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Résumé/Abstract 
 

Regression models sometimes contain a linear parametric part and a part obtained by reducing the 

dimension of a larger set of data. This paper considers properties of estimates of the interpretable 

parameters of the model, in a general setting in which a potentially unbounded set of other variables may 

be relevant, and where the number of included factors or components representing these variables can 

also grow without bound as sample size increases. We show that consistent (and asymptotically normal, 

given further restrictions) estimation of a parameter of interest is possible in this setting. We examine 

selection of the particular orthogonal directions, using a criterion which takes into account both the 

magnitude of the eigenvalue and the correlation of the eigenvector with the variable of interest. 

Simulation experiments show that an implementation of this method may have good finite-sample 

performance. 
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1. Introduction

Regression models sometimes contain a linear parametric part and a part obtained by
reducing the dimension of a larger set of data; for example, factor-augmented regression
is widely used for forecasting (see for example Stock and Watson 2002a,b). In many cases
the fits or forecasts, rather than parameter values, are the primary objects of interest. In
other contexts the values of a few interpretable parameters may be the focus of attention,
while other variables or factors are included as statistical controls for other effects which,
if omitted, would lead to poor inference on the parameters of interest (e.g. Magnus and

Durbin 1999).
In a linear context, we can represent this situation as

y = c+Xβ + Zγ + ε, (1.1)

where our interest is in β, but where Z has elements which may be correlated with elements
of X, and where Z may be of potentially large, even infinite, dimension. The researcher
typically chooses a subset of Z to include as controls in the regression; however, the re-
searcher will often be unable to identify the most important elements of Z to include, so
that information remains in the neglected elements. It is well known that unless a selection
of regressors is sufficient for all information in the set of controls relative to the parameter
of interest, estimates from the resulting model are strictly inconsistent, and the omitted
variable bias may be substantial. The very widespread use of the linear regression model
where the true process is not known a priori makes this problem one of great practical
importance.

This paper examines the asymptotics of regression to obtain information from a large
set of control regressors, where there is a relatively small number of parameters of interest.
It is closely related to two existing literatures: one in which parameters of a model are
separated into two classes based on a priori considerations of importance to the investigator,
and another in which the order of a process is allowed to be unbounded in order to establish
asymptotic results without finite-order restrictions. We will treat a generic problem related
to the first literature, and for generality will use an infinite-dimensional setting of the type
seen in the second.

A number of different econometric models, including factor-augmented models and
semi-parametric (partially linear) models, make a distinction between a small number
of parameters of particular interest and others that are necessary as controls. In semi-
parametric models (e.g. Robinson 1988), a dependent variable is allowed to be a general
function of a small number of regressors, and to depend linearly on a further set. The dis-
tinction is made in cases in which the number of regressors is too large for a nonparametric
regression on the full set, and nonparametric modelling of a subset is deemed to be of
particular interest; other regressors are nonetheless retained as controls with linear effects.
Although the present paper deals with a purely linear context (a restriction which can

be relaxed), we treat cases where the set of potential explanatory variables may be large
enough that including all of them would be impossible or impractical because of efficiency
loss.

1



Another context in which a distinction is made between classes of parameters, more
closely related to the models examined here, is that of factor-augmented regression models.
Here (see in particular Bai and Ng 2006), a finite factor structure is usually assumed. A
factor model expresses an m− dimensional array in terms of a smaller number q of factors,
that is, zit = ΛFt + εit, i = 1, . . .m, t = 1, ... . . . n, where Ft is a q × 1 set of mutually
orthogonal factors, and where εit is usually taken to be orthogonal to εjs, i 6= j, s 6= t,

although this assumption is relaxed in, e.g., Chamberlain (1983), Forni and Lippi (2001).
The q factors are chosen to provide a parsimonious characterization of Z, so that much of
the information in Z may be extracted. Chamberlain and Rothschild (1983) treat the finite
factor structure as an approximation, as an alternative to allowing the number of factors to
increase without bound, but do not pursue the latter. While these models have typically
been used in forecasting applications, some authors have used the extracted factors to
provide controls for estimation of a small number of parameters of interest; see for example
Magnus et al. (2009).

There is also an increasingly substantial literature which treats processes of interest
as being of potentially unbounded order. It is well known that many processes can be
represented as infinite-order linear series; in time series econometric contexts, for example,
these series may have an AR(∞), MA(∞) or ARCH(∞) form. Finite-order models used in
practice can be treated as truncations of such processes, and there are asymptotic results on
consistent LS estimation of such truncations, with model order increasing at an appropriate
rate, dating back to the classic work of Berk (1974). These results have been extended to
multivariate cases including that of vector autoregressions. A more recent literature extends
results of this type to quantile estimation; see Belloni and Chernozhukov (2009), Zernov et

al. (2009). The general setting has the advantage that it allows for the case, of practical
importance in econometrics, in which models are truncations of more general models that
we would prefer to estimate if sample sizes and data sets permitted. Since in practice
we are restricted by limitations on sample size and observed series, it is interesting to
investigate the consequences of these limitations and of gradually increasing model orders
as the constraints are loosened.

The present study draws on both literatures. In extracting information from a large
set of explanatory series, we consider computations similar to those employed in factor-
augmented models; in particular, we derive some smaller number of regression directions
from eigenvectors of a matrix of potential regressors. Principal components are one example
of such an extracted set of regression directions, although we suggest a modified method.
Dimension reduction methods are applied to a part of the model; the resulting regressors are
used as statistical controls for another part in which interpretable parameters are required.
We give conditions under which this allows consistent estimation of these interpretable
parameters. That is, in the model (1.1) we use a parsimonious characterization of Z via
a smaller number of components. However, effects of Z are not the focus of our interest,
and we do not require a finite dimension for Z nor any finite bound for the number of
orthogonal components derived from Z which can be used as controls. We are able to
prove consistency of estimation of an effect of interest β under more general circumstances
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than in existing literature, and because we do not assume a finite factor structure for the
control regressors, the results allow the researcher to define parameters of interest without
the constraint that the remaining regressors meet a finite-factor condition.

