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Abstract 
We propose exact simulation-based procedures for: (i) testing mean-variance efficiency when the zero-

beta rate is unknown, and (ii) building confidence intervals for the zero-beta rate. On observing that 

this parameter may be weakly identified, we propose LR-type statistics as well as heteroskedascity and 

autocorrelation corrected (HAC) Wald-type procedures, which are robust to weak identification and 

allow for non-Gaussian distributions including parametric GARCH structures. In particular, we 

propose confidence sets for the zero-beta rate based on “inverting” exact tests for this parameter; these 

sets provide a multivariate extension of Fieller’s technique for inference on ratios. The exact 

distribution of LR-type statistics for testing efficiency is studied under both the null and the alternative 

hypotheses. The relevant nuisance parameter structure is established and finite-sample bound 

procedures are proposed, which extend and improve available Gaussianspecific bounds. Furthermore, 

we study the invariance to portfolio repacking property for tests and confidence sets proposed. The 

statistical properties of available and proposed methods are analyzed via aMonte Carlo study. 

Empirical results on NYSE returns show that exact confidence sets are very different from the 

asymptotic ones, and allowing for non-Gaussian distributions affects inference results. Simulation and 

empirical results suggest that LR-type statistics - with p-values corrected using the Maximized Monte 

Carlo test method - are generally preferable to their Wald-HAC counterparts from the viewpoints of 

size control and power. 
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1. Introduction

One of the most important extensions of the Capital Asset Pricing Model (CAPM) consists in allow-
ing for the absence of a risk-free asset. From a theoretical viewpoint, this can be due to restrictions
on borrowing [Black (1972)] or an investor’s riskless borrowing rate that exceeds the Treasury bill
rate [Brennan (1971)]. In this case, portfolio mean-variance efficiency is defined using the expected
return in excess of the zero-beta portfolio. The latter is however unobservable which leads to con-
siderable empirical difficulties.

Indeed, there are two basic approaches to estimating and assessing this version of the CAPM
(denoted below as BCAPM). The first one uses a “two-pass” approach that may be traced back
to Black, Jensen and Scholes (1972) and Fama and MacBeth (1973): betasare first estimated from
time series regressions for each security, and then the zero-beta rate is estimated by a cross-sectional
regression on thesebetas. This raises errors-in-variables problems that affect statistical inference
in both finite and large samples.1 The second approach – which appears in the seminal work of
Jensen (1968) – avoids this problem by using as statistical framework a multivariate linear regression
(MLR).2 In this paper, we focus on the MLR approach and consider two basic problems: (1) testing
portfolio efficiency; (2) building a reliable confidence set(CS) for the zero-beta rate.

For clarity, letRit, i = 1, . . . , n, be the returns onn securities in periodt, and R̃Mt the
return on a market benchmark fort = 1, ... , T , and consider then equations(i = 1, . . . , n)
associated with the time series regressions ofRit on a constant and̃RMt, where the individual-
equation disturbances are heteroskedastic and contemporaneously cross-correlated; letΣ = K ′K
refer to the error scale (or variance/covariance) matrix. If the intercepts from thesen equations (the
alphas) are denotedai, and the coefficients on the benchmark regressor (thebetas) are denotedβi,
i = 1, . . . , n, then the BCAPM equilibrium relations imply the following: there is a scalarγ, the
return on the zero-beta portfolio, such thatai − γ(1− βi) = 0 , i = 1, . . . , n. Our aim consists in
assessing these constraints (denoted below asHB) as well as estimatingγ.

The above cited literature provides analytical formulae for Gaussian likelihood-ratio (LR) sta-
tistics, the maximum likelihood estimator (MLE) ofγ (denoted below aŝγ), and for a conformable
asymptotic variance estimator [denoted below asVar(γ̂)]. It is however difficult to find reliable
critical points in this context. While Gibbons (1982) used an asymptoticχ2 critical value for the
LR statistic, subsequent authors found this could lead to serious over-rejections, so various finite-
sample corrections – such as bounds – have been suggested; see Shanken (1985, 1986, 1996), Stew-
art (1997), Zhou (1991, 1995), and Velu and Zhou (1999). These corrections depend crucially on
normality, which may be inappropriate for financial data [see Fama (1965), Richardson and Smith
(1993), Dufour, Khalaf and Beaulieu (2003) and Beaulieu, Dufour and Khalaf (2005, 2007, 2009)].
Furthermore, evidence on the properties of the confidence interval based onVar(γ̂) is unavailable.
Despite the simplicity of the above framework, discrepancies between asymptotic and finite sample
distributions are not surprising. Indeed, three difficulties deserve notice.
(1) Dimensionality: asn increases, the dimension of the scale matrixΣ grows rapidly and available

1Seee.g. Litzenberger and Ramaswamy (1979), Banz (1981), Roll (1985), Chen, Roll and Ross (1986), Shanken
(1992), Kim (1995), Shanken and Zhou (2007), Lewellen, Nagel and Shanken (2009), Kan, Robotti and Shanken (2008),
and Kleibergen (2009).

2For other work based on the MLR approach to CAPM analysis, seeGibbons (1982), Jobson and Korkie (1982),
Kandel (1984, 1986), Amsler and Schmidt (1985), Shanken (1985, 1986, 1996), Kandel and Stambaugh (1989), Zhou
(1991), Shanken (1992), Fama and French (1993), Chou (2000), Fama and French (2004) and Perold (2004).
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degrees-of-freedom decrease conformably.3 Even in linear or standard setups where the relevant
asymptotic distributions may be free ofΣ, this matrix can still affect the distributions in finite
samples. Furthermore, positive definite estimates ofΣ require a largeT relative ton, so portfolios
rather than securities are often used in practice.
(2) Portfolio repacking[see Kandel and Stambaugh (1989)]: to preserve meaningful pricing re-

lations when portfolios are used, transformations of the return vectorRt = (R1t, ... , Rnt)
′ into

R∗
t = ARt whereA is ann × n invertible matrix such thatAιn = ιn andιn is ann-dimensional

vector of ones, should ideally not affect inference.
(3) Identification: asβi → 1, γ becomes weakly identified. Weak identification strongly affects

the distributions of estimators and test statistics, leading to asymptotic failures.4 This should not be
taken lightly, for although reportedbetas[seee.g. Fama and MacBeth (1973)] are often close to
one, in view of properties (1) and (2), one may not assume irregularities away even when estimated
betasare not close to one. Indeed, in the regression ofR∗

t [from (2)] on a constant and̃RMt, with
interceptsa∗i and slopesβ∗i , ai−γ(1−βi) = 0 , i = 1, . . . , n⇔ a∗i−γ(1−β

∗
i ) = 0 , i = 1, . . . , n

for any γ andA. Portfolio repacking altersbetasalong with scale yet preserves the definition of
γ, leading to identification problems asβ∗i → 1. So thebetasand scale parameters play a role in
identifying γ.

Our aim in this paper consists in providing inference methods that are robust to dimensionality
and identification problems, whose outcomes are invariant to portfolio repacking. We first consider
the problem of estimatingγ. We show by simulation that available procedures provide poor cov-
erage. So we propose exact CSs based on “inverting” exact tests for specific values ofγ, i.e. the
set of values not rejected by these tests. This method is a generalization of the classical procedure
proposed by Fieller (1954) to estimate parameter ratios.5

To introduce the Fieller-type method in its simplest form with reference to the problem at hand,
suppose (for illustration sake) that we aim at estimatingγ from the univariate regression of the return
of the i-th security(Rit) on a constant and̃RMt, so thatγ = −ai/δi whereδi = (βi − 1). Let
âi and δ̂i denote the OLS estimates from this regression, with estimated variances and covariance
Var(âi), Var(δ̂i) andCov(âi, δ̂i). For each possible valueγ0 of the ratio, consider thet-statistic
ti (γ0) = (âi+γ0δ̂i)/[Var(âi)+δ

2
0Var(δ̂i)+2δ0Cov(âi, δ̂i)]

1/2 for testingHi(γ0) : ai+γ0δi = 0.
Then, we obtain a CS with level1−α for γ by finding the set ofγ0 values which are not rejected at
levelα usingti (γ0) and a standard normal two-tailed critical valuezα/2. This means that we collect

all γ0 values such that|ti (γ0)| ≤ zα/2 or alternatively such that(âi + γ0δ̂i)
2 ≤ z2α/2(Var(âi) +

δ20Var(δ̂i)+2δ0Cov(âi, δ̂i)), leading to a second degree inequality inγ0. The resulting CS has level
1− α irrespective whetherδi is zero or not. In this paper, we generalize this method to account for
the multivariate definition ofγ as described above, in Gaussian and non-Gaussian settings,as well
as allowing for conditional heteroskedasticity. Empirically, we focus on multivariate Student-t and
normal mixture distributions, as well as Gaussian GARCH.

3See Shanken (1996), Campbell, Lo and MacKinlay (1997), Dufour and Khalaf (2002), Beaulieu, Dufour and Khalaf
(2005, 2007, 2009), Sentana (2009), and the references therein.

4See,e.g. Dufour (1997, 2003), Staiger and Stock (1997), Wang and Zivot (1998), Zivot, Startz and Nelson (1998),
Dufour and Jasiak (2001), Kleibergen (2002, 2005, 2009), Stock, Wright and Yogo (2002), Moreira (2003), Dufour and
Taamouti (2005, 2007) and Andrews, Moreira and Stock (2006).

5For the ratio of the means of two normal variables with equal variances, Fieller gave a solution that avoids non-
regularities arising from a close-to-zero denominator. Extensions to univariate regressions or to several ratios with equal
denominators can be found in Zerbe (1978), Dufour (1997), Bolduc, Khalaf and Yelou (2008).
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To do so, we consider two statistics [denotedLR(γ0) andJ (γ0) below] for testingH(γ0) :
ai + γ0δi = 0, i = 1, . . . , n. LR(γ0) is the likelihood ratio (LR) derived from the Gaussian error
model, whileJ (γ0) is a heteroskedascity and autocorrelation corrected (HAC)multivariate Wald
statistic [seee.g. MacKinlay and Richardson (1991), Ravikumar, Ray and Savin (2000), and Ray
and Savin (2008)]. Using any one of these tests, we can build confidence sets by finding the values of
γ0 which are not rejected at levelα. This requires a distributional theory for the test statistics. While
anF -based cut-off point is available forLR(γ0) in the i.i.d. Gaussian case [see Beaulieu, Dufour
and Khalaf (2007) and Gibbons, Ross and Shanken (1989)], we show in a simulation study that usual
asymptotic critical points perform poorly especially forJ (γ0). To deal with such difficulties, we
apply the maximized Monte Carlo (MMC) test procedure [Dufour (2006)] to obtain finite-sample
p-values forLR(γ0) andJ (γ0) in models with non-Gaussian and/or non-i.i.d. errors, as follows: a
(simulated)p-value function conditional on relevant nuisance parameters is numerically maximized
(with respect to these parameters), and the test is significant at levelα if the largestp-value is not
larger thanα.6

To implement this approach efficiently, it is important to characterize the nuisance parameters
in the null distributions of the test statistics. We show that the null distribution ofLR(γ0) does not
depend onB andΣ, so the only nuisance parameters are: the degrees-of-freedom for the Student-t
distribution, the mixing probability and scale-ratio parameters for normal mixtures, or the GARCH
parameters. The parametric bootstrap relates to the MMC method, in the sense that the maxi-
mization step is replaced by a uniquep-value estimation, based on a consistent nuisance parameter
estimate. For the GARCH case, such estimates may be unreliable in high-dimensional models; we
show that the MMC method avoids this problem, with minimal power costs.

Because anF -based exact cut-off is available for the Gaussian case, we show that the CS which
invertsLR(γ0) can be obtained by solving a quadratic inequation. For non-i.i.d. or non-Gaussian
distributions, we implement a numerical search running theMMC method for each choice forγ0.
Furthermore, we show that all proposed CSs provide relevantinformation on whether efficiency is
supported by the data, a property not shared by standard confidence intervals. Indeed, our CSs may
turn out to be empty, which occurs when all possible values ofγ are rejected.

