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1 Introduction

Most panel unit root tests are designed to test the joint null hypothesis of

a unit root for each individual series in a panel (see, for example, Breitung

and Pesaran (2008) for a recent survey). This raises the issue of how to

interpret a rejection of this joint null hypothesis. This paper suggests how

a researcher could proceed in classifying the individual series into stationary

and nonstationary sets.

Often, researchers will carry out this classi�cation in empirical work on

the basis of n individual (univariate) unit root tests based on some ad hoc

signi�cance level. To discipline and evaluate the aggregation of individual

tests, this paper suggests the use of some concepts from the statistical litera-

ture on multiple testing. In particular, we will argue that the use of the false

discovery rate (FDR) proposed by Benjamini and Hochberg (1995) provides

a useful diagnostic on the aggregate decision. The FDR is the expectation

of the proportion of rejected hypotheses that are true, or, in other words, the

expected fraction of series classi�ed as I (0) that are in fact I (1) : We sug-

gest two approaches: the �rst one adjusts the critical value of the individual

unit root tests to achieve a targeted FDR level, while the second approach

estimates the FDR based on a �xed choice of level for the individual tests

(for example, 5%).

Application of FDR as a controlling mechanism for our classi�cation

is faced with two di¢ culties. The �rst one is that FDR depends on the
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(obviously unknown) number of true null hypotheses. Thus FDR is not by

itself an identi�ed concept. We solve this problem in our context by the use

of the Ng (2008) estimator of the fraction of nonstationary series. The second

problem is the presence of cross-sectional dependence among the units in the

panel. We solve this problem by applying a bootstrap procedure to estimate

the distribution of p-values in the panel and thus control the FDR as in

Romano, Shaikh, and Wolf (2008) :

Alternative approaches to classifying the series among I (0) and I (1) com-

ponents have been proposed. Chortareas and Kapetanios (2008) proposed

the Sequential Panel Selection Method (SPSM) which consists of carrying

out a sequence of panel unit root tests on panels of decreasing size. After a

rejection, a researcher removes from the panel the series with the most evi-

dence in favor of stationarity. One then continues until the joint test of a unit

root for the remaining series in the panel is no longer rejected. A di¤erent

approach was suggested by Ng (2008) who estimates the fraction of nonsta-

tionary series. She conjectures that one can then identify the I (1) and I (0)

series by ordering them according to the magnitude of their autoregressive

parameter.

In independent work, Hanck (2009) uses multiple testing in classifying a

mixed panel, but he focuses on the family-wise error rate (FWE), a concept

that is less desirable when the number of tests performed (equal to the cross-

sectional dimension in this case) is large. Other economic applications of the

FDR concept include Barras, Scaillet, and Wermers (2010) to mutual fund
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performance, Bajgrowicz and Scaillet (2009) to technical trading rules, and

Deckers and Hanck (2009) to growth econometrics.

The reminder of this paper is organized as follows: the next section de-

scribes the standard panel unit root testing problem, while section 3 presents

the multiple testing methodology. Section 4 describes how one can control

or estimate the false discovery rate. Section 5 presents simulation evidence

that our proposal gives useful information. Finally, section 6 concludes.

2 Panel unit root testing problem

This section introduces brie�y the panel unit root testing problem. A more

exhaustive review can be found in Breitung and Pesaran (2008).

We suppose that we have panel data zit of individual i that is observed at

time t for i = 1; :::; n and t = 1; :::; T: Hence, n and T denote the size of the

cross section and time series dimensions, respectively. We model our panel

using a decomposition among deterministic and stochastic components as:

zit = dit + z
0
it; (1)

z0it = �iz
0
it�1 + yit;

where dit is the deterministic component, and z0it the stochastic component.

The component yit is assumed stationary so that non stationarity of the

stochastic component follows if �i = 1: Three basic models of the determin-
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istic components are typically of interest: dit = 0 8i; t; dit = �i (individual

intercepts only), and dit = �i + �it (individual trends).

The null hypothesis of interest is that all stochastic components are non-

stationary:

H0 : �i = 1 for all i = 1; : : : ; n;

whereas the alternative hypothesis takes the form:

HA : �i < 1 for some i;

where �i is the largest autoregressive root in the time series of individual i:

Since a panel unit root test is a joint test, one cannot readily interpret a

rejection. In particular, it does not provide any information on the properties

of individual time series in the panel. Our goal is to identify the stationary

series in the panel and provide a certain statistical evaluation of the identi-

�cation based on the individual unit root tests in the panel.

