of the prices,

Figure 5(a) shows that the average prices are highest around the peak of the dot-com bubble

in 2000 and 2001. In terms of the implied volatilities, Figure 5(b) shows that they peak

around the time of the financial crisis of 2008. This comes after a prolonged period with

low volatility. Implied volatilities are also relatively high at the time of the dot-com bubble.
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Figure 5: Option properties over time

This figure plots the average weekly prices, implied volatilities, and number of contracts over time

for the sample of option data.
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Finally, Figure 5(c) shows a significant increase in the number of contracts throughout the

sample. The number of contracts peaks around the time of the financial crisis of 2008, at

the same time as the implied standard deviations.

For each week, parameter estimation and pricing is performed using the return data

available at that time, and as we move forward through time the sample used for estimation

increases. Given the estimated parameters the risk neutral dynamics can be derived and

options may be priced as the expected value of their future cash flows discounted using the

risk free interest rate. For example, the theoretical value of a European call option at time

t with a strike price equal to K and maturity in T days is

Ct(T, K) = e−r(T−t)EQ
t [max (K − ST , 0)] , (27)

where EQ
t means that the expectation is taken under the risk neutral measure Q and where

ST is the value at time T of the underlying index.

While closed form solutions to (27) exist in a few cases, i.e. the constant volatility

Gaussian case, this is not so for more general specifications of the underlying dynamics.

However, even in this case it remains possible to price the options using numerical methods.

We choose to use a Monte Carlo approach which is easy to implement in the current setting

as the models are simple to simulate from under the risk neutral distribution. For the option

example in (27), an estimate of the price is given by

Ĉt(T, K) = e−r(T−t) 1

M

M
∑

j=1

max
(

K − S
(j)
T , 0

)

, (28)

where S
(j)
T is the terminal index value simulated under the risk neutral dynamics for the jth

path. In our empirical application, we use M = 20, 000 paths.

4.2 A benchmark - the component NGARCH model

The MN1 Gaussian GARCH and NGARCH models have been used extensively in the lit-

erature, see e.g. Christoffersen and Jacobs (2004), Heston and Nandi (2000), and Hsieh
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and Ritchken (2005). In particular, they have been shown to improve significantly on the

performance of the constant volatility BSM model. However, more recently Christoffersen,

Jacobs, Ornthanalai, and Wang (2008), inspired by Engle and Lee (1999), propose a com-

ponent model for option pricing and illustrate its excellent pricing performance compared

to the NGARCH model. Further evidence in favor of the component model is provided by

Christoffersen, Jacobs, Dorion, and Wang (2010). In light of these findings, we choose this

model as an additional benchmark model.

The component volatility model incorporates in a convenient way long range dependence

in volatility. For example, in Engle and Lee (1999), one component captures the long run

movements in volatility while a second component accounts for the short run volatility move-

ments. In the notation of Christoffersen, Jacobs, Dorion, and Wang (2010) the component

NGARCH model, henceforth CNGARCH, is specified as

qt = ω + ρ(qt−1 − ω) + ̺(ε2
t−1 − σ2

t−1 − 2γ1εt−1σt−1)

σ2
t = qt + β(σ2

t−1 − qt−1) + α(ε2
t−1 − σ2

t−1 − 2γ1εt−1σt−1) (29)

where qt can be interpreted as the long term variance component. It can easily be shown

that this model has a NGARCH(2,2) type structure and therefore allows for richer variance

dynamics than the typical NGARCH(1,1) dynamics. The MN-NGARCH model we propose

in this paper is, however, substantially different from the component volatility model. In

fact, while each component in the CNGARCH model allows the variance innovations to decay

at a different rate there is only one conditional variance process. Therefore, skewness in the

conditional return distribution of the component model is only possible when the innovation

distribution is skewed.