We next consider testing efficiency in the BCAPM context. We study LR and Wald-HAC cri-
teria based on minimizing (overγ0) the above definedLR(γ0) andJ (γ0) statistics. We show that
the exact distribution ofminγ0

{LR(γ0)} depends on a reduced number of nuisance parameters
which are functions of bothB andΣ. We also generalize Shanken’s (1986) exact bound test be-
yond the Gaussian model, and propose a tighter bound, which involves a numerical search for the
tightest cut-off point, based on the MMC method. The MMC based bound is also extended to the
minγ0

{J (γ0)} case. This approach, in conjunction with the above defined CSbased onJ (γ0),
provides an interesting alternative to available GMM estimation methods [including the case re-
cently analyzed by Shanken and Zhou (2007)].

We conduct a simulation study to document the properties of our proposed procedures relative to
available ones. In particular, we contrast problems arising from small samples with those caused by
fundamentally flawed asymptotics. We next examine efficiency of the market portfolio for monthly
returns on New York Stock Exchange (NYSE) portfolios, builtfrom the University of Chicago
Center for Research in Security Prices (CRSP) 1926-1995 data base. We find more support for

6This procedure is based on the following fundamental property: when the distribution of a test statistic depends
on nuisance parameters, the desired levelα is achieved by comparing the largestp-value (over all nuisance parameters
consistent with the null hypothesis) withα.
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efficiency under the non-normal or non-i.i.d. hypothesis. Exact CSs forγ considerably differ from
asymptotic ones, and Wald-HAC based CSs are much wider than the GARCH corrected LR-based
ones.

The paper is organized as follows. Section 2 sets the framework and discusses identification of
γ. In Section 3, we propose finite-sample tests for specific values ofγ, and the corresponding exact
CS are derived in Section 4. The exact distribution of the LR efficiency test statistic is established
in Section 5, and bound procedures are proposed in Section 6.The simulation study is reported in
Section 7. Our empirical analysis is presented in Section 8.We conclude in Section 9.

2. Framework and identification of γ

LetRit, i = 1, . . . , n, be the returns onn securities in periodt, andR̃Mt the return on a market
benchmark(t = 1, ... , T ). Our analysis of the BCAPM model is based on the following standard
MLR setup [Gibbons (1982), Shanken (1986), MacKinlay (1987)]:

Rit − R̃Mt = ai + (βi − 1) R̃Mt + uit , i = 1, . . . , n, t = 1, . . . , T, (2.1)

whereuit are random disturbances. The testable implication of the BCAPM on (2.1) is the following
one: there is a scalarγ, the return on the zero-beta portfolio, such that

HB : ai + γδi = 0 , δi = βi − 1, i = 1, . . . , n, for someγ ∈ Γ , (2.2)

whereΓ is some set of “admissible” values forγ. Sinceγ is unknown,HB is nonlinear. The latter
can be viewed as the union of more restrictive linear hypotheses of the form

H(γ0) : ai + γ0δi = 0 , i = 1, . . . , n, (2.3)

whereγ0 is specified. This observation will underlie our exact inference approach.
The above model is a special case of the following MLR:

Y = XB + U (2.4)

whereY = [Y1, ... , Yn] is T × n, X is T × k of rankk, U = [U1, . . . , Un] = [V1, . . . , VT ]
′.

For (2.1),Y = [R1, ... , Rn] , X =
[
ιT , R̃M

]
, Ri = (Ri1, ... , RiT )

′ , R̃M =
(
R̃M1, ... , R̃MT

)′
,

B = [a, β]′, a = (a1, . . . , an)
′, β = (β1, . . . , βn)

′, andιj refers to aj-dimensional vector of
ones (for anyj). We shall also use the following equivalent forms for the model and hypotheses
considered:

Ỹ = Y − R̃Mι
′
n = XC + U , C = B −∆ = [a, β − ιn]

′, ∆ = [0, ιn]
′, (2.5)

H̃(γ0) : H(γ0)C = 0 , H(γ0) = (1, γ0) whereγ0 is specified, (2.6)

H̃B : H(γ)C = 0 , H(γ) = (1, γ), for someγ ∈ Γ. (2.7)

We further assume that we can condition onR̃M and

Vt = (u1t, . . . , unt)
′ = K ′Wt , t = 1, . . . , T , Wt = (W1t, . . . , Wnt)

′, (2.8)
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whereK is unknown and nonsingular,W = [W1, . . . , WT ]
′ is independent ofX, and the distrib-

ution ofW is either fully specified or specified up to an unknown distributional shape parameterν.
We first present results which require no further regularityassumptions. We also consider further
restrictions, which entail that the distribution ofW belongs to a specific familyHW (D, ν), where
D represents a distribution type andν ∈ ΩD any (eventual) nuisance parameter characterizing the
distribution. In particular, we consider the multivariatenormal(DN ), Student-t (Dt) and normal
mixture(Dm) distributions:

HW (DN ) : Wt
i.i.d
∼ N

[
0, In

]
, (2.9)

HW (Dt, κ) :Wt = Z1t/(Z2t/κ)
1/2 , Z1t

i.i.d
∼ N

[
0, In

]
, Z2t

i.i.d
∼ χ2(κ) , (2.10)

HW (Dm, π, ω) : Wt = It(π)Z1t + [1− It(π)]Z3t , Z3t
i.i.d
∼ N

[
0 , ωIn

]
, 0 < π < 1 , (2.11)

whereZ2t andZ3t are independent ofZ1t, and It(π) is an indicator random variable independent
of
(
Z1t, Z3t

)
such thatP[It(π) = 0] = 1 − P[It(π) = 1] = π. So, in (2.8),ν = κ under (2.10),

andν = (π, ω) under (2.11). IfE(WtW
′
t) = In, the covariance ofWt isΣ = K

′
K. Σ is positive

definite with further further restrictions. However, further constraints are needed in order forK to
be uniquely determined. IfWt is Gaussian, we may assume thatK corresponds to the Cholesky
factorization ofΣ. Time-dependence may be fit via appropriate specifications for the distribution
of Wt, t = 1, . . . , T . Since time varying volatility is prevalent in financial data, we consider the
parametric GARCH structure:

uit = with
1

2

it, hit = (1− φ1i − φ2i) σ
2
i + φ1iw

2
i,t−1 + φ2ihi,t−1 , (2.12)

wherewit are uncorrelated standard normal variables. This process may easily be reparametrized as
in (2.8), whereK is a diagonal matrix with diagonal terms(1− φ1i − φ2i)

1/2 σi , i = 1, . . . , n,
and eachWit follows a univariate stationary GARCH process with unit intercept. Conforming with
the above notation, we refer to this distributional hypothesis asHW (DG, φ), whereφ is the2n× 1
vector(φ11, . . . , φ1n, φ21, . . . , φ2n).

7

Even thoughai andβi are well identified,γ is defined through a nonlinear transformation that
may fail to be well-defined: the ratioγ = ai/(1 − βi) is not defined or, equivalently, the equation
ai = γ(1−βi) does not have a unique solution, whenβi = 1. In such situations, the distributions of
many standard test statistics become non-standard, so the corresponding tests are unreliable and the
associated confidence sets invalid. In particular, asymptotic standard errors are unreliable measures
of uncertainty and standard asymptotically justifiedt-type tests and confidence intervals have sizes
that may deviate arbitrarily from their nominal levels; seethe literature on weak identification [as
reviewed, for example, in Dufour (2003) and Stock et al. (2002)]. Both the finite and large-sample
distributional theory of most test statistics can be affected. While the discontinuity atβi = 1
is straightforward to see, the analysis below reveals that this is in fact not the whole story. In
particular, we study the properties of estimators and test statistics following data transformations of
the form Ỹ∗ = Ỹ A, whereA is any nonsingular fixed matrix of ordern. On comparing (2.1) to
its transformed counterpart, we see that irregularities cannot be safely assumed away, even when

7Ideally, a multivariate GARCH structure may be considered if T is sufficiently large relative ton; see Bauwens,
Laurent and Rombouts (2006) for a recent survey. We adopt (2.12) since our empirical analysis relies on monthly data
with 12 portfolios over 5 year subperiods (i.e.T = 60 andn = 12).

5



observedbetasare not close to one.
One of the most common inference methods in this context relies on the log-likelihood

ln[L(Y, B , Σ)] = −
nT

2
(2π)−

T

2
ln(|Σ|)−

1

2
tr[Σ−1(Y −XB)′(Y −XB)] . (2.13)

The unrestricted MLE ofB andΣ are:

B̂ = (X ′X)−1X ′Y = [â, β̂]′, Σ̂ = Û ′Û/T ,

whereÛ = Y −XB̂ , â = (â1, ... , ân)
′ andβ̂ = (β̂1, ... , β̂n)

′. The LR statistic to testH(γ0)
whereΣ̂(γ0) is the MLE ofΣ underH(γ0) is:

LR(γ0) = T ln[Λ(γ0)], Λ(γ0) = |Σ̂(γ0)|/|Σ̂| =
n

T − n− 1
W(γ0) + 1, (2.14)

Σ̂(γ0) = Σ̂ +
(
B̂′H( γ0)

′[H( γ0)(X
′X)−1H( γ0)

′]−1H( γ0)B̂
)
/T , (2.15)

W(γ0) =
T − n− 1

n

(
â+ δ̂γ0

)′
Σ̂−1

(
â+ δ̂γ0

)

1 +
[
(µ̂M − γ0)

2/σ̂2M
] , (2.16)

µ̂M =
1

T

T∑

t=1

R̃Mt , σ̂2M =
1

T

T∑

t=1

(R̃Mt − µ̂M )2, δ̂ = β̂ − ιn. (2.17)

W(γ0) is the Hotelling statistic. Furthermore, the LR criterion to testHB is

LRB = T ln(ΛB) = inf {LR(γ0) : γ0 ∈ Γ} = LR(γ̂) , (2.18)

ΛB = |Σ̂B|/|Σ̂| , |Σ̂B| = inf {|Σ̂(γ0)| : γ0 ∈ Γ} , (2.19)

whereΣ̂B is the MLE ofΣ underHB andγ̂ is the unrestricted MLE ofγ; see Shanken (1986). The
log-likelihood for (2.5) is

ln
[
L̃(Ỹ , C , Σ)

]
= ln

[
L(Y − R̃Mι

′
n, B −∆ , Σ)

]
= ln[L(Y, B , Σ)] (2.20)

and the LR statistics for testing̃H(γ0) andH̃B coincide withLR(γ0) andLRB. If Ĉ is the MLE
of C in (2.5), GMM estimation leads to

ϑ̂ = vec(Ĉ ′) (2.21)

where for anyn× k matrixA, vec(A) is the(nk)× 1 vector obtained by stacking the columns ofA
on top of each other. SoW(γ0) may be viewed as a Wald statistic based on the standardized distance
between̂a + δ̂γ0 and zero, which conveys an asymptotic least-squares and a GMM interpretation
of γ̂. This may be exploited to allow for serial dependence, for example via a properly corrected
weighting matrix. We consider the Wald-HAC statistic [see MacKinlay and Richardson (1991),
Ravikumar et al. (2000), and Ray and Savin (2008)] whereR = (1, γ0)⊗ In andÛ

′

t is thet-th row
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of Û :

J (γ0) = T ϑ̂
′
R
′

[
R

((
X ′X

T

)−1

⊗ In

)
ST

((
X ′X

T

)−1

⊗ In

)
R
′

]−1

Rϑ̂ (2.22)

where

ST = Ψ0,t +
q∑

j=1

(
q − j

q

)[
Ψj,T + Ψ

′

j,T

]
, Ψj,T =

1

T

T∑
t=j+1

(
Xt ⊗ Ût

)(
Xt−j ⊗ Ût−j

)′
.

UnderH(γ0), J (γ0) follows aχ2(n) distribution asymptotically. A GMM estimator̃γ of γ can be
obtained by solving the problem

JB = inf {J (γ0) : γ0 ∈ Γ} = J (γ̃) . (2.23)

A Wald-type formula for an asymptotic information-matrix-based standard error associated with
γ̂ is provided by Campbell et al. (1997, Chapter 5, equation 5.3.81):

Var(γ̂) =
1

T

(
1 +

(µ̂M − γ)2

σ̂2M

)
[(ιn − β)′Σ−1(ιn − β)]−1 . (2.24)

Whereas corrections may be derived for the non-Gaussian case [as in Barone-Adesi, Gagliardini
and Urga (2004) who study a related asset pricing problem], the fact remains that (2.24) or regular
“sandwich-type” corrections would depend non-trivially on γ, β and particularly onΣ, leading
to serious irregularities. For example,Var(γ̂) involves a division by(ιn − β)′Σ−1(ιn − β) and
thus becomes ill-defined at the unitbetaboundary; this divisor also illustrates the roleΣ plays is
determining the precision of̂γ.