3 Multiple testing: False discovery rate

In this section, we present brie�y the multiple testing methodology; one can

see Lehmann and Romano (2005) for further details.

We have n separate testing problems (one for each series in the panel)

that are either true null or true alternative hypotheses. The number of true

null hypotheses will be denoted by n0 and the number of false null hypotheses
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will be denoted by n1. The outcome of each test is either to reject or not

to reject the null hypotheses. The testing result can be summarized by the

2� 2 table:

# non rejections # rejections total

the null is true M0j0 M1j0 n0

the null is false M0j1 M1j1 n1

total n�R R n

Thus, R out of n nulls are rejected, and among these R rejections, there

are M1j0 false rejections and M1j1 correct rejections.

The FDR is the expected value of the false discovery proportion. To

be more precise, suppose that we denote by FDP to be the false discovery

proportion, or the proportion of rejections that are incorrect:

FDP =
M1j0

R
if R > 0

= 0 if R = 0:

The FDR originally proposed by Benjamini and Hochberg (1995) is the ex-

pectation of the FDP :

FDRP = EP

�
M1j0

R
1 fR > 0g

�
:

It is possible to use FDP as a large n (the number of tests) approximation
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to FDRP and establish that

plim
n
FDP = lim

n
FDRP =

��0
Pr (reject the null at level �)

; (2)

where �0 = n0
n
; the fraction of true null hypotheses. In the context of a

mixture model where the number of tests n gets large, Storey (2003) provides

an interesting Bayesian interpretation of the FDR; that is the FDR is the

posterior probability of the null being true given that we have rejected a

particular null hypothesis:

4 Control and estimation of the FDR

There are two approaches to using FDR in practice. The �rst one is to

adjust the level of individual tests so as to control the resulting FDR: The

second approach �xes a level for individual tests and estimates the resulting

FDR of this procedure. We discuss each in turn.

4.1 Approaches to control FDR

Benjamini and Hochberg (1995) (BH hereafter) have suggested to adjust

the level of individual tests in the multiple testing procedure to keep the

FDR below a level pre-speci�ed by the researcher, say . Suppose that the

p-values of the n tests have been ordered in ascending order without loss of

generality: p̂1 < p̂2 < ::: < p̂n: They recommend the sequential Hohm (1979)
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method which compares increasing p-values to an increasing critical value

sequentially. We start with the hypothesis with the smallest p-value. We

reject it if p̂1 <  1n and move on to the second hypothesis. We compare the

second p-value with  2
n
. If we reject, we move to the third hypothesis and

so on. We proceed in this way until the �rst hypothesis j such that p̂j �  jn :

BH prove that this method controls the FDR in the sense that FDR < :

The BH method of controlling FDR is conservative. It uses the total

number of tests in the denominator of the critical values. One can show

(Storey et al., 2004) that replacing n by n0, the number of true null hy-

potheses, would also control FDR. Since n0 < n; the critical value will

be higher for any i; and more hypotheses will be rejected. We will call the

FDR-controlling method which rejects null hypotheses when p̂i � i
n0
 the

modi�ed BH procedure and denote it BH�:We will consider estimation of n0

in the next subsection.

A di¢ culty with the application of FDR in a panel context is the fact

that cross-sectional units display cross-sectional dependence. The above rules

have been shown to be valid under independence, although some form of

dependence can be allowed, see for example. Benjamini and Yuketeli (2001).

As shown by Romano, Shaikh, and Wolf (2008), the bootstrap or sub-

sampling can be used to control for general dependence structures. The

bootstrap is used to approximate the joint distribution of the individual test

statistics and calculate an appropriate set of critical values. This requires

n computations (from least signi�cant to most signi�cant) using up to n
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dimensional integrals and is subject to curse of dimensionality.

We need a bootstrap method that allows for serial dependence, cross-

sectional dependence and non-stationarity. To accomplish this. we bootstrap

vectors of �rst di¤erences of the data using the moving block bootstrap.

Similar methods have been used by Palm, Smeekes, and Urbain (2008) for

panel unit root tests and Gonçalves (2010) for a panel regression model.

However, Palm et al. (2008) bootstrap residuals from a sequence of individual

autoregressions. Hanck (2009) uses a sieve bootstrap on the residuals. One

could also use the double resampling of Hounkannounon (2009) which is

robust to general forms of cross-sectional and serial correlation.