Parameter estimates and standard errors are given in the second and third columns of

Table V for the CNGARCH model. As is often found in the literature the persistence of the

long term variance component given by ρ is very close to unity. We therefore also consider

a fully persistent or integrated component specification, the ICNGARCH model, which sets
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Table V: Estimation results for the component NGARCH models

This table reports maximum likelihood estimates for the CNGARCH and ICNGARCH

using percentage returns. The date used is from July 2, 1962, to August 26, 2009, for

a total of 11,869 observations. Robust standard errors are reported in brackets. The

row headed Loglik reports the log likelihood value, and the row headed BIC reports the

value of the Bayesian Information Criteria defined as 2(log(p) − Loglik)/obs, where p

is the number of parameters and obs is the number of observations. The last four rows

report the overall pricing errors for our sample of options.

CNGARCH ICNGARCH

Parameter Estimate S.E. Parameter Estimate S.E.

ν 3.346 (0.854) ν 3.081 (0.900)

β 0.934 (0.012) β 0.937 (0.012)
α 0.027 (0.006) α 0.027 (0.004)
γ1 2.225 (0.471) γ1 2.226 (0.478)

ω 1.490 (0.478) ω 1.538 (0.431)
ρ 0.999 (0.001) ρ 1 -
̺ 0.035 (0.004) ̺ 0.036 (0.004)
γ2 0.292 (0.088) γ2 0.306 (0.090)

Loglik -14328.75 -14329.88
BIC 2.4148 2.4150

$ BIAS 2.900 3.536
$ RMSE 9.777 10.644
ISD BIAS 1.956 2.280
ISD RMSE 5.464 5.786

ρ = 1. The table shows that this restriction is not binding given the respective likelihood

values. Finally, in terms of statistical in sample fit Tables II, III, and V show that the

component NGARCH models are preferred to the MN1NGARCH model as can be seen from

the BIC values. However, the MN3NGARCH model still has the smallest BIC.

4.3 Dollar losses

We now proceed to compare out-of-sample our MN-NGARCH model to the benchmark

models in terms of actual prices. In this section, we report results using the two most
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used metrics in the literature, the mean error, or BIAS, and the root mean squared error,

or RMSE. The BIAS is calculated as the price predicted by a particular model minus the

observed price.

We first examine the overall performance of the models shown in the bottom part of

Tables II, III, and V. First of all, the results show that the MN2NGARCH model has the

smallest errors using both metrics and outperforms the next best model, the MN3NGARCH

model, by 64% in terms of BIAS and 35% in terms of RMSE. The tables also show that, in

line with Christoffersen, Jacobs, Ornthanalai, and Wang (2008) and Christoffersen, Jacobs,

Dorion, and Wang (2010), the CNGARCH model has superior performance compared to

the MN1NGARCH model in terms of RMSE for this sample of option data. However, its

performance is still 39% worse than our best mixture model. In terms of the BIAS the

mixture model, with an error of 1.145, also outperforms the CNGARCH model, with an

error of 2.900.

In Table VI, we further examine the performance of the models across the different

maturity categories as defined in Section 4.1. The table shows that the MN2NGARCH

model is uniformly the best model in terms of BIAS and its relative performance increases

with maturity. The MN2NGARCH model also has excellent performance in terms of RMSE

compared to the benchmark models. For example, for the VLT options the RMSE is 12.696

and 22.974 for the MN2NGARCH and CNGARCH models, respectively. For the ST options

the RMSE’s are similar, that is 5.074 and 4.813 respectively.

We next consider the performance across the different categories of moneyness. Table VII

shows that the MN2NGARCH model again performs well across all the categories, though

it is dominated by another mixture model, the MN2GARCH model, for the ITM and DITM

options. Compared to the mixture models, the benchmarks have errors of at least twice the

size. In terms of RMSE, the MN2NGARCH is uniformly the best model and the relative

performance is highest for the DOTM options. For this category of options the RMSE is

8.223 and 13.049 for the MN2NGARCH and CNGARCH models, respectively.
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Table VI: Dollar losses for different maturities

This table reports the dollar bias and root mean squared error for each model across different

maturities. The maturity categories are defined in Table IV.