The fact that the process is treated as having unknown and potentially unbounded
dimension is a key technical element of this study. Allowing for unbounded dimension of
the process requires more elaborate methods of proof; however we are able to show that,
applied with an appropriate algorithm for augmenting the set of regressors as N → ∞,
linear regression is consistent for parameters of interest in a more general context than has
previously been established. Specifically, the asymptotic results examine the possibility of
consistent estimation of β when the number of included directions from the space spanned
by Z grows with sample size. We establish asymptotic theory for the estimates in finite
models whose dimension increases with sample size. We then consider a new criterion for
selection of directions which orders orthogonal directions in the space spanned by Z by
magnitude of the product of the eigenvalue and correlation with X; this implies that the
importance for estimation of β of directions tends to decline with diminishing value of the
criterion. We show that the dimension of the regressor space can be reduced by excluding
Z ′s with the lowest values of the criterion, without affecting consistency of estimates of β,
and that there is a uniform upper bound for a given sample size on the number of directions
that need be included.

In section 2 we provide a formal definition of the problem and conditions for asymp-
totic results describing consistent and asymptotically normal estimation of a finite part
of an infinite-dimensional process. The other main results of the paper are in Section 3,
which describes orthogonalization of the regressors and shows that a criterion for select-
ing among the orthogonalized directions allows consistent estimation of β in a model of
reduced dimension. Together the results of these sections establish consistency of the re-
gression method for the parameter of interest, using the regressor selection algorithm to
augment model order at a controlled rate, in a general problem of unknown order. Section
4 provides simulation evidence on the finite-sample behaviour in such models. Proofs are
given in the Appendix.

2. Processes, notation and preliminary results

We begin with a schematic outline of the class of methods to be considered, for the
linear model (1.1):

y = c+Xβ + Zγ + ε

with a potentially large number of regressors contained in Z and a (typically smaller) set of
variables of interest X, with a corresponding vector of parameters of interest β. A partially
dimension-reduced regression method allows extraction of information from a matrix of
potential regressors which may be too large to allow individual inclusion of each. The
following is one implementation of such a method:

- 1. From the matrix of data Z, compute the eigenvalues and corresponding eigenvectors
of the moment matrix Z ′Z.
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- 2. Order the eigenvectors by the product of the eigenvalue and the correlation between
the eigenvector and the regressor of interest, x (note that if we ordered by eigenvalue

alone, we would be extracting principal components in the next step).
- 3. For a given number κ of components, compute corresponding orthogonal regressors

by the product of the matrix of κ eigenvectors and the original matrix of potential
regressors. Repeat for a range of values of κ and select the value of κ that yields the
lowest Akaike Information Criterion (AIC).

- 4. The final regression model uses the regressor of interest x augmented by κ orthog-
onal components as control regressors.

Alternative implementations might use a different information criterion, or model av-
eraging to combine components; the focus in the present study is not on comparison of
these possible devices, but on consistent estimation via model order which increases at a
controlled rate.

As an example, consider a macroeconomic data set comprising several hundred vari-
ables but a smaller number, e.g. 200, time series observations. We are interested in
estimating the effect on percentage change in industrial production, y, of a change in a
short term interest rate, x. Industrial production is potentially affected by a large number
of the measured variables, but we cannot include hundreds of these quantities, and lags, in
a regression; nonetheless omission of the relevant quantities will lead to inconsistent esti-
mates of the effect of x on y. By retaining the interest rate x and reducing the dimension
of the set of other variables appropriately, we can nonetheless obtain good estimates of the
effect of interest. As well, the estimates are not dependent on the usual judgments as to
which other variables to include in a regression.

Below we derive properties of the general procedure and show that it allows consistent
estimation of interpretable effects of interest without a priori knowledge of which regression
directions to include. There are two classes of technical problem to solve. First, because we
do not require Z to be of finite dimension, we must establish consistency of the regression
procedure with a truncation of Z that increases in order with sample size (of course, there is

a substantial simplification if one is willing to assume finite dimension for the true process).
Second, we will apply dimension reduction methods to the finite truncation, and establish
properties of the full procedure. The remainder of section 2 addresses the first point, and
section 3 the second point.

In the following sections we establish a more precise notation as well as proving the
necessary theorems.

2.1 Processes and notation

We will first specify conditions on the process and define the parameter of interest in
a linear conditional expectation function. It is important to note that the conditions are
specified in a general form that allows either finite- or infinite-dimensional processes. In
particular, we assume that the observed data are associated with realizations of a multi-
dimensional (possibly infinite-dimensional) stationary random process, i.e. the assumptions
below allow the number of random variables in the process, indexed by `, to be unbounded:
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` = 1, . . .∞. A finite dimension, with ` = 1, . . . L < ∞, is of course also covered by the
theorems below.

Consider a set of real-valued random variables W = {w`i}∞ ∞
`=1,i=−∞ such that W` =

{w`i}∞i=−∞ is a stochastic process for each `, where i indexes the N observations. For

each observation W·i = {w`i}∞`=1 on the set of random variables, define random vectors

(partitions) W ′i = (yi;X
′
i;Z
′
i), where yi = w1i represents a dependent variable, X ′i =

(w2i, . . . wm+1,i) = (x1i, . . . xm,i) a set of m conditioning variables of interest, and Z ′i =

[z1i, z2i, . . .] = [wm+2,i, wm+3,i, . . .] a vector of additional conditioning variables; Z ′i may

or may not be of finite dimension. This data generation process is assumed to satisfy the
following conditions, a number of which can evidently be weakened.

Assumption 1 (A1)

. (i) W` is a stationary stochastic process for every ` :

E(w`i) = µ`, cov(w`iw`j) = φ``(|i− j|);
. (ii) W`1 ,W`2 are co-stationary: cov(w`1iw`2j) = φ`1`2(|i− j|);
. (iii) There exists an increasing sequence of σ− fields {Fi}∞−∞ such that X ′i, Z

′
i are

measurable with respect to Fi and

E(yi|Fi) = c+X ′iβ + Z ′iγ; (2.1)

. (iv) The lowest and highest eigenvalues, λ(ΣW ) and λ(ΣW ), of the covariance matrix

ΣW of W·i (or of any subset) are such that

0 < ζ < λ(ΣW ) < λ(ΣW ) < ζ <∞.