Our algorithm is as follows:

1. Calculate the �rst di¤erence �zit = zit � zi;t�1 and collect these as

n-vectors for each time period �Zt = (�z1;t; :::;�zn;t)
0 :

2. For a given block size b; draw [T=b] blocks of b consecutive observations

of �Zt with replacement. Then draw a last block of length T � [T=b] b:

Call this bootstrap sample �Z�:

3. Generate the bootstrap sample of level variables by cumulating:

Z�t =

tX
j=1

�Z�j :

4. Compute an ADF test for each of the n series in the bootstrap sample.
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5. Repeat steps 2-4 B times.

6. Compute the n critical values recursively by solving equation (7) in

Romano et al. (2008) for n0 = 1; :::; n:

7. Having determined the set of critical values, fĉ1; :::; ĉng ; test null hy-

potheses sequentially. Reject the most signi�cant null hypothesis (the

one with the smallest statistic) if the ADF statistic for that series is less

than c1: If it is, reject the second null hypothesis if T2 < ĉ2 and so on

until a null hypothesis is no longer rejected, call it j�. The resulting set

of I(1) series are those from j� to n; and the I (0) series are 1; :::; j��1:

There are three practical di¢ culties with this approach: �rstly, it re-

quires the choice of block size b: As in Gonçalves (2010) ; we set it equal to

choice of bandwidth for long-variance estimation in Andrews (1991) in our

simulation below Secondly, as opposed to the other methods described here

which are based on individual p-values, the bootstrap method can only be

applied to balanced panels. If the number of cross-sectional units varies over

time, the above algorithm would create "holes" in our bootstrap sample. Fi-

nally, the method requires the computation of the joint distribution of the n

ADF statistics. It is therefore subject to the curse of dimensionality in two

ways. Firstly, the accuracy of any estimate of a high-dimensional distribu-

tion is likely dubious, even with a large number of bootstrap replications.

Second, because we have to compute n critical values, the di¢ culty of com-

putations increases with n: In the simulation experiments below, we only
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consider choices of n � 30:

4.2 Approaches to estimate FDR

Remember FDR in the limit (as the number of tests gets large) is given by

(2) :

FDR =
��0

Pr (reject H0i)
:

where � is the �xed, user-speci�ed level of the individual tests. We esti-

mate this quantity by replacing �0 and the denominator by estimators. The

denominator is easy to estimate by looking at the fraction of rejections:

\Pr (reject H0i) =
1

n

nX
i=1

1 (p̂i;T � �) =
R

n
:

Finding an estimator of �0 is more problematic. The fraction of true null

hypotheses is partly the problem we are trying to solve.

In the existing literature, Storey et al. (2004) have proposed the following

general estimator:

�̂0 (�) =
1� 1

n

Pn
i=1 1 (p̂i � �)
(1� �) (3)

for some � 2 (0; 1) : This comes from the fact that large p-values are likely to

come from true null hypotheses. Thus, we should expect �0 (1� �) p-values

above �. Storey et al. (2004) provide a data-dependent choice of the tuning

parameter � that minimize mean square error (MSE).
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Instead of relying on the above generic estimator, one can, in the context

of panel unit root tests, estimate the proportion of true null hypotheses by

using the results in Ng (2008). She estimates the fraction of units in a

panel that have a unit root by looking at the behavior of the cross-sectional

variance as a function of time: Her key insight is that the cross-sectional

variance grows linearly over time with a slope equal to the fraction of the

units that are non-stationary.

Ng showed that the cross-sectional variance Vt = 1
n

Pn
i=1 (zit � �zt)

2 is

approximately linear in t with coe¢ cient �0 :

Vt t c+ �0t

for some constant c, which suggests the estimator:

�̂0 =
TX
t=1

�Vt: (4)

With an estimator of �0 we can get an estimate of FDR as:

\FDR =
�̂0�

R̂=n
=

�̂0�
1
n

Pn
i=1 1 (p̂i � �)

;

which is consistent if �̂0
p! �0:
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5 Simulation

In this section, we report results from a small simulation experiment. We

want to analyze the e¤ects on the FDR and its estimators of the fraction of

series with a unit root, the size of n and T; and the extent of cross-sectional

dependence.