Throughout the paper, we use the following notation. We callLRB andLR(γ0) quasi likelihood
ratio (QLR) criteria and the associated MLEs quasi maximum likelihood (QML) estimators. We de-
note the observed value of these statistics asLR

(0)
B andLR(0)(γ0), respectively.P(B,K) represents

the distribution ofY when the parameters are(B, K). For any matrixA,M(A) = I−A(A′A)−A′.

3. Identification-robust Monte Carlo tests for γ

We will now derive the exact null distribution of the QLR statistic LR(γ0) underH(γ0), whereγ0
is known. This will allow us to build a CS forγ and yield a way of testing efficiency. The basic
distributional result for that purpose is given by the following theorem.

Theorem 3.1 DISTRIBUTION OF THE MEAN-VARIANCE CAPM TEST FOR A KNOWN ZERO-
BETA RATE. Under(2.1), (2.8) andH(γ0), LR(γ0) is distributed like

LR(γ0, W ) = T ln(
∣∣W ′M̄(γ0)W

∣∣ /
∣∣W ′MW

∣∣) (3.1)

whereM̄(γ0) =M (X) +X(X ′X)−1H(γ0)
′[H(γ0)(X

′X)−1H(γ0)
′]−1H(γ0)(X

′X)−1X ′.
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Proofs are given in the Appendix. In thei.i.d. Gaussian case (2.9), we have:

[(T − 1− n)/n][Λ(γ0)− 1] ∼ F (n, T − 1− n) ; (3.2)

see Dufour and Khalaf (2002). This result was used by Gibbonset al. (1989) in studying efficiency
with an observable risk-free rate. Indeed, testingH(γ0) is equivalent to testing whether the inter-
cepts are jointly zero in a market model with returns in excess ofγ0.

For non-Gaussian distributions compatible with (2.8) [including the GARCH case (2.12)], The-
orem3.1shows that the exact distribution ofLR(γ0), although non-standard, may easily be simu-
lated onceX, the distribution ofW andγ0 [given byH(γ0)] are set. So the Monte Carlo (MC) test
method can be easily applied; see Dufour (2006). In general,this method assesses the rank of the
observed value of a test statistic

[
denotedS(0)

]
, relative to a finite numberN of simulated statistics

[denotedS(1) , . . . , S(N)] drawn under the null hypothesis. Conforming with (2.8), weassume that
S(1) , . . . , S(N) can be simulated given: (i) a value ofν, (ii) N drawsW (1), . . . , W (N) from the
distribution ofW [which under (2.8) can be simulated onceν is specified], (iii) a vector of parame-
ters (denotedη) which affects the distribution of the test statistic, and (iv) the test functionS̄(η, W )
which depends onη, W andX.8 In other words, on drawingN samples from the distribution ofW
(which may depend onν) and computingS̄(η, W ) for each simulated sample, we get the vector
S̄N (η, ν) =

[
S̄
(
η, W (1)

)
, . . . , S̄

(
η, W (N)

)]′
. In the case ofLR(γ0), S

(0) ≡ LR(0)(γ0), η ≡

γ0, and using (3.1),̄S
(
η, W (i)

)
= LR

(
γ0, W

(i)
)
. Given the above, aMC p-value is defined as:

pN [S(0)
∣∣S̄N (η, ν)] =

NGN

[
S(0) ; S̄N (η, ν)

]
+ 1

N + 1
, (3.3)

GN

[
S(0) ; S̄N (η, ν)

]
=

1

N

N∑
j=1

I[0,∞)

[
S̄(W (j), η)− S(0)

]
, (3.4)

whereIA[x] = 1, if x ∈ A , andIA[x] = 0, if x /∈ A . If the distribution of the statistic under
consideration, givenX, is completely determined byX and the distribution ofW givenX (which
depends onν andη), then comparingpN [S(0)

∣∣S̄N (η, ν)] to anα cut-off whereα(N + 1) is an
integer yields a test with the statedsizeα: the probability of rejection under the null hypothesis is
exactlyα, for finiteT andN .

If ν or η is not set by the null hypothesis, then the MMC method does allow one to control the
level of the test: we maximizepN [S(0)

∣∣S̄N (η, ν)] over all the(ν, η) values compatible with the null
hypothesis, and reject the latter if the maximalp-value is less than or equal toα. Then the probabil-
ity of rejection under the null hypothesis is itself not larger thanα, for finite T andN ; see Dufour
(2006). In the case ofLR(γ0) with LRN (γ0, ν) =

[
LR
(
γ0, W

(1)
)
, . . . , LR

(
γ0, W

(N)
)]′

, we
have:

p̂N (γ0, ν) ≡ pN
[
LR(0)(γ0)

∣∣LRN (γ0, ν)
]
. (3.5)

As a result of Theorem3.1, we have, underH(γ0) in conjunction withHW (D, ν) :

P
[
p̂N (γ0, ν0) ≤ α

]
= α , whenν = ν0, (3.6)

P
[
sup{p̂N (γ0, ν) : ν ∈ ΩD} ≤ α

]
≤ α , whenν may be unknown. (3.7)

8For notational simplicity, the dependence uponX is implicit through the definition of̄S.
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We will call p̂N (γ0, ν) apivotal MC (PMC)p-value.

4. Identification-robust confidence sets forγ

UnderHB, the ratiosai/(1 − βi) , 1, . . . , n, are equal. This definition ofγ leads to the classical
problem of inference on ratios from Fieller (1954). The problem here is clearly more complex, so
to extend Fieller’s arguments, we use the above defined testsof H(γ0).

4.1. Fieller-type confidence sets: thei.i.d. Gaussian case

Consider the Gaussian model given by (2.1), (2.8) and (2.9).In this case, underH0(γ0), W(γ0)
follows a Fisher distributionF (n, T − n− 1) ; see (3.2). LetFα denote the cut-off point for a test
with levelα based on theF (n, T − n− 1) distribution. Then

CFγ(α) = {γ0 ∈ Γ : W(γ0) ≤ Fα} (4.1)

has level1 − α for γ, i.e. the probability thatγ be covered byCFγ(α) is not smaller than1 − α :
Indeed,P[γ ∈ CFγ(α)] = 1− α. On noting thatW(γ0) ≤ Fα can be rewritten as

MF (γ0)−
nFα

T − n− 1
NF (γ0) ≤ 0 , (4.2)

MF (γ0) =
(
â+ δ̂γ0

)′
Σ̂−1

(
â+ δ̂γ0

)
=
(
δ̂
′
Σ̂−1δ̂

)
γ20 +

(
2δ̂

′
Σ̂−1â

)
γ0 + â′Σ̂−1â , (4.3)

NF (γ0) = 1 +
(µ̂M − γ0)

2

σ̂2M
=

1

σ̂2M
γ20 −

2µ̂m
σ̂2M

γ0 + 1 +
µ̂2M
σ̂2M

, (4.4)

we see, after a few manipulations, thatCFγ(α) reduces to a simple quadratic inequation:

CFγ(α) = {γ0 ∈ Γ : Aγ20 +Bγ0 + C ≤ 0} , (4.5)

A = δ̂
′
Σ̂−1δ̂ −

(
nFα

T − n− 1

)
1

σ̂2M
, B = 2

[
δ̂
′
Σ̂−1â+

(
nFα

T − n− 1

)
µ̂M
σ̂2M

]
, (4.6)

C = â′Σ̂−1â−

(
nFα

T − n− 1

)[
1 +

µ̂2M
σ̂2M

]
. (4.7)

ForΓ = R, the resulting CS can take several forms depending on the roots of the polynomial
Aγ20 + Bγ0 + C : (a) a closed interval; (b) the union of two unbounded intervals; (c) the entire
real line; (d) an empty set.9 Case (a) corresponds to a situation whereγ is well identified, while
(b) and (c) correspond to unbounded CSs and indicate (partial or complete) non-identification. The
possibility of getting an empty CS may appear surprising. But, on hindsight, this is quite natural:
it means that no value ofγ0 does allowH(γ0) to be acceptable. SinceHB states that there exists
a real scalarγ such thatai = (1 − βi)γ , i = 1, . . . , n, this can be interpreted as a rejection of
HB. Further, underHB, the probability thatCFγ(α) covers the true valueγ is 1−α, and an empty
set obviously does not coverγ. Consequently, the probability thatCFγ(α) be empty[CFγ(α) = ∅]

9For further discussion, see Dufour and Jasiak (2001), Zivotet al. (1998), Dufour and Taamouti (2005), Kleibergen
(2009), and Mikusheva (2009).
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cannot be greater thanα underHB : P[CFγ(α) = ∅] ≤ α. The eventCFγ(α) = ∅, is a test with
levelα for HB under normality.

4.2. Fieller-type confidence sets with non-Gaussian non-i.i.d. errors

The quadratic CS described above relies heavily on the fact that the same critical pointFα can
be used to test all values ofγ0. This occurs under thei.i.d. Gaussian distributional assumption,
but not necessarily otherwise. Although the quadratic CS will remain “asymptotically valid” as
long asW(γ0) converges to aχ2(n) distribution, this cannot provide an exact CS. The Fieller-
type procedure can be extended to allow for possibly non-Gaussian disturbances, by inverting an
α-level test based onW(γ0) [or equivalently onLR(γ0)] performed by simulation (as a MC test).
Consider the MCp-valuep̂N (γ0, ν) function associated with this statistic, as defined in (3.5). Since
the critical regionp̂N (γ0, ν) ≤ α has levelα for testingγ = γ0 whenν is known, the set ofγ0
values for whicĥpN (γ0, ν) exceedsα, i.e.

Cγ(α; ν) =
{
γ0 ∈ Γ : p̂N (γ0, ν) > α

}
, (4.8)

is a CS with level1 − α for γ. Similarly, whenν is not specified, the testsup{pN (γ0, ν0) : ν0 ∈
ΩD} ≤ α yields:

Cγ(α; D) =
{
γ0 ∈ Γ : sup{p̂N (γ0, ν0) : ν0 ∈ ΩD} > α

}
, (4.9)

whose level is also1 − α. Cγ(α; ν) or Cγ(α; D) must be drawn by numerical methods. Our
empirical analysis reported below, relies on nested grid searches, overγ0 andκ, for the Student-t
case (2.10), and overγ0 and (π, ω) for the normal-mixture case (2.11); for the GARCH case (2.12),
we conduct a grid search onγ0 where for each candidate value, we run the simulated annealing
optimization algorithm to calculate the maximalp-value from (4.9) over the2n nuisance parameters
in φ.

We have no closed-form description of the structure ofCγ(α; ν) orCγ(α; D). While these can
be bounded intervals (this is showed numerically in Section8), Cγ(α; ν) or Cγ(α; D) must be
unbounded with a high probability ifγ is not identifiable or weakly identified [see Dufour (1997)].
An empty CS is also possible and provides evidence thatHB is not compatible with the data. The
eventCγ(α; ν) = ∅ [or Cγ(α; D) = ∅] is a test with levelα for HB under (2.8). The identity
LR(γ̂) = inf {LR(γ0) : γ0 ∈ Γ} entails that̂γ must belong to the CS, provided its level is>0.

The Hotelling-based CS we obtain for the GARCH case is exact,because the cut-off point we
use when invertingW(γ0) is adjusted for the parametric form (2.12) via the maximizedp-value
from (4.9). InvertingJ (γ0) in (2.22) may however be more appropriate. Again, this must be
implemented by numerical methods; for example, a grid search can be conducted onγ0 where
for each candidate value,J (γ0) is referred to theχ2(n) distribution; this would circumvent the
identification problem asymptotically [as arguede.g. in Stock and Wright (2000)], yet in finite
samples, theχ2(n) approximation may perform poorly. Indeed, our simulation results reported
below illustrate the severity of this problem. Consequently, we use the MMC method for each
candidateγ0: we maximize over the model parameters as well as overφ.10

10We have observed a numerical invariance toB andK, which calls for further theoretical work with such statistics;
see also Section 7.
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5. Invariance and exact distribution ofLRB

In this section, we study the exact distribution of the statisticsLR(γ0) andLRB, under both the null
hypothesis and the corresponding unrestricted MLR alternative model. We track and control for the
joint role betasand scale parameters play in identifyingγ.