. (v) sup1≤`≤∞E(w4
`i) <∞.

From Assumption 1 (i),(ii), the w`i span a separable Hilbert space H with the scalar

product given by < w`1i, w`2j >= cov(w`1iw`2j), and there is a Wold representation for

each W`. Equation (2.1) gives the conditional expectation function, in which β is the key

object of interest. Note also that part (iii) of A1 implies that

(c, β, γ) = arg min
c̃,β̃,γ̃

E(yi − c̃−X ′iβ̃ − Z ′iγ̃)
2
.

Define εi = yi − (c + X ′iβ + Z ′iγ), i = 1, . . . , N ; then E(εi) = E(εi|Fi) = 0. Part (iv)

of A1 implies that none of the regressors (in X or Z) is in the span of the others, that
the inverse of the covariance matrix has a bounded norm, and that the corresponding
coefficient is therefore identified. As well, for any non-stochastic m×∞ matrix A of rank
m, E(AWW ′A′) = AΣA′ is of rank m, since by (iv), ΣW is invertible. Note also that (v)

implies supE(w2
`i) < (supE(w4

`i))
1
2 <∞ by Jensen’s inequality.

5



Two special cases of the above structure are (i) Fi = Fj = F and all observations W·i
are independent, in which case cov(w`1iw`2j) = γ`1`2(|i− j|) if i = j, zero otherwise; and

(ii) the case in which some W` are lagged values of others, so that for example Z ′i could

include yi−h and elements of Z ′i−h, for several lags h, h > 0. The former case may be an

adequate characterization of cross-sectional contexts, whereas the latter may arise in time
series models.

2.2 Preliminary results

We now show that the conditions of Assumption 1 imply a bound on the sum of
squared coefficients on the Zi, and that the error {εi} is a martingale difference sequence

(m.d.s.) with respect to the sequence Fi.
Lemma 1. If A1 is satisfied, then

- (i)
∑
`(γ

2
` ) <∞

- (ii){εi,Fi} is a m.d.s.

Proof: see Appendix 1.

The parameter of interest in this problem is β, which can be estimated consistently
without controlling for Z only if X ⊥ Z or γ = 0. If the dimension of Z ′i is small, then

estimation of the linear relationship yi = c + Xiβ + Z ′iγ + εi is straightforward. In many

problems of interest, however, dim(Z ′i) is large relative to the available sample size (so that

incorporating all elements of Z ′i is not practical). In such cases, the investigator is normally

forced to choose a subset of the Z’s, losing information in the other Z’s which is orthogonal
to the space spanned by this subset. The alternative examined here is to use methods that
allow us to summarize the information in a large number of Z’s with a smaller number of
constructed regressors, which are used in place of the Z’s to control for their effects.

A crucial question can now be formulated. For any k, the model (2.1) can be repre-
sented in the form

y = c+Xβ + Z(k)γ(k) + Z(k + 1,∞)γ(k + 1,∞) + εi, (2.2)

where Z(k) contains k regressors from Z and Z(k+1,∞) those remaining, possibly infinite
in number. When can we obtain consistent estimates and asymptotically valid inference
while ignoring some parts of Z; that is, when by increasing k appropriately as N→∞ does
the contribution of Z(k + 1,∞) decrease to zero?

Consider an additional assumption:1

Assumption 2 (A2) ∑
` |γ`| <∞.

1This assumption implies that the regression coefficients on Z are themselves bounded in
`1; this differs from the approach taken in the Lasso (see e.g. Tibshirani 1996, eq. 1), where
an `1 penalty term is added to the LS criterion, with the effect of eliminating variables

entirely from the specification.
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Theorem 1 then provides an answer to the question.

Theorem 1. Under A1 and A2, as k→∞, E(Z(k + 1,∞)γ(k + 1,∞))2 → 0, and Z(k +

1,∞)γ(k + 1,∞)
p→0.

Proof: see Appendix 1.

Note that A2 is sufficient, but not necessary. Moreover there are important examples
that can easily be shown to satisfy A2, some of which we will describe below.

Assumptions A1 and A2 are much weaker than those required for consistent estimation
in the standard context of regression with control variables, which embody not only a finite
model but also that any omitted elements of the process are uncorrelated with the variable
of interest. Nonetheless it is instructive to consider specific classes of cases for which these
higher level assumptions are known to be satisfied.

A particularly important, because widely applicable, case is that in which L is finite
but such that its magnitude cannot be established a priori, or the fact that L is finite may be

unknown. In this case the condition that
∑L
`=1 |γ`| <∞ is trivially satisfied, and for large

enough k, all relevant regression directions will be included. Thus, even with finite L, the
assumptions remain substantially weaker than those normally imposed in using a regression
model to control for nuisance effects: we are not required to know L (nor whether it is finite

or not), although there is of course a sacrifice in efficiency relative to the case where L is
known. Another easily verifiable example involves non-finite L, where Z is an expansion.
Consider IID data related by y = c + Xβ + Zγ + ε, where Zγ represents an expansion
such as a polynomial expansion of a function of a finite number of variables. For example,

let Zγ = g(z) = (1 − qz)−1 = 1 + qz + q2z2 + . . . , with |q| < 1; in this simple example,

if the powers of z satisfy A1 (e.g. if z is a bounded variable: |z| < 1), it follows that A2
holds. Finally, consider an unbounded number of lags in a time series process. Let y,X be
linear processes and let each Z`, ` = 1, . . .m be a stationary and invertible ARMA process.
Although m is finite, an unbounded number of lags of each Z` may be included in the model,

leading to unbounded L. The process is y = c +
∑m
i=1 βiXit +

∑m
i=1

∑∞
ν=1 γiνZi,t−ν + εt.

It follows that
∑m
i=1

∑∞
ν=1 |γiν | <∞, i.e. A2 holds.