We consider the basic dynamic panel data model (1) with heterogenous

intercepts:

zit = �i + z
0
it;

z0it = �iz
0
it�1 + yit;

where yit exhibits cross-sectional dependence through a factor model intro-

duced in the residuals as in Moon and Perron (2004) and Pesaran (2007) :

yit = �ift + uit

where the factor loadings are U [0; 1] and the factor is an AR(1):

ft = :5ft�1 + vt

where vt s i:i:d:N (0; 1) .The autoregressive parameter �i is 1 for the �rst �0

fraction of the series and for the remaining (1� �0) fraction, �i is U [0; :9] :

We consider 3 values for �0 : .1, .5 and .9. The individual e¤ects �i are
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N (0; 1) : Finally, the idiosyncratic component uit is ARMA(1,1):

(1� �L)uit = (1 + �L) "it

and "it s i:i:d:N (0; 1) : We consider three values for each of � and �; -.5,

0, and .5 but do not consider cases where the roots cancel each other out.

This means that we have a total of 7 pairs of � and �: To preserve space,

and as the results change in an obvious way with �0, we report results only

for �0 = :5: We also report results only for three pairs of � and � : when

uit is i.i.d. (� = � = 0), when it has a negative MA root (� = 0; � = �:5);

and when it has a positive AR root (� = :5; � = 0). We have also looked

at the case where the units are cross-sectionally independent (which we can

interpret as �i = 0 for all i): Results for other (�; �) pairs and for independent

cross-sections are very similar to those reported here. All other results are

available upon request.

We consider the n null hypotheses that each series has a unit root. We

use an ADF test for this purpose. We choose the degree of augmentation in

the regression with the MAIC or Ng and Perron (2001) with a maximum of

4 lags. We consider two choices of n and T; n = 10; 30 and T = 100; 500:

We do not consider larger choices of n because of the heavy computational

burden imposed by the bootstrap procedure of Romano et al. (2008) : We

run each experiment 1000 times.

In Table 1, we report the average FDP over the replications (which ap-
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proaches FDR as the number of replications increases) for a �xed test size

of 5% and three (conservative) estimates that di¤er according to the choice

of �̂0: The �rst one uses the true �0 (and is therefore infeasible), the second

uses Ng�s estimator (4), and the last one uses Storey�s estimator (3) : We

report both the mean and standard deviation of the last two estimators.

From this table, we �rst notice that FDR estimators can be quite conser-

vative. Secondly, there is not much e¤ect of either n or T on the estimators.

Finally, the relative performance of these estimators follows that of the esti-

mators of �0: Because Ng�s estimator of �0 is less biased but more volatile,

the estimator of FDR based on it is less biased but more variable in gen-

eral. However, it behaves quite poorly in the large MA cases because the

estimator inherits the large size distortions of univariate unit root tests see

Schwert, 1989). The negative MA root makes the observed series look like a

stationary series, thus biasing the estimator of �0 downward.

In the last two columns of table 1, we compare with two other methods of

classifying series into I (0) and I (1) units. The �rst method was proposed by

Ng (2008) : After having estimated the fraction of nonstationary series, one

can order the series according to the estimated largest autoregressive root and

treat the �̂0n series with the highest roots as non stationary and the rest as

stationary. The second method we consider is the Sequential Panel Selection

Method (SPSM) of Chortareas and Kapetanios (2009) which is based on a

series of unit root tests on panels of decreasing dimensions. Because our DGP

includes cross-sectional dependence, we use the CIPS test of Pesaran (2007)
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as the panel unit root test in the procedure (Chortareas and Kapetanios used

the Im et al. (2003) test which assumes cross-sectional independence).

In the last two columns of table 1, we report the FDR of these two

methods. Note that these quantities cannot be estimated in practice and that

one cannot use some estimated FDR as the basis for comparing classi�cation

methods. Since neither method is geared towards control of the FDR; it is

not surprising that both methods have a higher FDR than the method based

on individual tests. Secondly, one can note that Ng�s method has much higher

FDR than other methods. Finally, the SPSM does well in terms of FDR

and is competitive with a sequence of individual tests.