Lemma 5.1 MULTIVARIATE SCALE INVARIANCE . The LR statisticsLR(γ0) andLRB defined in
(2.18) and(2.14) are invariant to replacingỸ by Ỹ∗ = Ỹ A, whereA is an arbitrary nonsingular
n× n matrix.

Such transformations can be viewed as the following affine transformations onY :

Y∗ = Y A+ R̃M ι
′
n(In −A). (5.1)

Theorem 5.2 EXACT DISTRIBUTION OF BCAPM LR TESTS. Under(2.1) and(2.8), the distri-
butions ofLR(γ0) andLRB depend on(B,K) only throughB̄ = (B −∆)K−1, and

LR(γ0) = T ln
(
|Ŵ (γ0)

′Ŵ (γ0)|/|Ŵ
′Ŵ |

)
, LRB = inf {LR(γ0) : γ0 ∈ Γ} , (5.2)

where∆ = [0, ιn]
′, Ŵ =M(X)W , M̄(γ0) is defined as in(3.1) and

Ŵ (γ0) = M̄(γ0)(XB̄ +W ) = M̄(γ0){ιT [a+ γ0(β − ιn)]
′K−1 +W }. (5.3)

If, furthermore, the null hypothesisHB holds, then

Ŵ (γ0) = (γ0 − γ)M̄(γ0)ιT (β − ιn)
′K−1 + M̄(γ0)W (5.4)

and the distribution ofLRB depends on(B,K) only throughγ and(β− ιn)
′K−1; in the Gaussian

case(2.9), this distribution involves only one nuisance parameter.

Even thoughB andK may involve up to2n+ n2 different nuisance parameters [or2n+n(n+
1)/2 parameters, ifK is triangular], the latter theorem shows that the number of free parameters
in the distributions ofLR(γ0) andLRB does not exceed2n; whenHB holds, the number of free
parameters is at mostn+ 1. Further, underH(γ0) [using (5.4)]B̄ is evacuated, entailing Theorem
3.1. Theorem5.2also provides the power function.

6. Exact bound procedures for testingHB

In this section, we propose tests forHB in the presence of nuisance parameters induced by nonlin-
earity and non-Gaussian error distributions. We study firstglobal bounds based on tests ofH(γ0)
where we outline important differences between the Gaussian and non-Gaussian cases. Second,
we describe more general but computationally more expensive methods based on the technique of
MMC tests to obtain tighter bounds.

6.1. Global bound induced by tests ofH(γ0)

The results of Section 3 on testingγ = γ0 can be used to derive a global bound on the distribution
of the statisticLRB. This is done in the following theorem.
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Theorem 6.1 GLOBAL BOUND ON THE NULL DISTRIBUTION OF THE BCAPM TEST. Under the
assumptions(2.1), (2.8) andHB, we have, for any givenν ∈ ΩD,

P
[
LRB ≥ x

]
≤ sup

γ0∈Γ
P
[
LR(γ0, W ) ≥ x

]
, ∀x , (6.1)

whereLR(γ0, W ) is defined in(3.1). Further, in the Gaussian case(2.9), we have:

P
[
(T − 1− n) (ΛB − 1) /n ≥ x

]
≤ P[F (n, T − 1− n) ≥ x] , ∀x . (6.2)

To relate this result to available bounds, observe that (6.1) and (6.2) easily extend to the follow-
ing multi-beta setups: fori = 1, . . . , n, t = 1, . . . , T,

Rit = ai +
s∑

j=1
βijR̃jt + uit , HB : ai = γ

(
1−

s∑
j=1

βij

)
, (6.3)

whereR̃jt, j = 1, ... , s, are returns ons benchmarks. In this case, the bounding distribution
of LRB obtains as in Theorem6.1 whereX = [ιT , R̃1, ... , R̃s] , R̃j = (R̃j1, ... , R̃jT )

′,
j = 1, . . . , s, andH is the k-dimensional row vector(1, γ0, . . . , γ0). In the Gaussian case,
P
[
LR(γ0, W ) ≥ x

]
does not depend onγ0, and the bounding distribution under normality is

F (n, T − s− n). Shanken (1986) suggested the statistic

Q̂ = min
γ

{
T
[
â− γ(ιn − β̂ιs)

]′[(
T/(T − 2)

)
Σ̂
]−1[

â− γ(ιn − β̂ιs)
]

1 + (R̄M − γιs)′∆̂
−1
M (R̄M − γιs)

}
(6.4)

where â is ann-dimensional vector which includes the (unconstrained) intercept estimates,̂β is
an n × s matrix whose rows include the unconstrained OLS estimates of (βi1, . . . , βis), i =
1, . . . , n, R̄M and∆̂M include respectively the time-series means and sample covariance matrix
corresponding to the right-hand-side total portfolio returns. Further, the minimum in (6.4) occurs at
the constrained MLÊγ of γ, and

LRB = T ln(1 + Q̂/(T − s− 1)). (6.5)

For normal errors,(T−s−n)Q̂/[n(T −s−1)] can be bounded by theF (n, T −n−s)distribution.
The latter obtains from Gibbons et al.’s (1989) joint test ofzero intercepts, where returns are ex-
pressed in excess of a knownγ.

Independently, Stewart (1997) showed [using Dufour (1989)] that, under normal errors,(T −
s− n)

[(
|Σ̂B|/|Σ̂|

)
− 1
]
/n can be bounded by theF (n, T − n− s)distribution. Now, from (2.18)

and (6.5), we see that Shanken and Stewart’s bounds are equivalent, and both results obtain from
Theorem6.1 in the special case of normal errors.

When disturbances are non-Gaussian, Theorem6.1 entails that the bounding distribution can
easily be simulated, as follows. Given a value ofν, generateN i.i.d. draws from the distribution
of W1, . . . , WT ; then, for any givenγ0, these yield a vectorLRN (γ0, ν) of N simulated values
of the test statisticLR(γ0, W ), as defined in (3.1). A MCp-value may then be computed from the
rank of the observed statisticLRB relative to the simulated values. Denote this MCp-value by

p̂UN (γ0, ν) ≡ pN [LR
(0)
B

∣∣LRN (γ0, ν)] (6.6)
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whereLR(0)
B represents the value of the test statisticLRB based on the observed data; we will

call p̂UN (γ0, ν) thebound MC(BMC) p-value. In contrast with the Gaussian case,p̂UN [γ0, ν] may
depend onγ0; nevertheless, for anyγ0,

LRB ≤ LR(γ0) ⇒ p̂N (γ0, ν) ≤ p̂UN (γ0, ν). (6.7)

So a critical region that provably satisfies the level constraint can be obtained by maximizing
p̂UN (γ0, ν) over the relevant nuisance parameters. To simplify presentation of this result, we in-
troduce the following notation. For any subsetsA ⊆ Γ andE ⊆ ΩD, let

p̂UN (γ0, E) = sup {p̂UN (γ0, ν0) : ν0 ∈ E}, p̂UN (A, ν0) = sup {p̂UN (γ0, ν0) : γ0 ∈ A}, (6.8)

p̂UN (A, E) = sup {p̂UN (γ0, ν0) : γ0 ∈ A, ν0 ∈ E}, (6.9)

where, by convention,̂pUN (A, · ) = 0 if A is empty, and̂pUN ( · , E) = 0 if E is empty.

Theorem 6.2 GLOBAL SIMULATION -BASED BOUND ON THE NULL DISTRIBUTION OF THE

BCAPM TEST STATISTIC. Under(2.1), (2.8) andHB, we have:

P
[
p̂UN (Γ, ν) ≤ α

]
≤ α , P

[
p̂UN (Γ, ΩD) ≤ α

]
≤ α , (6.10)

whereν represents the true distributional shape ofW .

The first inequality in (6.10) holds for a statistic that requires the value ofν, while the second
one holds even without the need to specifyν. These bound tests are closely related to the CS-
based test proposed in Section 4: the null hypothesis is rejected when the CS forγ is empty,i.e.
if no value ofγ0 can be deemed acceptable (at levelα), either withν specified orν taken as a
nuisance parameter. This may be seen on comparing (4.9) withthe probabilities in Theorem6.2.
On recalling thatLRB = inf {LR(γ0) : γ0 ∈ Γ} , the latter also suggests a relatively easy way of
showing thatCγ(α; ν) or Cγ(α; D) is not empty, through the specificp-value p̂UN (γ̂, ν) obtained
by takingγ0 = γ̂ in (6.6). We shall call̂pUN (γ̂, ν) theQML-BMCp-value.

Theorem 6.3 RELATION BETWEEN EFFICIENCY TESTS AND ZERO-BETA CONFIDENCE SETS.
Under(2.1), (2.8) andHB, let γ̂ be the QML estimator ofγ in (2.19). Then,

p̂UN (γ̂, ν) > α⇒ sup {p̂N (γ0, ν) : γ0 ∈ Γ} > α⇒ Cγ(α; ν) 6= ∅ , ∀ν ∈ ΩD ,

p̂UN (γ̂, ΩD) > α⇒ sup{p̂N (γ0, ν0) : γ0 ∈ Γ, ν0 ∈ ΩD} > α⇒ Cγ(α; D) 6= ∅ ,

whereCγ(α, ν) andCγ(α; D) are the sets defined in(4.8) and(4.9).

For the Gaussian case, Zhou (1991) and Velu and Zhou (1999) proposed a potentially tighter
bound applicable to statistics which can be written as ratios of independent Wishart variables and
does not seem to extend easily to other classes of distributions. In the next section, we propose an
approach which yields similarly tighter bounds for non-Gaussian distributions as well. Finally, the
HAC statisticJB may be used to obtain alternative identification-robust bound tests following the
same rationale. The correspondence between such tests and empty CSs entailed by test inversion
also follows from similar arguments. Finite-sample MMC level corrections are recommended, given
the simulation results in Section 7.
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6.2. Maximized Monte Carlo bounds

Another approach to testingHB with the statisticLRB consists in directly assessing its depen-
dence on nuisance parameters and adjusting the test accordingly through the MMC method [Dufour
(2006)]. Letθ = ψ(B, K) represent the parameter vector upon which the distributionof LRB

actually depends, andΩB the set of admissible values forθ underHB. The dimension ofθ may be
lower than than the number of parameters inB andK. To conform with our earlier notation for MC
p-values, we define the functionLRB(θ, W ) = LRB

(
ψ(B, K), W

)
which assigns to each value

of (B, K) and the noise matrixW the following outcome: usingθ and a draw from the distribution
of W (which may depend onν), generate a sample from (2.1)-(2.2), and computeLRB [as defined
in (2.18)] from this sample.

On applyingLRB(θ, W ), we can get simulated values from the null distribution ofLRB for
any value ofθ. If N independent replicationsW (1), . . . , W (N) of W are generated, we can
then compute the corresponding vector ofLRB statistics and thep-value functionp̂BN (θ, ν) =

pN
[
LR

(0)
B

∣∣LRBN (θ, ν)
]
,whereLRBN (θ, ν) =

[
LRB

(
θ, W (1)

)
, . . . , LRB

(
θ, W (N)

)]′
. For

any given value ofν, the MMCp-value associated withLR(0)
B is obtained by maximizinĝpBN (θ, ν)

with respect toθ over the set of admissible valuesΩB underHB :

p̂MBN (ΩB, ν) = sup {p̂BN (θ, ν) : θ ∈ ΩB} . (6.11)

Then, underHB and the error distribution associated withν, we have:P
[
p̂MBN (ΩB, ν) ≤ α

]
≤ α ;

see Dufour (2006). In other words,̂pMBN (ΩB, ν) ≤ α is a critical region with levelα. Further,
in order to allow for an unknownν, we can maximizêpBN (θ, ν) with respect toν ∈ ΓD. Set:
p̂MBN (θ, ΩD) = sup {p̂BN (θ, ν) : ν ∈ ΩD} , p̂

M
BN (ΩB, ΩD) = sup {p̂MBN (θ, ΩD) : θ ∈ ΩB} .

Then, underHB, P
[
p̂MBN (ΩB, ΩD) ≤ α

]
≤ α .