In practice, our assumptions allow us to treat cases of arbitrarily large numbers of
potential regressors, or cases in which the number of potential regressors can increase
without bound as measurements permit; an increasing number of data sets involving such
large numbers of potential regressors are available. The well known National Longitudinal
Survey of Youth (NLSY) data, for example, contain various component surveys, typically

comprising hundreds of responses to questions.2 Macroeconomic data sets of high dimension
are also common; Stock and Watson (2002b), for example, give a detailed description of
a data set containing 215 series, apart from lags. However, the purpose of that study
is forecasting using extracted factors; macroeconomic studies to estimate parameters of
interest almost invariably involve prior selection by the investigator of a much smaller set
of regressors, rather than the use of dimension reduction methods.

2See http://www.bls.gov/nls .
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2.3 Consistency and asymptotic normality

We now provide theorems demonstrating consistency and asymptotic normality of the
estimate of the parameter of interest when only a finite part of the regressor space spanned
by Z(k) is included, and that of Z(k + 1,∞) is ignored, as k →∞. Theorem 2 establishes

consistency as k →∞ for estimates in the finite truncation of (2.2),

y = c+Xβ + Z(k)γ(k) + εi, (2.3)

which omits Z(k + 1,∞). Let MZ(k) denote projection orthogonally to Z(k) : MZ(k) =

I − Z(k)[Z(k)′Z(k)]−1Z(k)′.

Theorem 2. Suppose that A1 and A2 hold. Then if N →∞, k →∞, and kN−
1
2 → 0, the

OLS estimator β̂k = (X ′MZ(k)X)−1X ′MZ(k)y in (2.3) is consistent: β̂k
p→β.

Proof: See Appendix 1.3

Below, after introducing dimension reduction by a criterion derived in Section 3, we
provide a further consistency result for the reduced-dimension regression model (Theorem

5).

It follows from the proof of Theorem 2 that (β̂k − β) = Op(f(k)) + Op((N − k̃)−
1
2 ),

where f(k) =
∑∞
i=1 |γk+i|; for finite L, (β̂k − β) = Op(N

− 1
2 ).

Thus, depending on the rate of decay in the coefficients γ`, we may get either standard

parametric or slower convergence rates. In particular, if γ` = O(`−ν) with ν > 1 (poly-

nomial rate of decay), then we have that
∑∞
k+1 |γ`| = O(k−ν+1), which even for k ' N

1
2

provides the rate

(β̂k − β) = Op(N
− 1−ν

2 ),

which is always slower than the parametric rate. If by contrast γ` = O(α`) with α < 1

(exponential rate of decay), then
∑∞
`=k+1 γ` = O(αk+1) and for any k = O(Nγ), γ < 1

2 , the

polynomial power dominates and a parametric rate obtains: that is, (β̂k − β) = Op(N
− 1

2 ).

The latter is the usual case when the number of regressors is assumed to be finite, and is
the case examined in, for example, the principal components literature, where exponential
decay follows trivially from the fact that for large enough ` > L, γ` = 0.

It is also possible to show that the estimator is asymptotically normal, and so may be
used for inference on β in the usual way. Theorem 3 gives this result in the case where f(k),
the absolute sum of coefficients on the omitted remainder terms, goes to zero sufficiently
quickly. For finite L, the condition on f(k) is always satisfied.

For the following theorem we define k̃ as the number of sample points lost to lags.

3In fact it can be seen from the proof that a stronger result, that β̂k converges to β in the

L2 norm, also holds.
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Theorem 3. Suppose that A1 and A2 hold, that k→∞ as N→∞, kN− 1
2 → 0, and also

that k can be chosen such that f(k) = o(N−
1
2 ). Then

(N − k̃)
1
2V
− 1

2

k Gk(β̂k − β)
D→N(0, Im),

where Gk = E
(

1
N−k̃X

′MkX
)

and Vk = E( 1
N−k̃X

′Mkεε
′MkX). If ε is independent of

(X,Z) then G−1
k VkG

−1
k = σ2

εE
(
X′MkX

N−k̃

)
.

Proof: See Appendix 1.

The weighting matrix H = G−1
k VkG

−1
k can be estimated consistently by

σ̂2
ε

(
X′MkX

N−k̃

)
, where σ̂2

ε = (N − k̃)−1u′u can be shown to be a consistent estimator of σ2
ε ,

where u is the residual vector from the regression (2.3) on X and Z(k). An operational

test of H0 : β = β0 is then given by (β̂k − β0)′Ĥ(β̂k − β0)
D→χ2

m.
We have established in this section that we can obtain consistent and asymptotically

normal estimates of the parameter of interest from a sequence of finite models of the
potentially infinite-dimensional process, given appropriate conditions, especially on rates
of growth of the number of regressors.

3. Dimension reduction and estimation of parameters of interest

We now turn to dimension reduction for the finite part Z(k) in the model (2.3), to
exploit as much information as possible, where k is too large to allow estimation of all
k parameters. It will now be necessary to distinguish two column dimensions related to
Z: therefore rather than using k, we will use K for the full column dimension of Z, and
κ (κ ≤ K) for the column dimension of a set of included components, which are linear
transformations of Z. With this distinction, we will establish properties of a distance mea-
sure useful in selecting particular controls on a finite sample; we also show that the selection
rule that is derived ensures consistency of the estimator based on κ(< K) components.
3.1 Estimation by regression on orthogonal components

Given a finite sample of size N, we use models of finite dimension despite the possibly-
infinite dimension of the vector Z ′i which enters the true process. Where Z is not of finite

column dimension, we treat a finite number K of included elements of Z, such that K may
increase with N : i.e. K is the number of data series used as potential controls. Define
Z(K) and Z(K + 1,∞) as the included and excluded parts of Z respectively, and use

the partition Z ′i = [Zi(K)
′

: Zi(K + 1,∞)
′
] (the corresponding parameter vector γ, with

individual element γj , is partitioned conformably so that γ′ = [γ(K)′ : γ(K + 1,∞)′]).