In table 2, we change our approach and report results when we try to con-

trol the FDR at 5%. We consider three methods described above. The �rst

one is the original Benjamini and Hochberg (BH) method that compares the

p-values to an increasing sequence of critical values. This method implicitly

assumes that all null hypotheses are correct (�0 = 1). The second method

is the modi�ed BH method (denoted BH�) which uses the Ng estimator of

�0 when calculating the increasing critical values. Finally, we report the

bootstrap-based method of Romano et al. (2008) implemented as described

above. If the methods controlled the FDR perfectly, we would expect 5%

in all cells in the table. Numbers below 5% indicate that the method con-

trols the FDR since the proportion of false rejections is less than the desired

level of 5%. However, it lacks power since we could have rejected other null

hypotheses without violating the FDR constraint.
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The �rst thing to note from the table is that the original BH method is

very conservative. Despite a desired level of 5%, we reject much less often

than that. This is due to the fact that BH assumes that �0 = 1 when

constructing the critical values. On the other hand, using the Ng estimator

of �0 alleviates these problems as expected. However, in the cases with large

MA components, the FDR is not controlled at all and the method performs

quite poorly. Finally, the bootstrap method of Romano et al. performs really

well in obtaining an FDR of approximately 5% even in the large MA cases

were the modi�ed BH procedure performs poorly.

6 Conclusion

In this paper, we demonstrate how to use the FDR in evaluating I(1)=I(0)

classi�cations based on individual unit root tests. In the literature, most

of the analysis of the FDR have been done under independence. Yet, in

many interesting applications, cross-sectional data are not independent, and

sometimes this dependence is quite strong.

As developed here, the methods used to control or dependence require

the use of the joint distribution of the test statistics. To obtain an estimate

of this distribution, we rely on the bootstrap, and this method is subject

to the curse of dimensionality. Application to panels with a large number

of cross-sections would probably require the use of a parametric model of

dependence such as a factor or spatial model.
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Table 1. FDR and estimates of FDR (%) for di¤erent classi�cation schemes

ADF tests at �xed 5% level Ng SPSM (Chortareas and Kapetanios, 2009)
n T � � FDR dFDR

�0 �̂Ng0 �̂Storey0

10 100 0 -.5 1.9 6.9 2:8
(3:4)

8:3
(4:7)

36.4 6.1

0 0 2.0 6.5 6:4
(6:1)

7:6
(3:8)

18.9 6.9

.5 0 2.5 8.0 6:8
(7:1)

9:9
(6:9)

22.9 7.6

10 500 0 -.5 3.1 4.9 1:0
(1:0)

5:3
(2:1)

43.7 3.7

0 0 2.6 4.9 5:0
(4:0)

5:4
(2:1)

19.2 5.8

.5 0 3.7 4.8 4:1
(3:2)

5:2
(2:1)

21.8 3.9

30 100 0 -.5 1.7 6.5 2:8
(2:3)

8:5
(3:6)

35.3 4.8

0 0 2.1 6.1 6:1
(3:9)

8:1
(3:3)

15.4 4.8

.5 0 2.5 7.3 6:4
(3:8)

9:6
(3:8)

18.1 6.5

30 500 0 -.5 3.4 4.8 1:0
(:7)

5:7
(2:2)

44.1 1.4

0 0 2.3 4.9 4:6
(2:8)

5:9
(2:5)

16.0 2.7

.5 0 3.4 4.8 4:0
(1:9)

5:5
(2:1)

18.5 1.4

Note: The �rst column reports the proportion of false rejections. The next three columns report estimates of the false

discovery rate using �0; Ng�s estimator of �0, and Storey�s estimator of �0 with data-dependent choice of �: Finally,
the last two columns report the false discovery rate associated with di¤erent classi�cation schemes, one based on Ng�s

ordering autoregressive roots and Chortareas amd Kapetanios�s scheme based on a sequence of panel unit root tests.

Table 2. FDR control (%)

n T � � BH BH� RSW

10 100 0 -.5 1.0 14.3 4.0
0 0 .9 6.5 3.2
.5 0 .6 8.5 4.8

10 500 0 -.5 1.8 21.4 6.8
0 0 1.5 9.5 5.6
.5 0 2.1 12.1 6.2

30 100 0 -.5 .6 16.2 3.8
0 0 .9 3.5 3.5
.5 0 .8 4.4 4.0

30 500 0 -.5 1.8 34.0 7.0
0 0 1.1 5.0 5.2
.5 0 1.9 7.4 8.4

Note: The table reports the proportion of false rejections using the Benjamini-Hochberg method and the bootstrap

method of Romano et al. (2008) with a desired FDR level of 5%.