Theorem6.3 guarantees that̂pUN (Γ, ν) ≤ α ⇒ p̂MBN (ΩB, ν) ≤ α for any givenν. So it may
be useful to check the global bound for significance before turning to the MMC one. Furthermore,
it is not always necessary to run the numerical maximizationunderlying MMC to convergence: if
p̂BN (θ, ν) > α given any relevantθ (or ν), then a non-rejection is confirmed. We suggest to use
the QML estimatêθ of θ as start-up value, because this providesparametric bootstrap-type[or a
local MC (LMC)] p-values:

pbN (ν) = p̂BN(θ̂, ν) , pbN (ΩD) = p̂BN (θ̂, ΩD) . (6.12)

ThenpbN (ν) > α entailsp̂MBN (ΩB, ν) > α, andpbN (ΩD) > α entailsp̂MBN (ΩB, ΩD) > α.
Finally, a parametric MMC test imposing (2.12) may be applied to the HAC statisticsJ (γ0)

andJB, as an attempt to correct their size for the GARCH alternative of interest. We investigate the
size-corrected power associated with these statistics in Section 7.

6.3. Two-stage bound confidence procedures

To deal with the fact that the distribution ofW may involve an unknown parameterν ∈ ΩD,
we suggested above to maximize the relevantp-values overΩD. We next consider restricting the
maximization overν to a set which is empirically relevant, as in Beaulieu et al. (2007). This leads to
two basic steps: (i) an exact CS with level1−α1 is built for ν, and (ii) the MCp-values (presented
above) are maximized over all values ofν in the latter CS and are referred to the levelα2, so that
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the global test level isα = α1 + α2. In our empirical application, we usedα/2. Let Cν(α1) =
Cν(α1; Y ) be a CS with level1 − α1 for ν. Then, underH(γ0), we haveP

[
p̂UN [γ0, Cν(α1)] ≤

α2

]
≤ α1 + α2 while, underHB :

P
[
p̂UN [Γ, Cν(α1)] ≤ α2

]
≤ α1 + α2 , P

[
p̂MBN [ΩB, Cν(α1)] ≤ α2

]
≤ α1 + α2 . (6.13)

Note also that for̂pMBN [ΩB, Cν(α1)] ≤ α2 not to hold, the following condition is sufficient:

p̂MBN (θ̂, Cν(α1)) > α2. (6.14)

To build a CSs forν, we invert a test (of levelα1) for the specification underlying (2.8) where
ν = ν0 for knownν0; this avoids the need to use regularity assumptions onν. The test we invert is
the three-stage MC GF test introduced in Dufour et al. (2003):

CSK = 1−min {p̂ [ESK(ν0)] , p̂ [EKU(ν0)]} (6.15)

whereESK(ν0) =
∣∣SK−SK(ν0)

∣∣, SK = 1
T 2

∑T
t=1

∑T
i=1 d̂

3
it, EKU(ν0) =

∣∣KU−KU(ν0)
∣∣,

KU = 1
T

∑T
t=1 d̂

2
tt, d̂it are the elements of the matrix̂U(Û ′Û/T )−1Û ′, SK(ν0) and KU(ν0)

are simulation-based estimates of the expectedSK and KU given (2.8) andp̂ [ESK(ν0)] and
p̂ [EKU(ν0)] arep-values, obtained by MC methods under (2.8). The MC test technique is also
applied to obtain a size correctp-value forCSK. The CS forν corresponds to the values ofν0
which are not rejected at levelα1, using the latterp-value.

To conclude, we note that for the GARCH case, pre-estimatingthe2n× 1 vectorφ is infeasible
with 5 or even 10 year sub-samples of monthly data. Nevertheless, the single stage MMC is valid
despite this limitation. Interestingly, the simulation study we report next suggests that power costs
are unimportant even with relatively small samples.

7. Simulation study

We now present a small simulation study to assess the performance of the proposed methods.
The design is calibrated to match our empirical analysis (see Section 8) which relies on monthly
returns of 12 portfolios of NYSE firms over 1927-1995. We consider model (2.1) wherẽRMt,
t = 1, . . . , T , are the returns on the market portfolio from the aforementioned data over the last
5 and 10 year subperiods, as well as the whole sample. We thus taken = 12 andT = 60, 120
and828. The coefficients of (2.1) includingγ are set to their QML estimates (restricted underHB

over the conformable sample period). From the QML regression, we also retain the estimated error
covariance matrix, to generate model shocks; formally, we compute the corresponding empirical
Cholesky factor (denoted̂K) and use it forK in (2.8). Test sizes withK = I12 are also analyzed to
illustrate the effects of portfolio repacking.

We consider normal and Studentt-errors (withκ = 8, in accordance with the kurtosis observed
in the empirical application), so the random vectorsWt, t = 1, . . . , T , in (2.8) are generated
following (2.9) and (2.10) respectively. The MC tests are applied imposing and ignoring information
on κ, which allows us to document the cost of estimating this parameter. Whenκ is considered
unknown, MMCp-values are calculated over the interval4 ≤ κ ≤ 13 to keep execution time
manageable (a wider range is allowed for the empirical application in Section 8). We also consider
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the case of GARCH errors (2.12), withφ1i = φ1 andφ2i = φ2, i = 1, . . . , n (the coefficients
are the same across equations). This restriction is motivated by execution time, but it is relaxed in
Section 8. We use the diagonal elements ofK̂K̂ ′ to scale the intercept, yet we also consider the case
whereσ2i = 1, i = 1, . . . , n. Samples are simulated with(φ1, φ2) = (.15, .80). These parameters
are treated, in turn, as known and as unknown quantities. In view of the low dimension of the
nuisance parameter space in this case, when(φ1, φ2) is treated as unknown,p-value maximization
is achieved through a coarse grid search (for the purpose of this simulation). Thep-value function
does not appear to be very sensitive to the value of(φ1, φ2), and the results presented below indicate
this is sufficient for controlling test level in the relevantcases. A more thorough optimization is
however used in Section 8.

The results of the simulation are summarized in Tables 1 - 3. These tables report empirical
rejection rates for various tests ofH(γ0) with nominal size5%. These rejection rates determine
the coverage properties of confidence sets derived from the tests. Since we focus on estimating
γ, HB is imposed for both the size and power studies. We compare thefollowing tests: (1) a
Wald-type test which rejectsγ = γ0 whenγ0 falls outside the Wald-type confidence interval[γ̂ −
1.96×AsySE(γ̂), γ̂+1.96× AsySE(γ̂)], using the QML estimator̂γ, an asymptotic standard error
[AsySE(γ̂), based on (2.24)], and a normal limiting distribution; (2) the MC and MMC tests based
on the QLR test statisticLR(γ0) defined in Theorem3.1, with MC p-values fori.i.d. normal or
Student-t errors (with known or unknownκ), Gaussian GARCH with known or unknown(φ1, φ2),
as well as asφ1 = φ2 = 0 (i.e., ignoring the GARCH dependence even when it is present in the
simulated process); (3) tests based on the HAC Wald-type statistic J (γ0) in (2.22), using aχ2(n)
critical value, MC with known(φ1, φ2), and MMC where(φ1, φ2) is taken as unknown.

In the size study (Table 1),γ0 is calibrated to its QML counterpart from the data set [γ0 =
−0.000089 for T = 60, γ0 = .004960 for T = 120, γ0 = .005957 for T = 828]. In the power
study (tables 2 - 3), we focus on thêK case; samples are drawn withγ set to its QML estimate, and
γ0 is set to the latter value +step ×σ̂min

i , whereσ̂min
i = [min{σ̂2i }]

1/2, andσ̂2i are the diagonal
terms ofK̂K̂ ′ (with variousstep values).N = 99 is used for MC tests (N = 999 is used in the
empirical application). In each experiment, the number of simulations is 1000. We use 12 lags for
the HAC correction.

Our results can be summarized as follows. The asymptotici.i.d. or robust procedures are very
unreliable from the viewpoint of controlling level. Whereas we observe empirical frequencies of
type I errors over70% and sometimes90% with T = 60, we still see empirical rejections near
55% with T = 828. The results also show that the empirical size of the HAC-based tests is not
affected byK, though a formal proof of its invariance is not available. This observation is however
compatible with the fact that its size improves with larger samples: while the level of the Wald-type
test shows no improvement (around55%) even withT = 828 and normal errors, the size of the
Wald-HAC statistic drops from95% with T = 60 to 12% with T = 828. The LR and robust MC
and MMC tests achieve level control; in the GARCH case, the MCLR test has the correct size even
when GARCH dependence is not accounted for.

In view of the poor size performance of the asymptotic tests,the power study focuses on pro-
cedures whose level appears to be under control. Overall, the MMC correction is not too costly
from the power viewpoint, with both Student-t and GARCH errors. In the latter case, the LR-type
test uncorrected for GARCH effects outperforms all the other tests. When GARCH corrections are
performed via MMC, the LR-type test performs generally better than the Wald-HAC test.
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Table 1. Tests on zero-beta rate: empirical size

n = 12 T = 60, T = 120 T = 828

K K K

Test I12 K̂ I12 K̂ I12 K̂

i.i.d. Normal
Wald-type .709 .196 .633 .096 .578 .050
LR(γ0), MC .057 .057 .048 .048 .041 .041

i.i.d. Student-t
Wald-type .714 .218 .645 .106 .587 .055

LR(γ0), MC, κ known .053 .053 .046 .046 .043 .043
LR(γ0), MMC, κ unknown .043 .043 .035 .035 .031 .031

Gaussian GARCH
Wald-type .676 .200 .628 .086 .579 .047

LR(γ0), MC, φ1 = φ2 = 0 .059 .059 .048 .048 .046 .046
J (γ0), χ

2(12) .954 .954 .686 .686 .127 .127
J(γ0), MMC, φ1, φ2 known .049 .049 .045 .045 .049 .040
J(γ0), MMC, φ1, φ2 unknown .040 .040 .034 .034 .040 .049
LR(γ0), MC, φ1, φ2 known .064 .064 .043 .043 .050 .028

LR(γ0), MMC, φ1, φ2 unknown .054 .054 .032 .032 .028 .050

–

Note – The table reports the empirical rejection rates of various tests forH(γ
0
) with nominal level5%. The values of

γ
0

tested are:γ
0
= −0.000089 for T = 60, γ

0
= .004960 for T = 120, γ

0
= .005957 for T = 828. The design

is calibrated to match our empirical analysis (see Section 8). The tests compared are the following. (1) A Wald-type

test which rejectsγ = γ
0

whenγ
0

falls outside the Wald-type confidence interval[γ̂ − 1.96 × AsySE(γ̂), γ̂ + 1.96 ×

AsySE(γ̂)], using the QML estimator̂γ with asymptotic standard error[AsySE(γ̂)] based on (2.24), and a normal

limiting distribution. (2) MC and MMC tests based onLR(γ
0
) in (2.14), with MCp-values fori.i.d. normal and Student-

t errors (with known or unknownκ), Gaussian GARCH with known or unknown(φ
1
, φ

2
), as well asφ

1
= φ

2
= 0 (i.e.,

ignoring the GARCH dependence even when it is present in the simulated process). (3) Tests based on the HAC Wald-

type statisticJ (γ
0
) in (2.22), using aχ2(n) critical value, MC with known(φ

1
, φ

2
), and MMC where(φ

1
, φ

2
) is taken

as unknown. In thei.i.d. cases, the errors are generated using (2.8) withK set to eitherI12 or K̂, which corresponds to

the Cholesky factor of the least-squares error covariance estimate from the empirical data used for the simulation design.

In the GARCH case, samples are generated with conditional variance as in (2.12) usinĝK or I12 for K.
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Table 2. Tests on zero-beta rate: empirical power
Gaussian and Student designs

-

n = 12 T = 60 T = 120 T = 828

Test Step Power Step Power Step Power
i.i.d. normal

LR(γ0), MC, φ1 = φ2 = 0 .50 .151 .50 .226 .20 .129
.75 .315 .75 .529 .30 .313
1.0 .544 1.0 .835 .50 .814
2.0 .981 1.5 .999 .75 .998

i.i.d. Student-t
LR(γ0), MC, κ known .50 .134 .50 .181 .20 .109

LR(γ0), MMC, κ unknown .126 .158 .080
LR(γ0), MC, κ known .75 .264 .75 .428 .30 .237

LR(γ0), MMC, κ unknown .239 .384 .182
LR(γ0), MC, κ known 1.0 .494 1.0 .709 .50 .660

LR(γ0), MMC, κ unknown .440 .673 .605
LR(γ0), MC, κ known 2.0 .939 1.5 .997 .75 .966

LR(γ0), MMC, κ unknown .925 .997 .960

Note – The table reports the empirical rejection rates of various tests forH(γ
0
) with nominal level5%. The values of

γ
0

tested are:γ
0
= −0.000089 for T = 60, γ

0
= .004960 for T = 120, γ

0
= .005957 for T = 828. The sampling

design conforms with the size study, for thêK case. Samples are drawn withγ calibrated to its QML counterpart from

the 1991-95 subsample; values forγ
0

are set to the latter value +step ×σ̂min

i , whereσ̂min

i = [min{σ̂2

i }]
1/2, andσ̂2

i are

the diagonal terms of̂KK̂′. See Table 1 for further details on the design and tests applied.