We treat here the case in which K ≤ N, i.e. fewer included potential explanatory
series than data points. We first compute sets of orthogonalized vectors which span the
same space as Z(K).
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Define a K ×K matrix C(K) such that C(K)
′
Z(K)

′
Z(K)C(K) = Λ, where Λ is the

K×K matrix with the K eigenvalues (λ`, ` = 1, . . .K) of Z(K)
′
Z(K) on the main diagonal,

zeroes elsewhere. That is, the columns of C(K) contain the K eigenvectors of Z(K)
′
Z(K),

and C(K)
′
C(K) = C(K)C(K)

′
= I; C(K) is therefore a random matrix, which depends

on the sample.4 Next define a selection matrix ΠK×κ such that C(κ) = C(K)Π is a K × κ
matrix which contains κ of the K eigenvectors: κ will be the number of control regressors

included in the model (we discuss the choice of κ below).5

Finally define the auxiliary model regressors S(κ,K)N×κ = Z(K)C(κ) and also

S(K,K)N×K = Z(K)C(K), which uses the full set of eigenvectors; S(K,K) contains all

principal components of, and spans the same space as, Z(K). From the representation (2.1)
of the process, we can write

yi = c+X ′iβ + Z ′iγ + εi

= c+X ′iβ + Z ′i(K)γ(K) + Zi(K + 1,∞)
′
γ(K + 1,∞) + εi

= c+X ′iβ + Si(K,K)′δ(K) + Zi(K + 1,∞)
′
γ(K + 1,∞) + εi

= c+X ′iβ + Si(κ,K)′δ(κ) + Si(K − κ,K)′δ(K − κ)

+ Zi(K + 1,∞)
′
γ(K + 1,∞) + εi,

≡ c+X ′iβ + Si(κ,K)′δ(κ) +R′i(κ,∞)θ(κ,∞) + εi,

(3.1)

where S(K − κ,K) is the N × (K − κ) matrix containing the (K − κ) columns of S(K,K)

not present in S(κ,K), and R collects all of the conditioning variables R ≡ [S(K −
κ,K) : Z(K + 1,∞)] not present in S(κ,K). Note that S(K,K)δ(K) = Z(K)γ(K) so that

C(K)δ(K) = γ(K), and that θ′(κ,∞) is defined as the vector [δ′(K − κ) : γ′(K + 1,∞)].

Note also that S(K,K) is a sample-dependent transformation, so that only the first two

lines of (3.1) characterize the process itself.

Estimation of β is based on the auxiliary model–a reduction of the data generation
process–

yi = c+X ′iβ
∗ + Si(κ,K)′δ∗ + ei, (3.2)

which uses the subset S(κ,K) of the available orthogonalized regressors contained in

S(K,K). If the estimation method is OLS, we refer to the estimator based on (3.2) as

OLS(κ,K), indicating that κ orthogonalized regressors are used from the set of K explana-

tory variables (i.e. β̂(κ) = (X ′MκX)
−1
X ′Mκy, where projection orthogonally to S(κ,K)

is defined by Mκ = I − S(κ,K)(S(κ,K)′S(κ,K))−1S(κ,K)′ with S(κ,K) = [S1, . . . , Sκ].)

4For simplicity of notation this dependence is not explicitly indicated.
5Each column of Π will have one element equal to one, all others zero, with no repeated

columns; i.e. if Πij = 1, then Πi′j = 0 ∀i′ 6= i, and Πij′ = 0 ∀j′ 6= j.
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Different methods of selection of the elements (columns) of S(κ,K) from those of

S(K,K) are of course possible. If Π selects the eigenvectors corresponding with the κ

largest eigenvalues, then S(κ,K) contains the first κ principal components of Z(K). An

alternative, where we take X to be a single vector (m = 1), is to choose the κ eigenvectors

of Z(K)′Z(K) corresponding with the largest values of {λ` · corr(S(K,K)`, X)} ; that
is, large eigenvalues are given more weight if they correspond with eigenvectors that are
highly correlated with X. In that case we choose C(κ) as the matrix containing the set
of κ eigenvectors with the highest values of this criterion, rather than the eigenvectors
corresponding to the κ largest eigenvalues. We will examine these selection methods below.

The auxiliary model (3.2) has the advantage that it does not require knowledge of

which elements of Z(K) are important in explaining y, and therefore facilitates approxi-

mately unbiased estimation of β where the data generation process is unknown (as when

some elements of γ are zero), and the column dimension of Z or of Z(K) is too large to
allow estimation of parameters on the full set of potential explanatory factors, given the
available sample. This is a generic form of problem occurring in both cross-sectional and
time series applications.

3.2 Selection of orthogonalized regressors on a finite sample

We now state a theorem on the selection of the orthogonalized regressors used in the
model (3.2); that is, an ordering principle for the columns of S. We begin with a general
treatment for m ≥ 1, and then consider the case where we target one parameter of interest
in each control regression, so that m = 1 and the remaining regressors in X are added to
Z(K). Any subvector of β can be estimated from (3.2), using the corresponding submatrix

of X, as long as the excluded components of X are included in Z(K) to be orthogonalized;
in this way the information in components of X not directly included as regressors is
retained through the orthogonalized regressors S. We may estimate the m× 1 vector β in
one regression, or component-by-component in a sequence of m separate control regressions
for each individual βi. In finite samples, the latter may be preferable, as it allows us to
focus on selection of controls that are optimal for each individual coefficient.

In order to judge which orthogonalized regressors to include in a regression of given
order (that is, in order to choose the κ most important from the set S(K,K)), we need mea-

sures of the impact of the addition of a particular orthogonalized regressor Sν ∈ (S1, . . . SK)
on the coefficients of interest. Assume that κ of the regressors have been selected, and con-
sider the impact of adding Sν to this set. Given X and the vector β of parameters of
interest, Sν has more impact the larger is the change in the estimate of β :

∆κ,ν = (β̂κ,ν − β)− (β̂κ − β), (3.3)

where β̂κ is the vector of regression coefficients obtained when S(κ,K) is the matrix of

κ initially-included orthogonalized regressors, and β̂κ,ν is the estimate on a set of orthog-

onalized regressors which also includes Sν as well as S1 . . . , Sκ. To evaluate this change,
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consider a weighted distance measure,

d = ∆′κ,νD∆κ,ν , (3.4)

where D is a symmetric non-negative definite matrix. Note that we want the criterion to
be invariant to a change in scale of one or more X’s, and D must be chosen accordingly.
We might consider the following choices:

(i) d0 = ‖∆κ,ν‖2 for D = I

(ii) d1 = ∆′κ,νD1∆κ,ν for D1 = N−1X ′X

(iii) d2 = ∆′κ,νD2∆κ,ν for D2 = N−1X ′MκX.