Panel A: BIAS

VST ST MT LT VLT ALL

CV -1.317 -2.325 -4.691 -5.745 -6.104 -3.362
MN1GARCH 1.738 2.751 3.827 8.289 12.243 4.193
MN1NGARCH 1.393 1.947 2.473 4.709 8.252 2.771
MN2GARCH 1.391 2.331 2.911 4.869 5.280 2.782
MN2NGARCH 0.993 1.134 0.913 1.163 2.402 1.145
MN3GARCH 1.436 2.162 2.599 4.906 5.975 2.727
MN3NGARCH 1.011 1.271 1.492 3.364 5.841 1.879
CNGARCH 1.235 1.673 2.449 5.719 9.878 2.900
ICNGARCH 1.372 1.944 3.016 7.083 12.590 3.536

Panel B: RMSE

VST ST MT LT VLT ALL

CV 5.722 9.051 12.997 16.319 21.356 11.939
MN1GARCH 4.545 7.502 11.768 23.271 27.923 13.616
MN1NGARCH 4.033 6.573 9.942 16.588 20.472 10.418
MN2GARCH 4.265 8.184 13.460 21.831 23.380 13.105
MN2NGARCH 3.254 5.074 7.423 10.231 12.696 7.033
MN3GARCH 4.178 6.823 10.479 18.349 20.093 10.924
MN3NGARCH 3.187 5.041 7.817 15.181 21.391 9.476
CNGARCH 3.066 4.813 7.707 15.599 22.974 9.777
ICNGARCH 3.186 5.034 8.173 16.782 25.695 10.644
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Table VII: Dollar losses for different moneyness

This table reports the dollar bias and root mean squared error, for each model across different

moneyness categories. The moneyness categories are defined in Table IV.

Panel A: BIAS

DOTM OTM ATM ITM DITM ALL

CV -3.953 -1.488 -3.168 -5.698 -4.898 -3.362
MN1GARCH 8.600 3.821 1.907 1.719 1.998 4.193
MN1NGARCH 4.933 2.362 1.464 1.982 2.807 2.771
MN2GARCH 6.631 2.853 0.716 -0.074 0.831 2.782
MN2NGARCH 2.275 1.158 0.349 0.506 1.302 1.145
MN3GARCH 6.344 2.562 0.764 0.414 1.279 2.727
MN3NGARCH 4.324 1.394 0.484 0.707 1.936 1.879
CNGARCH 5.415 2.204 1.578 1.944 2.697 2.900
ICNGARCH 6.251 2.682 2.127 2.704 3.300 3.536

Panel B: RMSE

DOTM OTM ATM ITM DITM ALL

CV 10.135 11.172 12.814 14.590 12.762 11.939
MN1GARCH 19.096 11.283 9.942 10.588 12.886 13.616
MN1NGARCH 13.389 8.997 8.388 9.443 11.126 10.418
MN2GARCH 17.916 11.137 9.965 10.234 12.777 13.105
MN2NGARCH 8.223 6.136 6.280 7.399 7.515 7.033
MN3GARCH 14.934 9.077 8.349 8.964 10.593 10.924
MN3NGARCH 12.276 7.766 7.781 8.274 10.443 9.476
CNGARCH 13.049 7.957 7.765 8.405 10.111 9.777
ICNGARCH 14.248 8.607 8.440 9.249 10.881 10.644
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4.4 Implied standard deviation losses

The previous section considers the model’s option pricing performance in terms of actual

dollar losses. However, an interesting alternative is to compare the performance in terms

of implied standard deviation, or ISD, losses. In particular, these losses allow firstly to

gauge whether or not the models generate a sufficiently high level of volatility under the risk

neutral measure in general. The bottom part of Tables II, III, and V also provide results

for the overall performance of the models using ISD losses. Comparing across the tables it

is again seen that the MN2NGARCH model has the smallest errors using both metrics and

it outperforms the next best models, the MN3NGARCH model for the BIAS by 49% and

the CNGARCH model for the RMSE by 13%, respectively. Note that the size of the BIAS

for the MN2NGARCH model only amounts to 1.02%, an indication of the solid empirical

performance of the mixture model.