8. Empirical analysis

In this section, we assessHB as defined in (2.2) in the context of (2.1) under the distributional
assumptions (2.10)-(2.11), as well as the Gaussian GARCH in(2.12). We use real monthly returns
over the period going from January 1926 to December 1995, obtained from CRSP. The data studied
involve 12 portfolios of NYSE firms grouped by standard two-digit industrial classification (SIC).
The sectors studied include: (1) petroleum; (2) finance and real estate; (3) consumer durables; (4)
basic industries; (5) food and tobacco; (6) construction; (7) capital goods; (8) transportation; (9)
utilities; (10) textile and trade; (11) services; (12) leisure; for details on the SIC codes, see Beaulieu
et al. (2007). For each month, the industry portfolios include the firms for which the return, the
price per common share and the number of shares outstanding are recorded by CRSP. Furthermore,
portfolios are value-weighted in each month. We measure themarket return by value-weighted
NYSE returns, and the real risk-free rate by the one month Treasury bill rate net of inflation, both
available from CRSP. All MC tests were applied withN = 999 and MMCp-values are obtained
using the simulated annealing algorithm.

Our QML-based BCAPM test results are summarized in Table 4. Non-Gaussianp-values are the
largest MCp-values over the error distribution parameters [respectively: κ and(π, ω) for (2.10)-
(2.11)] within the specified 97.5% CSs; the latter are reported in Table 5. In the GARCH case (2.12),
p-values are the largest MCp-values over all (φ1i, φ2i). Given a5% level test, the benchmark is
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Table 3. Tests on zero-beta rate: empirical power
Gaussian GARCH design

n = 12 T = 60 T = 120 T = 828

Test Step Power Step Power Step Power
LR(γ0), MC, φ1 = φ2 = 0 .50 .112 .50 .203 .20 .195
J (γ0), MMC, φ1, φ2 known .088 .155 .208
J(γ0), MMC, φ1, φ2 unknown .078 .133 .183
LR(γ0), MC, φ1, φ2 known .113 .204 .198

LR(γ0), MMC, φ1, φ2 unknown .106 .170 .168

LR(γ0), MC, φ1 = φ2 = 0 .75 .247 .75 .449 .30 .465
J(γ0), MMC, φ1, φ2 known .177 .316 .442
J(γ0), MMC, φ1, φ2 unknown .158 .276 .411
LR(γ0), MC, φ1, φ2 known .248 .452 .471

LR(γ0), MMC, φ1, φ2 unknown .213 .411 .425

LR(γ0), MC, φ1 = φ2 = 0 1.0 .447 1.0 .753 .50 .945
J(γ0), MC, φ1, φ2 known .300 .552 .934

J(γ0), MMC, φ1, φ2 unknown .269 .505 .920
LR(γ0), MC, φ1, φ2 known .441 .753 .950

LR(γ0), MMC, φ1, φ2 unknown .395 .709 .937

LR(γ0), MC, φ1 = φ2 = 0 2.0 .913 1.5 .973 .75 1.0
J(γ0), MMC, φ1, φ2 known .719 .856 1.0
J(γ0), MMC, φ1, φ2 unknown .664 .931 1.0
LR(γ0), MC, φ1, φ2 known .915 .970 1.0

LR(γ0), MMC, φ1, φ2 unknown .892 .962 1.0

Note – The values ofγ
0

tested are:γ
0
= −0.000089 for T = 60, γ

0
= .004960 for T = 120, γ

0
= .005957 for

T = 828. Numbers reported are empirical rejection rates for various tests ofH(γ
0
) with nominal size5%. The sampling

design conforms with the size study, for thêK case; errors are generated with conditional variance as in (2.12) usingK̂.

See Table 1 for a complete description of the designs and tests applied. Samples are drawn withγ calibrated to its QML

counterpart from the 1991-95 subsample; values forγ
0

are set to -the latter value +step×σ̂min

i (for variousstep values)

whereσ̂min

i = [min{σ̂2

i }]
1/2, andσ̂2

i are the diagonal terms of̂KK̂′.

.05 for p∞, normal LMC, MMC and GARCHp-values, while the Student-t and normal mixture
p-values should be compared to.025 (to ensure that the test has level.05). Non-rejections by LMC
MC p-values are conclusive (though rejections are not); rejections based on the conservative bound
reported under the heading BND are conclusive under normality; non-rejections based on the QML
bound in the non-Gaussian case (reported under the heading BND) signal that the CS forγ is not
empty; however, since the MMCp-value is based on the tightest bound, this evidence does not
necessarily imply non-rejection ofHB.

The empirical results presented in Table 4 show that the asymptotic test and the Gaussian-
based bound test yield the same decision at level5%, although the formerp-values are much lower.
The non-normalp-values exceed the Gaussian-basedp-value, enough to change the test decision.
For instance, at the5% significance level, we find seven rejections of the null hypothesis for the
asymptoticχ2(11) test, seven for the MCp-values under normality and with normal GARCH, and
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Table 4. QML-based tests of BCAPM

Sample LRB p∞ Normal GARCH

LMC MMC BND BND

1927 − 30 16.10 .137 .269 .308 .366 .340
1931 − 35 14.09 .228 .344 .381 .432 .451
1936 − 40 15.36 .167 .257 .284 .345 .355
1941 − 45 18.62 .068 .148 .163 .203 .213
1946 − 50 32.69 .001 .005 .006 .007 .006
1951 − 55 37.04 .000 .003 .004 .004 .003
1956 − 60 26.10 .006 .027 .031 .042 .039
1961 − 65 29.21 .002 .011 .016 .020 .015
1966 − 70 27.45 .004 .016 .018 .026 .029
1971 − 75 16.81 .113 .213 .224 .292 .294
1976 − 80 25.76 .007 .027 .031 .040 .042
1981 − 85 14.98 .183 .316 .335 .387 .404
1986 − 90 35.41 .000 .003 .004 .004 .005
1991 − 95 16.41 .127 .219 .253 .310 .320

Student-t Normal mixture
LMC MMC BND LMC MMC BND

1927 − 30 .272 .316 .360 .279 .313 .381
1931 − 35 .359 .399 .468 .342 .387 .452
1936 − 40 .282 .308 .372 .265 .302 .357
1941 − 45 .147 .169 .210 .150 .165 .211
1946 − 50 .007 .007 .010 .007 .007 .008
1951 − 55 .003 .005 .005 .003 .003 .003
1956 − 60 .030 .040 .052 .028 .035 .045
1961 − 65 .013 .017 .023 .014 .021 .024
1966 − 70 .020 .025 .032 .018 .023 .028
1971 − 75 .217 .248 .300 .206 .238 .292
1976 − 80 .026 .035 .039 .026 .034 .042
1981 − 85 .323 .399 .405 .318 .339 .406
1986 − 90 .004 .005 .005 .004 .004 .005
1991 − 95 .226 .263 .325 .226 .261 .319

Note –LRB is the statistic in (2.18). Remaining numbers are associated p-values. p∞ is based onχ2(n − 1). All

other non-Gaussianp-values are the largest MCp-values over the shape parameterν within the specified CSs [ν = κ or

ν = (π, ω); refer to Table 5]. LMC is the bootstrapp-value in (6.14) and MMC is the maximalp-value in (6.13) (refer to

Section 6.2). BND is the bound (6.2) for the Gaussian case andtheQML-BMCbound from Theorem6.3otherwise; the

GARCH BND is the largestQML-BMCoverφ
1i, φ2i [from (2.12)]. Returns for the months of January and for October

1987 are excluded. Given a5% level, the cut-off is .05 forp∞, the normal LMC, MMC and the GARCHp-values; for

the Student-t and mixtures, the cut-off is .025.p-values which lead to significant tests with this benchmark are in bold.
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Table 5. Confidence sets for intervening parameters

Mixture (π, ω), confidence set forω t(κ)

(1) (2) (3) (4) (5) (6)

Sample π = 0.1 π = 0.2 π = 0.3 π = 0.4 π = 0.5 κ

1927 − 30 ≥ 1.8 1.6 − 2.8 1.6− 2.5 1.6− 2.5 1.6− 2.6 3− 12
1931 − 35 2.1− 10.0 1.9 − 3.0 1.9− 2.7 1.9− 2.7 2.1− 3.0 3− 8
1966 − 40 1.5− 3.5 1.5 − 2.3 1.4− 2.1 1.4− 2.0 1.4− 2.1 4− 25
1941 − 45 1.3− 3.5 1.3 − 2.1 1.3− 1.9 1.3− 1.8 1.3− 1.9 ≥ 5
1946 − 50 1.4− 3.5 1.3 − 2.2 1.3− 2.0 1.3− 1.9 1.3− 1.9 5− 37
1951 − 55 1.4− 3.5 1.4 − 2.2 1.3− 2.0 1.3− 1.9 1.3− 2.0 5− 34
1956 − 60 1.3− 2.8 1.2 − 2.0 1.2− 1.9 1.2− 1.8 1.2− 1.8 ≥ 5
1961 − 65 1.0− 2.2 1.0 − 1.6 1.0− 1.5 1.0− 1.5 1.0− 1.5 ≥ 7
1966 − 70 1.3− 3.0 1.3 − 2.0 1.3− 1.9 1.3− 1.8 1.2− 1.9 ≥ 5
1971 − 75 1.5− 3.5 1.5 − 2.2 1.4− 2.0 1.4− 1.9 1.4− 2.0 4− 24
1976 − 80 1.6− 4.0 1.5 − 2.5 1.5− 2.2 1.5− 2.2 1.5− 2.3 4− 19
1981 − 85 1.4− 3.5 1.4 − 2.1 1.3− 2.0 1.3− 1.9 1.4− 2.0 5− 33
1986 − 90 1.1− 3.0 1.1 − 2.0 1.1− 1.8 1.0− 1.7 1.1− 1.8 ≥ 5
1991 − 95 1.0− 1.9 1.0 − 1.5 1.0− 1.4 1.0− 1.3 1.0− 1.3 ≥ 19

Note – Numbers in columns (1)-(5) represent a CS for the parameters(π, ω) [respectively, the probability of mixing

and the ratio of scales] of the multivariate mixtures-of-normal error distribution. Column (6) presents the CS forκ, the

degrees-of-freedom parameter of the multivariate Student-t error distribution. See Section 6 for details on the construc-

tion of these CSs: the values of(π, ω) or κ (respectively) in this set are not rejected by theCSK test (6.15) [see Dufour

et al. (2003)] under multivariate mixtures or Student-t errors (respectively). Note that the maximum of thep-value occurs

in the closed interval forω. Returns for the month of January and October 1987 are excluded from the data set.

five (relying on the MMCp-value) under the Student-t and normal mixture distributions.
Focusing on Student-t and normal mixture distributions with parameters not rejected by proper

GF tests, we see that mean-variance efficiency test results can change relative to the availableF -
based bound. The power advantages of the MMC procedure are illustrated by the results of the
1966-70 subperiod where the QMLp-value exceeds2.5% for the Student-t and normal mixture
distributions, whereas the MMCp-value signals a rejection.

The CSs for distributional parameters are reported in Table5. In the mixture case, the confidence
region is summarized as follows for presentation ease: we give the CS forω corresponding to five
different values ofπ.