(3.5)

Since d0 is not invariant to scale changes in X, we will consider only d1 and d2.
Now consider the use of the distance measure (3.4) to develop an ordering of the set

of orthogonal component regressors.
We first examine ∆κ,ν and show that it can be decomposed into two parts, one of

which has a probability limit of zero as K,N→∞ and KN−
1
2 → 0, then use this fact

to construct selection criteria based on (3.4). Define e(i) = MκXi, the vector of residuals

from regression of Xi on the κ orthogonalized regressors included in S(κ,K), and also the

N × m matrix Eκ = (e(1), . . . , e(m)), and Âκ(ν) = λ̂−1
ν (E′κEκ)−1E′κSν , where λ̂ν is the

estimated eigenvalue. Denote by ζ̂κ(ν) the coefficient in the OLS regression of Sν on the
regressors in Eκ. We will decompose the distance measure into two random functions ψ1

and ψ2 which also depend on unknown parameters of the process; we will then show that
we can concentrate attention on one of the components. Define

ψ1(λ̂ν , Âκ(ν)) ≡ ζ̂κ(ν)θν = −(X ′MκX)
− 1

2 λ̂νθνÂκ(ν) (3.6)

and

ψ2(Âκ(ν)) = (X ′MκX)
− 1

2 [I − Âκ(ν)Âκ(ν)′]−1

· Âκ(ν)[λ̂−1
ν S′νZ(κ+ 1,∞)γ(κ+ 1,∞) + λ̂−1

ν Ŝ′νε].
(3.7)

We will see that as N→∞, ψ1 will become a good approximation to ∆κ,ν ; therefore

our selection criteria will exploit ψ1.

Theorem 4. Let the conditions A1 and A2 hold. Then

∆κ,ν = ψ1(λ̂ν , Âκ(ν)) + ψ2(Âκ(ν)), (3.8)

and as K,N→∞ and KN−
1
2 → 0,

∆κ,ν − ψ1(λ̂ν , Âκ(ν)) = ψ2(Âκ(ν))
p→0, (3.9)
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uniformly over κ and any choice of selected regressors S(κ,K) and Sν . Finally

d1 − θ2
ν ζ̂κ(ν)′X ′Xζ̂κ(ν)

p→0 and d2 − θ2
ν ζ̂κ(ν)′X ′MκXζ̂κ(ν)

p→0.

Proof. See Appendix 1.

Since θν is unknown,6 a selection criterion will have to abstract from this parameter,
and therefore will reduce to

d1 = ζ̂κ(ν)′X ′Xζ̂κ(ν) (3.10)

for d1 (3.5(ii)), or

d2 = ζ̂κ(ν)′X ′MκXζ̂κ(ν) (3.11)

for d2 (3.5(iii)). Note that (3.11) gives the formula for the regression sum of squares in the

regression of Sν on e(1), . . . , e(κ) and is equivalent to the selection criterion R2
ν(κ)λ̂2

ν , where

R2
ν(κ) is the R2 from that regression.

These criteria simplify considerably when we deal with one parameter of interest (for
example because we may use a separate control regression for each of several such param-
eters), so that m = 1. For this case we will write x and e for the N × 1 vectors denoted X
and Eκ in the general case of m effects of interest. Denote the correlation between x and
Sj , j = 1, . . . κ, by ρj . Recall also that MκSν = Sν and e = Mκx, so that e′Sν = x′Sν , and

e′e = x′Mκx = x′x−
κ∑
j=1

(x′Sj)
2

λ2
j

= ‖x‖

1−
κ∑
j=1

ρ̂2
j

 .

Therefore

ζ̂(ν) =
ρ̂ν λ̂ν

‖x‖(1−
∑κ
j=1 ρ̂

2
j )
,

and the criteria (3.10) and (3.11) become

d1 =
ρ̂2
ν λ̂

2
ν

(1−
∑κ
j=1 ρ̂

2
j )

2
(3.10′)

and

d2 =
ρ̂2
ν λ̂

2
ν

‖x‖(1−
∑κ
j=1 ρ

2
j )

(3.11′)

6Recall that by (3.1) ff., θν is the coefficient on Sν . The same approach as for estimation
of β could in principle be applied to consistent estimation of θν ; the consistent estimator

would then permit the use of ζ̂κ(ν)θν in (3.6) as a criterion function.
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respectively. Since the denominator does not depend on Sν , either of these criteria reduce

to selection by ρ̂2
ν λ̂

2
ν , or equivalently, |ρ̂ν |λ̂ν , the product of the eigenvalue and the absolute

value of the correlation between x and the potential regressor Sν (by contrast, selection by

principal components uses λ̂ν alone). By these rules, then, the set {Sν}Kν=1 is ordered such
that Sν1 is ordered before Sν2 , i.e. ν1 < ν2, if

|ρ̂ν1 |λ̂ν1 > |ρ̂ν2 |λ̂ν2 , (3.12)

that is, ordering is by product of eigenvalue and correlation. Related ideas have been
suggested by Joliffe (1982) and Sun (1995) in prediction contexts.

Theorem 2 required that k = K for consistency. With the selection rule (3.12) for the
ordering of the K orthogonalized regressors, we show in Theorem 5 that consistent estima-
tion can be based on a subset of κ << K of these. Consider Ω ≡ Ω({µl}, {φl1l2}, {c, β, γ}),
the set of all processes satisfying A1 with the same parameters and bounds.