Secondly, when considering the ISD losses across maturity we assess which model best

fits the volatility term structure. Figure 6 plots the BIAS and the RMSE of the various

models considered against maturity and provides evidence on their ability to accommo-

date the volatility terms structure. The first thing to notice from Figure 6(a) is that the

MN2NGARCH model clearly outperforms the other models across maturity in terms of

BIAS, and its relative performance is even more striking for higher maturities. In fact, for

MT and higher maturities the BIAS for the MN2NGARCH is merely about 0.75%. On the

contrary, for the CNGARCH model the bias starts at 1.75% for the ST options but then

deteriorates until 3.23% for the VLT category. Figure 6(b) shows that the performance of

the MN2NGARCH is equally spectacular in terms of RMSE.

Finally, we analyze which model best captures the implied volatility smirk. Figure 7

plots the BIAS and the RMSE of the various models considered against moneyness. Figure

7(a) shows that mixture models have the lowest BIAS for all categories. In particular, for

DOTM, OTM, and ATM options the MN2NGARCH has the lowest BIAS whereas for the

ITM and DITM options the MN2GARCH model has the best performance. Figure 7(b),
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Figure 6: Implied Standard Deviation BIAS and RMSE across maturity

This figure plots the BIAS and RMSE of the Implied Standard Deviation, or ISD, as a function

of maturity. A ”�” denotes the MN1 or Gaussian distribution, a ”◦” the MN2 distribution, and

a ”△” the MN3 distribution. For each distribution a solid line denotes the GARCH specification

and a dotted line the NGARCH specification. The solid line without symbols is for the benchmark

component NGARCH model.
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Figure 7: Implied Standard Deviation BIAS and RMSE across moneyness

This figure plots the BIAS and RMSE of the Implied Standard Deviation, or ISD, as a function

of moneyness. A ”�” denotes the MN1 or Gaussian distribution, a ”◦” the MN2 distribution, and

a ”△” the MN3 distribution. For each distribution a solid line denotes the GARCH specification

and a dotted line the NGARCH specification. The solid line without symbols is for the benchmark

component NGARCH model.
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however, illustrates nicely how the MN2NGARCH model consistently has the lowest RMSE.

To conclude, Figure 7 provides solid evidence on the MN2NGARH models ability to explain

the volatility smile in our sample of index options.

5 Performance through time and in financial crises

The option data we consider spans a period of approximately 14 years which covers several

interesting subperiods: the dot-com bubble and its burst in 2002 (10, 182 options), the calm

period which followed (10, 857 options), and the period of financial turmoil starting in 2008

(6, 098 options). We note that each of these periods affected the options market in different

ways as can be seen from the time series of average option prices and implied volatilities

in Figure 5. Thus, we now examine the performance of the option pricing models through

these different market conditions.

Table VIII reports the dollar losses for these different subperiods and clearly shows that

the performance changes through time. First of all, when considering the period of the

dot-com bubble and burst we see that the mixture models and the component models have

similar performance in terms of both BIAS and RMSE. However, for the calm period from

2003-2007 this is not the case and the MN3NGARCH mixture model outperforms all the

other models. In fact, for the latter model the BIAS and the RMSE is as small as 0.209 and

2.827, respectively. Note that, for this calm period the errors are relatively small compared

to the full sample for all models, and this so especially for the RMSEs.