In Table 6, we present: (i) the average real market return as well as the average real risk-free
rate over each subperiod, (ii) the QML estimate ofγ (denoted̂γ) and95% CSs for this parameter,
using respectively the asymptotic standard errors (2.24) (under the heading Wald-type), and the LR-
type tests withi.i.d. Gaussian,t(κ) and normal mixture(π, ω) errors, plus Gaussian GARCH errors
(lower panel).11 The values ofγ in the Fieller-type CS are not rejected by the test defined in Theorem

11Note that some values of̂γ are high. Nonetheless, comparing the average real market return for those subperiods
with our estimate ofγ reveal that these high occurrences ofγ are consistent with subperiods during which the estimated
zero-beta rate is higher than the market portfolio return. This is an illustration of finding, ex post, a linear relationship
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Table 6. QML-based point and set estimates for the zero-betaportfolio rate

Sample R̄M r̄f γ̂ Wald-type
1927 − 30 .0045 .0045 .0047 [−.0037 , .0130]
1931 − 35 .0103 .0025 −.0130 [−.0301 , .0039]
1926 − 40 .0031 −.0006 −.0069 [−.0192 , .0055]
1941 − 45 .0097 −.0042 .0117 [.0037 , .0198]
1946 − 50 .0021 −.0051 −.0219 [−.0189 , −.0070]
1951 − 55 .0145 .0001 .0024 [−.0015 , .0064]
1956 − 60 .0086 .0002 .0156 [.0109 , .0202]
1961 − 65 .0080 .0014 .0571 [.0398 , .0744]
1966 − 70 .0008 .0004 .0169 [.0096 , .0242]
1971 − 75 −.0061 −.0010 .0150 [.0030 , .0270]
1976 − 80 .0056 −.0012 −.0096 [−.0169 , −.0024]
1981 − 85 .0081 .0037 .0197 [.0125 , .0268]
1986 − 90 .0088 .0020 .0053 [−.0024 , .0131]
1991 − 95 .0104 .0011 .0010 [−.0130 , .0062]

95% Confidence set, Fieller-type
Sample Normal errors Student t errors Mixture errors GARCH

1927 − 30 [−.0133 , .0227] [−.0143 , .0229] [−.0141 , .0227] [−.0125, .020]
1931 − 35 [−.0509 , .0225] [−.0520 , .0225] [−.0157 , .0227] [−.0517, .0217]
1926 − 40 [−.0341 , .0187] [−.0350 , .0190] [−.0349 , .0817] [−.0300, .0175]
1941 − 45 [−.0045 , .0275] [−.0048 , .0287] [−.0045 , .0283] [−.0025, .0275]
1946 − 50 ∅ ∅ ∅ ∅
1951 − 55 ∅ ∅ ∅ ∅
1956 − 60 ∅ [.0149 , .0161] ∅ ∅
1961 − 65 ∅ ∅ ∅ ∅
1966 − 70 ∅ ∅ ∅ ∅
1971 − 75 [−.0069 , .0454] [−.0081 , .0488] [−.0069 , .0531] [−.0050, .0450]
1976 − 80 ∅ ∅ ∅ ∅
1981 − 85 [.0059 , .0371] [.0051 , .0376] [.0051 , .0387] [.0075, .0350]
1986 − 90 ∅ ∅ ∅ ∅
1991 − 95 [−.0285 , .0147] [−.0303 , .0154] [−.0325 , .0147] [−.0275, .0125]

Note –R̄M is the average real market portfolio return for each subperiod, r̄f is the real average risk-free rate for each

subperiod;̂γ is the QML estimate ofγ; the remaining columns report95% CSs for this parameter, using, respectively, the

asymptotic standard errors (2.24) [γ̂±1.96× AsySE(γ̂)], the inverted test based onLR(γ
0
) from Theorem3.1, and the

MC Gaussianp-value, the MMCp-value imposing multivariatet(κ) errors and mixture-of-normals(π, ω) errors, and

the MMC GARCHp-value. See Section 4 for details on the construction of these CSs. Non-Gaussianp-values are the

largest MCp-values over the shape parametersκ or (π, ω). The GARCHp-value is the largest MCp-value overφ
1i, φ2i

[from (2.12)]. Returns for the months of January and October1987 are excluded from the data set.
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Table 7. Wald-HAC based inference on the zero-beta portfolio rate

(1) (2) (3) (4)

sample γ̃ = argmin
γ0

J (γ0) min
γ0

J (γ0) BND 95% Confidence set, MMC

1927 − 30 .0090 71.29 .650 [−.0195 , .0235]
1931 − 35 −.0045 71.06 .541 [−.0240 , .0250]
1926 − 40 −.0045 54.52 .620 [−.0355 , .0550]
1941 − 45 .0415 163.26 .143 [−.0455 , .0670]
1946 − 50 .0000 133.76 .121 [−.0105 , .0075]
1951 − 55 .0075 104.93 .250 [.0000 , .0120]
1956 − 60 .0195 110.18 .280 [−.0385 , .0415]
1961 − 65 .0370 149.61 .142 [−.0295 ,−.0150] ∪ [.0250 , .0670]
1966 − 70 .0090 168.54 .081 [.0045 , .0135]
1971 − 75 .0060 61.06 .623 [−.0180 , .0067]
1976 − 80 .0060 172.09 .061 [−.0225 , .0135]
1981 − 85 .0195 121.41 .201 [.0105 , .0385]
1986 − 90 .0030 184.38 .030 ∅
1991 − 95 .0100 53.60 .841 {≤ .0075} ∪ {≥ .0310 }

Note –J (γ
0
) is the HAC statistic in (2.22).̃γ is the minimum distance estimator from (2.23). Column (3) provides a

bound MCp-value simulated at̃γ and maximized overφ
1i, φ2i [from (2.12)]. Column (4) provides the confidence set for

γ which inverts the inverted test based onJ (γ
0
) and the MMC GARCHp-value; again, this is the largest MCp-value

overφ
1i, φ2i [from (2.12)]. Returns for the months of January and October1987 are excluded from the data set. Given

a 5% level, the cut-off the BNDp-value is .05;p-values which lead to significant tests with this benchmark are in bold.

Note that the CS which invertsJ (γ
0
) based on the asymptoticχ2(12) cut-off is empty for all sub-periods.

3.1 to testH (γ0). Rejection decisions are based on the largest MCp-values over allκ and(π, ω)
respectively; we did not restrict maximization to the CS forthese parameters here. As expected in
view of theHB test results, the exact CSs are empty for several subperiods. The usefulness of the
asymptotic confidence intervals is obviously questionablehere. Other results which deserve notice
are the empty sets for 1956-60 subperiod; these sets correspond to the case where the efficiency
bound test is significant (at5%).12

To illustrate the differences between the asymptotic CS andours, we next check whether the
average real risk-free rate is contained in the CSs. For manysubperiods, like 1966-70, the evidence
produced by the asymptotic and MC Fieller-type confidence intervals is similar. There are nonethe-
less cases where the set estimates do not lead to the same decision. For instance, for 1941-45 and
1971-75, the average risk-free rate is not included in the asymptotic confidence interval, while it is
covered by our MMC CSs. These are cases where, using the asymptotic confidence interval, the
hypothesisγ = rf is rejected, whereas exact CSs indicate it should not be rejected. Conversely,
in 1986-90, the asymptotic confidence interval includes theaverage risk-free rate, whereas our CSs
are empty.

between risk and return with a negative slope. Furthermore,rerunning our analysis using 10-year subperiods leads toγ

estimates below the benchmark average return.
12This can be checked by referring to Table 4: although the reported maximalp-values in this table are performed over

the confidence set forκ and(π, ω), we have checked that the global maximalp-value leads to the same decision here.
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In Table 7, we report the Wald-HAC counterparts of the above QML-based tests (columns 2
and 3) as well as point and set estimates ofγ (columns 1 and 4). Column (2) reports the values of
our proposedJ-test-type minimum Wald-HAC statistic. In column (3), MMC refers to the maximal
MC p-value [over all (φ1i, φ2i)] for this statistic, assuming the GARCH specification (2.12), and the
level is5%; alternatively, an asymptoticχ2(12) critical value (21.03 for a5% level) can be used. In
column (1), we report the GMM-type point estimate (denotedγ̃); the associated set estimate which
inverts the Wald-HAC MC Gaussian GARCH based test is reported in column (4).

We first note that, on using the asymptotic critical value, a Wald-HAC test would reject the
model in all subperiods at level5%. In contrast, the GARCH-MMCp-value is less than5% only
in the 1986-90 subperiod. In view of our simulation results from Section 7, these results illustrate
the serious implications of asymptotic test size distortions. Recall that the LR-based MC and MMC
(Gaussian and non-Gaussian, with and without GARCH) tests reject the model at the5% level in at
least three other sub-periods: 1946-50, 1950-55, 1960-65.This reflects the test relative power, as
illustrated in Section 7. Turning to the estimates ofγ, we note that the Wald-HAC based MMC CSs
are substantially wider than the LR-based counterparts, only one CS is empty (in the 1986-1990
subperiods, in which case the model would be rejected), and the set is unbounded in the 1990-95
subperiod. Had we relied on the asymptoticχ2(12) cut-off to invert the Wald-HAC test, all CSs
would be empty. Again, these observations line up with our simulation results.

The above procedures applied to the full data yields empty CSs using the exact GARCH cor-
rected LR and Wald-HAC criteria; the confidence interval using (2.24) is[.0007, .0088]. Since our
subperiod analysis suggests thatγ is temporally unstable, one must be careful in interpretingsuch
results. On using a Bonferroni argument (that accounts for time-varying parameters) based on the
minimum (over subperiods) GARCH-correctedp-value which is.003 < .05/12, the model can be
safely rejected at level5%, over the full sample.

9. Conclusion

This paper proposes exact mean-variance efficiency tests when the zero-beta (or risk-free) rate is
not observable, which raises identification difficulties. Proposed methods are robust to this problem
as well as to portfolio repacking, and allow for heavy-tailed return distributions. We also derive
exact CSs for the zero-beta rateγ. While available Wald-type intervals are unreliable and lead to
substantially different inference concerningγ, our CSs are valid in finite samples without assuming
identification, and are empty by construction if efficiency is rejected.

We report a simulation study which illustrates the properties of our proposed procedures. Our
results allow to disentangle “small-sample” problems from“asymptotic failures”: whereas sample
size, non-normality as well as parameter identification problems may concurrently cause finite-
sample distortions, identification issues are more pernicious and methods that assume identification
away cannot be salvaged. We also examine efficiency of the market portfolio for monthly returns
on NYSE CRSP portfolios. We find that efficiency is less rejected with non-normal assumptions.
Exact CSs forγ differ importantly from asymptotic ones, and LR-based CSs are tighter than their
Wald counterparts. All CSs nevertheless suggest thatγ is not stable over time.

These results provide the motivation to extend our method tomore general factor models, as
discussed by Campbell et al. (1997, Chapter 6) and Shanken and Zhou (2007). These models raise
the same statistical issues as the BCAPM, except that their definitional parameter is non-scalar.
In this case, Fieller-type methods are clearly more challenging and raise worthy theoretical and
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empirical research questions.

A. Appendix: Proofs

PROOF OF THEOREM 3.1 Under (2.8) andH(γ0), we have: TΣ̂ = Û ′Û =
K

′
W ′MWK , TΣ̂(γ0) = K

′
W ′M̄(γ0)WK . Then, underH(γ0),

Λ(γ0) =
|Σ̂(γ0)|

|Σ̂|
=

|K
′
W ′M̄(γ0)WK|

|K ′
W ′M (X)WK|

=
|K

′
|
∣∣W ′M̄(γ0)W

∣∣ |K|

|K ′ | |W ′M (X)W | |K|
=

∣∣W ′M̄(γ0)W
∣∣

|W ′M (X)W |
,

henceP[LR(γ0) ≥ x] = P[T ln(
∣∣W ′M̄(γ0)W

∣∣ / |W ′M (X)W |) ≥ x] , ∀x.

PROOF OFLEMMA 5.1 The Gaussian log-likelihood function for model (2.5) is

ln[L̃(Ỹ , C , Σ)] = −
T

2
[n(2π) + ln(|Σ|)]−

1

2
tr[Σ−1(Ỹ −XC)′(Ỹ −XC)] = ln[L(Y, B , Σ)] .