Theorem 5. Let processes from the set Ω satisfy the conditions A1 and A2, with components

selected by the rule (3.12). Then as N→∞,K→∞, KN 1
2 → 0 and κ > K − o(K 1

2 ),

sup
Ω
|β̂κ − β0|

p→0.

Proof. See Appendix 1.

Thus we have shown that uniformly over Ω, even in the most unfavorable cases, con-
sistency obtains for a reduced dimension κ.

The criteria just described give an ordering for the eigenvectors and therefore the
orthogonal components, but do not describe the ‘stopping rule’, or number of regressors
to include. For this purpose, conditional on the ordering just defined, information criteria
may be used. The finite-sample simulations in the next section suggest the use of the AIC
for choice of κ, as well as providing information on the finite-sample performance of the
methods. However, various other alternatives including model averaging may be used to
select or combine components.

4. Finite-sample evaluation of bias and RMSE

Although the primary focus of this paper is asymptotic behaviour of estimators of
interpretable parameters, it also is interesting to consider the finite-sample characteristics
of estimation in the context given above. The results indicate that, in addition to de-
sirable asymptotic properties, simple selection of orthogonalized components as controls
can produce low finite-sample RMSE. Further reductions may be available through model
averaging; see for example Magnus et al. (2009), who derive MSE results in a model with
fixed regressors and Gaussian errors.

The process (2.1) covers a wide class of cases, both time series and cross-sectional, and
does not restrict the number of factors or their relative importance. It is therefore difficult
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to specify a small number of representative parameter configurations for finite-sample eval-
uation. Rather than specifying a few examples, we instead use randomly selected sets of
coefficients to parameterize both the relation between y and Z and the correlation between
X and Z. We report results which are averages across these sets of randomly-selected data
generation processes (as well, of course, as being averages across repeated experiments on

each randomly-chosen DGP). By averaging across many such parameter combinations, we
expect more representative results than would be possible through investigation of a few
selected cases.

All observable potential explanatory variables in these simulations have at least some
degree of relevance to the DGP, so that as N → ∞ all should be selected into the model,
but the relevance may be very small. The DGP for the simulations is: N = 200 and

- i) dimZ = L = K = 40; κ = 1, . . . , 20

- ii) γj = 5αjηj , j = 1, . . . , 40, ηj ∼ IN(0, 1), α ∈ (0.5, 1.0)

- iii) Γ′Γ = cov(v) (v is defined below)

- iv) Z = Z0Γ, {Z0}ij ∼ N(0, 1)

- v) xi = Z ′iµ+ e1,i, µj ∼ N(0, 1), e1,i ∼ N(0, 1),

- vi) yi = xi + Z ′iγ + e2,i, e2,i ∼ IN(0, 1)

where κ is the column dimension of S(κ,K) (i.e. the number of controls), K is the column
dimension of Z, and v is a set of K random series defined recursively such that the hth series
is a linear combination of series 1 to h−1, with random weights. The set v allows us to create
random correlation structures in Z, so that results are not specific to particular patterns
of correlation. That is, randomly selected coefficients are chosen, and a decay parameter
α is applied (step ii). The correlation structure of Z is defined for each parameterization
by a recursive form, from which a correlation matrix is obtained from a random realization
of the structure, and is applied to a raw matrix of white-noise entries using the Cholesky
decomposition Γ of the correlation matrix (steps iii-iv). These steps ii-iv are repeated 200
times; for each of these 200 cases, 1000 replications of steps v-vi are computed, in each of
which x is defined as a linear combination with weights randomly drawn from N(0,1) of

the Z’s, plus white noise (step v), and y is obtained from each of these explanatory factors

(step vi). On each of these replications, the methods are applied for each value of κ.
The effect of the decay parameter is to vary the average relative importance of ef-

fects within the set of Z’s: with α near unity, each of the Zi’s has an expected absolute
coefficient near 1, and as α falls, the importance of coefficients other than the first few is
reduced correspondingly. For relatively low values of α, e.g. near 0.5, only a few of the
40 explanatory factors have any substantial weight: the draw from N(0, 1) is scaled by

αj for factor j, so that factors beyond five or six are very likely to have coefficients near
zero. In these cases the DGP is close to a process with only a small number of relevant
explanatory factors. By contrast, for α near 1, the set of coefficients on the Zi is close to
a set of independent mean-zero random variables, and there is some tendency for cancel-
lation to occur among variables projecting onto xi. Realistic problems in which there is a
substantial number of explanatory factors, but in which a few tend to dominate, may be
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best represented by moderate values of α such as 0.8 or 0.9. We emphasize these values in
the experiments.

Estimation of β (=1 ) is carried out for each class of case by several methods: using

(3.2), as well as by the univariate model, and finally by selection of un-orthogonalized

regressors from Z. In using (3.2), we select the orthogonalized regressors both by principal

components (largest κ eigenvalues) and by the product of eigenvalue and absolute value

of the correlation with x (3.12) (labelled ‘alternative eigenvector selection’ in the figures).
The selection of regressors from Z is included for comparison: the selection of regressors
is determined by choosing ten random combinations of κ of the explanatory series, which
are compared by minimum sum of squared residuals (equivalent to standard information

criteria here, since the number of parameters is equal to κ in each case). The best-fitting
combination is taken and compared with the dimension reduction methods.

For each of the 200 randomly-selected parameterizations and for each class of case
described above, 1000 replications are drawn for each parameterization and the results for

each value of κ are recorded in Figures 1, a-d.7 These figures record the absolute biases and
root mean squared errors in models of the form (3.2), for each of the orthogonal-regressor

selection methods, and for comparison also record the fixed absolute bias (relative to β)

in the univariate model yi = Xiβ
• + e•i , which uses no information in Z, so that plimβ̂• =

β + γ(Z ′Z)−1Z ′X. Each of the means is taken across both sets of parameterizations and
replications of the experiment.