Finally, we consider the last period of financial turmoil which started in 2008. For this

period Table VIII shows that the MN2NGARCH performs extraordinarily well both in terms

of the BIAS and the RMSE. In particular, the BIAS for this model is 3.934 compared to

8.414 for the next best performing specification which is the MN1NGARCH model. The

CNGARCH has, with an error of 9.876, a slightly worse performance for this subperiod in

terms of BIAS although when considering the RMSE its performance is similar to that of the
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Table VIII: Dollar losses for different subperiods

This table reports the overall dollar bias and root mean squared error, for each model across

different subperiods. The DotCom period is from 1996 to 2002, for a total of 10, 182 options, the

calm period is from 2003 to 2007, for a total of 10, 857 options, and the period of the financial

crisis is from 2008 to 2009, for a total of 6, 098 options.

Panel A: BIAS

DotCom Calm period Financial crisis Full period

CV -6.971 4.593 -14.592 -3.362
MN1GARCH 1.601 2.691 11.196 4.193
MN1NGARCH 0.372 1.850 8.414 2.771
MN2GARCH -0.549 2.129 9.505 2.782
MN2NGARCH -1.034 1.622 3.934 1.145
MN3GARCH 0.252 1.694 8.700 2.727
MN3NGARCH -0.539 0.209 8.891 1.879
CNGARCH 0.835 0.919 9.876 2.900
ICNGARCH 1.241 1.314 11.325 3.536

Panel B: RMSE

DotCom Calm period Financial crisis Full period

CV 11.056 8.815 21.163 11.939
MN1GARCH 9.135 5.821 25.009 13.616
MN1NGARCH 7.907 4.779 18.383 10.418
MN2GARCH 7.425 5.152 25.000 13.105
MN2NGARCH 6.441 4.319 10.847 7.033
MN3GARCH 7.756 4.590 19.826 10.924
MN3NGARCH 6.521 2.827 17.730 9.476
CNGARCH 6.387 3.319 18.374 9.777
ICNGARCH 6.648 3.742 20.137 10.644
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MN1NGARCH model. However, for this metric the MN2NGARCH model again outperforms

the benchmark models with an error as low as 10.847 compared to 18.374 for the CNGARCH

benchmark. In conclusion, the results for this period provide strong evidence in favor of the

mixture model and show that they are capable of adapting to the rapid changes in market

conditions in this period which pose a challenge to the models considered here.

6 Conclusion

In this paper, we perform option pricing using asymmetric heteroskedastic normal mixture

models. We provide details on how to obtain the appropriate risk neutral dynamics and we

suggest a feasible way for option pricing within this general framework. When estimated

on a long sample of index returns we find support for three distributions in the mixture

model. We compare our option pricing model to several benchmarks including component

models and find substantial improvements in terms of both dollar losses and implied standard

deviation losses for a large sample of 27, 137 options on the S&P 500 index over a period of

almost 14 years.

In terms of the risk neutralization, we show that the risk neutral dynamics stay within the

class of asymmetric heteroskedastic normal mixture models, although the parameters of the

distribution are changed. These risk neutral parameters are easily interpreted as providing

investors with compensation for specific features of the model like the distribution with an

explosive variance process found in our data. Moreover, when comparing the properties of

the risk neutral distribution these may differ in a pronounced way from the properties under

the original measure used for inference.

We document that our model is capable of generating negative skewness and significant

amounts of excess kurtosis. In terms of pricing performance, our results confirm the impor-

tance of both these features for our sample of index options. When forecasting out-of-sample

substantial improvements are found compared to the benchmark models in terms of dollar
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losses and the ability to explain the smirk in implied volatilities. Overall, the dollar root

mean squared error of the best performing benchmark component model is 39% larger than

for the mixture model. When considering the recent financial crisis this difference increases

to 69%.

There are several interesting extensions for further research. The most important exten-

sion would be to incorporate option prices for inference on the model parameters. Another

extension would be to consider Markov switching models in which returns can have a high or

low mean and variance, and switches between these states are determined by a Markov pro-

cess. Within this framework, it is possible to allow for state dependent unit risk premiums

that further drive a wedge between the physical and risk neutral dynamics. However, this

framework would require more complex estimation procedures like e.g. Bayesian inference.
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