SettingΣ̃(C) ≡ 1
T (Ỹ −XC)′(Ỹ −XC), for any given value ofC, ln[L̃(Ỹ , C , Σ)] is maximized

by takingΣ = Σ̃(C) yielding the concentrated log-likelihood

ln[L̃(Ỹ , C , Σ)c = −
nT

2
[(2π) + 1]−

T

2
ln(|Σ̃(C)|) . (A.1)

The Gaussian MLE ofC thus minimizes|Σ̃(C)| with respect toC. Let us denote bŷC(Y ) the
unrestricted MLE ofC so obtained, and bŷC(Y ; γ0) andĈB(Y ) the restricted estimators subject
to H̃(γ0) andH̃B respectively. Suppose thatỸ is replaced bỹY∗ = Ỹ A whereA is a nonsingular
n × n matrix. We need to show thatLR∗(γ0) = LR(γ0) andLRB∗ = LRB, whereLR∗(γ0)
andLRB∗ represent the corresponding test statistics based on the transformed data. Following this
transformation,|Σ̃(C)| becomes:

|Σ̃∗(C∗)| =
∣∣ 1
T
(Ỹ∗ −XC∗)

′(Ỹ∗ −XC∗)
∣∣ =

∣∣ 1
T
A′(Ỹ −XC∗A

−1)′(Ỹ −XC∗A
−1)A

∣∣

= |A′A|
∣∣ 1
T
(Ỹ −XC)′(Ỹ −XC)

∣∣ = |A′A| |Σ̃(C)| (A.2)

whereC = C∗A
−1. Then |Σ̃(C∗)| is minimized byĈ∗(Y∗) = Ĉ(Y )A and |Σ̃∗

(
Ĉ∗(Y∗)

)
| =

|A′A||Σ̃
(
Ĉ(Y )

)
. On observing thatH(γ0)C = 0 ⇐⇒ H(γ0)CA = 0 ⇐⇒ H(γ0)C∗ = 0

for any γ0, the restricted estimators ofC under H̃(γ0) and H̃B are transformed in the same
way: Ĉ∗(Y∗; γ0) = Ĉ(Y ; γ0)A andĈ∗B(Y∗) = ĈB(Y )A. This entails that|Σ̃∗

(
Ĉ∗(Y∗; γ0)

)
| =

|A′A| |Σ̃
(
Ĉ(Y ; γ0)

)
| and|Σ̃∗

(
Ĉ∗B(Y∗)

)
| = |A′A| |Σ̃

(
ĈB(Y )

)
|, so that

Λ̃∗(γ0) =
|Σ̃∗

(
Ĉ∗(Y∗; γ0)

)
|

|Σ̃∗

(
Ĉ∗(Y∗)

)
|

=
|Σ̃
(
Ĉ(Y ; γ0)

)
|

|Σ̃
(
Ĉ(Y )

)
|

= Λ̃(γ0) , (A.3)

Λ̃B∗ =
|Σ̃∗

(
Ĉ∗B(Y∗)

)
|

|Σ̃∗

(
Ĉ∗(Y∗)

)
|
=

|Σ̃
(
ĈB(Y )

)
|

|Σ̃
(
Ĉ(Y )

)
|
= Λ̃B . (A.4)
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Finally, in view of (2.14) and (2.20), we haveLR∗(γ0) = T ln[Λ̃∗(γ0)] = T ln[Λ̃(γ0)] =
LR(γ0)andLRB∗ = T ln(Λ̃B∗) = T ln(Λ̃) = LRB .

PROOF OFTHEOREM 5.2 Consider a transformation of the form̃Y∗ = Ỹ K−1 or, equivalently,
Y∗ = Y K−1 + R̃Mι

′
n(I −K−1). Using(2.1) and(2.8), we then have:

Y∗ = (XB +WK)K−1 + R̃M ι
′
n(I −K−1) = XBK−1 + R̃M ι

′
n(I −K−1) +W

= (ιTa
′ + R̃Mβ

′)K−1 + R̃Mι
′
n(I −K−1) +W

= R̃M ι
′
n + [ιTa

′ + R̃M(β − ιn)
′]K−1 +W

= R̃M ι
′
n +X(B −∆)K−1 +W = R̃Mι

′
n +XB̄ +W (A.5)

whereB̄ = (B−∆)K−1 and∆ = [0, ιn]
′. Using Lemma5.1, LR(γ0) andLRB can be viewed as

functions ofY∗, and depend on(B,K) only throughB̄ = (B −∆)K−1. UnderHB, the nuisance
parameter only involvesγ and(β − ιn)

′K−1. Now the distribution ofLR(γ0) andLRB can be
explicitly characterized by using (A.3) - (A.4) and observing that

Λ̃(γ0) =
|Σ̃∗

(
Ĉ∗(Y∗; γ0)

)
|

|Σ̃∗

(
Ĉ∗(Y∗)

)
|

=
|Ŵ (γ0)

′Ŵ (γ0)|

|Ŵ ′Ŵ |
,

Λ̃B =
|Σ̃∗

(
Ĉ∗B(Y∗)

)
|

|Σ̃∗

(
Ĉ∗(Y∗)

)
|
=

inf {|Σ̃∗

(
Ĉ∗(Y∗; γ0)

)
| : γ0 ∈ Γ}

|Σ̃∗

(
Ĉ∗(Y∗)

)
|

= inf {Λ̃(γ0) : γ0 ∈ Γ} ,

whereŴ (γ0) = M̄(γ0)(Y∗− R̃Mι
′
n) = M̄(γ0)(XB̄+W ) = M̄(γ0){[ιTa

′+ R̃M(β− ιn)′]K−1+
W} = M̄(γ0){

[
ιT
(
a′ + γ0(β − ιn)

′
)
+ (R̃M − γ0ιT )(β − ιn)

′
]
K−1 +W} = M̄(γ0){ιT

(
a +

γ0(β − ιn)
′
)
K−1 + W}and Ŵ = M(X)W . UnderHB wherea = −γ(β − ιn), Ŵ (γ0) =

(γ0−γ)M̄(γ0)ιT (β−ιn)
′K−1+M̄(γ0)W . The theorem then follows on observing thatLR(γ0) =

T ln[Λ̃(γ0)] andLRB = T ln(Λ̃B). Further information can be drawn from the singular value
decomposition of̄B. Let r be the rank ofB̄. SinceB̄ is a2× n matrix, we have0 ≤ r ≤ 2 and we
can write:

B̄ = PDQ′ , D = [D̄, 0] , D̄ = diag
(
λ
1/2
1 , λ

1/2
2

)
, (A.6)

whereD is a2×n matrix,λ1 andλ2 are the two largest eigenvalues ofB̄′B̄ (whereλ1 ≥ λ2 ≥ 0),
Q = [Q1, Q2] is an orthogonaln×n matrix whose columns are eigenvectors ofB̄′B̄, Q1 is a2× r
matrix which contains eigenvectors associated with the non-zero eigenvalues of̄B′B̄, P = [P1, P2]
is a2× 2 orthogonal matrix such thatP1 = B̄Q1D

−1
1 andD1 is a diagonal matrix which contains

the non-zero eigenvalues of̄B′B̄, settingP = P1 andD1 = D̄ if r = 2, andP = P2 if r = 0;
see Harville (1997, Theorem 21.12.1). Using Lemma5.1and Theorem5.2, LR(γ0) andLRB may
then be reexpressed as:

LR(γ0) = T ln
(
|W̃ (γ0)

′W̃ (γ0)|/|W̃
′W̃ |

)
, LRB = inf {LR(γ0) : γ0 ∈ Γ} , (A.7)

W̃ = ŴQ =M(X)W̄ , W̄ =WQ, W̃ (γ0) = Ŵ (γ0)Q = M̄(γ0)(XPD + W̄ ), (A.8)

PD = [PD̄, 0] andPD̄ has at most 3 free coefficients (P is orthogonal). UnderHB,

W̃ (γ0) = M̄(γ0)ιT

[
(γ0 − γ)

(
ϕ′ϕ
)1/2

ϕ̄′
]
+ M̄(γ0)W̄ ,
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ϕ = Q′
(
K−1

)′
(β − ιn), ϕ̄ = ϕ/

(
ϕ′ϕ
)1/2

.

DefineΦ =
[
ϕ̄, Φ̄

]
as an orthogonal matrix such thatΦ′Φ = ΦΦ′ = In, so

Φ′Φ =

[
ϕ̄′ϕ̄ ϕ̄′Φ̄
Φ̄′ϕ̄ Φ̄′Φ̄

]
=

[
1 0
0 In−1

]
, ϕ̄′Φ =

[
1 0 · · · 0

]
. (A.9)

Then as in (A.7), LR(γ0) andLRB may again be expressed underHB as:

LR(γ0) = T ln
(
|W̃B(γ0)

′W̃B(γ0)|/|W̃
′
BW̃B|

)
, LRB = inf {LR(γ0) : γ0 ∈ Γ} , (A.10)

W̃B = W̃ Φ̄ =M(X)W̄B , W̄B = W̄Φ, (A.11)

W̃B(γ0) = W̃ (γ0)Φ̄ = M̄(γ0)ιTϕ
′
B + M̄(γ0)W̄B, (A.12)

whereϕ′
B = (γ0 − γ) (ϕ′ϕ)1/2 ϕ̄′Φ = (γ0 − γ) (ϕ′ϕ)1/2

[
1 0 · · · 0

]
which involves at most

one free coefficient. WhenW is non-Gaussian, the distributions ofLR(γ0) andLRB may be
influenced byB̄ throughQ in W̄ . Under the Gaussian assumption (2.9), the rows ofW̄ are i.i.d.
N(0, In), so thatLR(γ0) andLRB follow distributions which depend on(B,K) only throughPD̄.
UnderHB, since the rows of̄WB are i.i.d. N(0, In), this distribution involves only one nuisance
parameter, in accordance with the result from Zhou (1991, Theorem 1), derived through a different
method.

PROOF OFTHEOREM 6.1 HB = ∪γ0H(γ0) . SinceLRB = inf {LR(γ0) : γ0 ∈ Γ}, we have
LRB ≤ LR(γ0), for anyγ0, henceP[LRB ≥ x] ≤ P(B,K)

[
LR(γ0) ≥ x

]
, ∀x, for eachγ0 and

for any(B, K) compatible withH(γ0). Furthermore, underHB, there is a value ofγ0 such that the
distribution ofLR(γ0) is given by Theorem3.1, which entails (6.1). The result for the Gaussian
special case then follows upon using (3.2).

PROOF OFTHEOREM 6.2 The result follows from (6.7), (3.6), and the inequalitiesp̂UN (γ, ν) ≤
p̂UN (Γ, ν) andp̂UN (γ, ν) ≤ p̂UN (γ, ΩD) ≤ p̂UN (Γ, ΩD).

PROOF OFTHEOREM 6.3 Whenν is specified, by (6.6), (2.19) and (3.5), we have:p̂UN (γ̂, ν) ≡

pN [LR
(0)
B

∣∣LRN (γ̂, ν)] = pN [LR(0)(γ̂)
∣∣LRN (γ̂, ν)] = p̂N (γ̂, ν) , hencesup {p̂N (γ0, ν) : γ0 ∈

Γ} ≤ α⇒ p̂N (γ̂, ν) ≤ α⇒ p̂UN (γ̂, ν) ≤ α; on noting thatsup {p̂N (γ0, ν) : γ0 ∈ Γ} ≤ α means
thatCγ(α, ν) is empty,p̂UN (γ̂, ν) > α⇒ sup {p̂N (γ0, ν) : γ0 ∈ Γ} > α⇒ Cγ(α, ν) 6= ∅. Forν
unknown,

p̂UN (γ̂, ΩD) = sup {p̂UN (γ̂, ν0) : ν0 ∈ ΩD} = sup {pN [LR
(0)
B

∣∣LRN (γ̂, ν0)] : ν0 ∈ ΩD} ,

= sup {pN [LR(0)(γ̂)
∣∣LRN (γ̂, ν0)] : ν0 ∈ ΩD} = sup {p̂N (γ̂, ν) : ν0 ∈ ΩD} ,

hencesup {p̂N (γ0, ν0) : γ0 ∈ Γ, ν0 ∈ ΩD} ≤ α ⇒ sup {p̂N (γ̂, ν0) : ν0 ∈ ΩD} ≤ α ⇒
p̂UN (γ̂, ΩD) ≤ α and p̂UN (γ̂, ΩD) > α ⇒ sup {p̂N (γ0, ν0) : γ0 ∈ Γ, ν0 ∈ ΩD} > α ⇒
Cγ(α; D) 6= ∅ .
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