Clearly, augmenting the model with even a small number of terms produces a substan-
tial bias and RMSE reduction. The effect of bias clearly dominates the RMSE; increase
in variance with κ is small (that is, the RMSE does begin to increase for large κ, but

the effect is so small as to be hard to detect in the figures). Selection of orthogonalized

regressors by the product λ · corr(X,S`) produces small but consistent reductions in bias
and RMSE relative to selection by largest eigenvalue. With respect to selection of un-
transformed regressors, both standard principal components and the alternative selection
method dominate regressor selection with respect to RMSE, although for κ = 1, 2 all se-
lection methods are approximately equivalent at a decay parameter of 0.80. With respect
to the bias component, however, regressor selection is better up to lag 3 for each value of
the decay parameter, and thereafter the orthogonalized regressor methods are preferable.
Note of course that very low values of κ are clearly sub-optimal in general, and that in
the region of interest the orthogonalized regressor methods are clearly superior on both
criteria.

Finally, we note the performance of some standard information criteria in selection of
a number of orthogonalized regressors. The RMSE results, showing a strong asymmetry
between deviations of the chosen order below and above the optimum, suggest that criteria
that yield relatively generous parameterizations will perform relatively well on this prob-
lem. In comparing the criteria of Akaike (1974) (and the Hurvich-Tsai 1989 modification),

7In each case, panel a records the absolute bias for α = 0.80; panel b: absolute bias,

α = 0.95; panel c: RMSE, α = 0.80; panel d: RMSE, α = 0.95.
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Hannan-Quinn (1979), and Schwarz (1978), we find that all of the criteria tend to perform
well in selecting an appropriate number of control regressors–in part a consequence of the
tendency to flatness of the function in the region of the optimum, indicating that small
deviations from the optimum have very low cost. Nonetheless, the relatively generous AIC
performs particularly well, a result of the fact that a given degree of over-parameterization

is in general less costly than the same degree of under-parameterization.8 9

5. Concluding remarks

When a model is designed for the purpose of providing statistical controls for estima-
tion of a small set of effects of interest, regressor selection can be adapted to this specific
purpose. In particular, control regressors need not correspond with individually identifi-
able data series: they can instead be selected using eigenvectors of the moment matrix
of available data so as to provide the greatest effect for a given number of regressors. A
traditional difficulty in classical principal components regression concerns the interpreta-
tion of the coefficients, but this difficulty does not arise in models of this type because of
the separation of the effect of interest from the set of data from which eigenvectors are
extracted.

This paper establishes properties of models used in this way, under much more general
conditions than have been used in the previous literature. We show that consistent esti-
mation of an effect of interest is possible without requiring the existence of finite orders for
the number of relevant controls nor for the number of eigenvectors used to extract infor-
mation from them. We also show that selection of eigenvectors by the principal component
method can be effective in this context, but that alternative selection methods designed
for the problem at hand, in particular by taking account of the correlation between an
eigenvector and the variable of interest, can produce better results.

Given the increasing availability of large numbers of data series and the applicability
of these methods in both cross-sectional and time series contexts, and given as well the
difficulty involved in specifying a regression model by selecting an appropriate subset from
a large number of regressors, methods in this class appear to have substantial utility. The
use of further devices for using the information, for example through model averaging, are
of course also possible.

8The criteria were examined for a variety of sample sizes in addition to the case with sample
size 200 recorded in the figures. For illustration, however, in the N = 200 case the mean
selected orders were: AIC, 11.4; AIC-Hurvich/Tsai, 10.8; Hannan-Quinn, 9.5; Schwarz,

8.8.
9A natural alternative to the use of information criteria would be to compute the coefficients
of interest for various values of κ, and to select a value of κ at which the estimated values
of the coefficient become stable for small changes in κ. We find that the AIC tends to be

successful in making such a choice.
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Appendix 1

Proofs of Lemma 1 and Theorems 1–4

Proof of Lemma 1.

(i) Let {µν}∞ν=1 be an orthonormal basis for the Hilbert space H such that the Wold
decomposition for each W` is expressed in this basis. Then we can express yi − c, X`i, ` =
1, . . .m, and Z`i, ` = 1, . . .∞ in this basis and write

E(yi − c|Fi) =
∞∑
ν=1

aνi(y)µνi =
m∑
`=1

β`

∞∑
ν=1

aν(X`i)µνi +
∞∑
`=1

γ`

∞∑
ν=1

aν(Z`i)µν` ,

where the µνi are measurable with respect to Fi. Then

aν(y) =
∑m
`=1 β`aν(X) +

∑∞
`=1 γ`aν(Z). By stationarity of the process,∑∞

ν=1(aν(y))2 < ∞ and
∑∞
ν=1(aν(Z))2 < ∞. Therefore

∑∞
ν=1 (

∑∞
`=1 γ`aν(Z`))

2
< ∞;

since
∑∞
ν=1 (

∑∞
`=1 γ`aν(Z`))

2
= γ′ΣZγ = ‖Σ

1
2

Zγ‖, we have ‖Σ
1
2

Zγ‖2 < ∞. By A1 (iv),

λ(ΣZ) > ζ. Then ‖Σ−
1
2

Z ‖ < ζ−
1
2 and

‖γ‖ ≤ ‖Σ−
1
2

Z Σ
1
2

Zγ‖ ≤ ‖Σ
− 1

2

Z ‖‖Σ
1
2

Zγ‖ <∞.

(ii) Since E(εi|Fi) = 0 from (2.1), to show this we need only verify that E|εi| is

finite. Now E|εi| ≤ (E(ε2
i ))

1
2 by Jensen’s inequality. Up to the constant, εi = A′W, A =

(1,−β,−γ)′. Therefore ε2
t = E(A′WW ′A) ≤ ‖A‖‖ΣW ‖ ≤ λ(ΣW ). Since ‖A‖ is finite by

part (i) of the Lemma, it follows that E|εi| <∞.

Proof of Theorem 1.

Consider

E(Z(k + 1,∞)γ(k + 1,∞))2 = E(
∞∑
`=1

Zk+`γk+`)
2 ≤ sup

`
E(Zk+`)

2(
∞∑
`=1

|γk+`|)2.

Here, sup`E(Zk+`)
2 is bounded by A1(v), and

∑∞
`=1 |γk+`| → 0 as k→∞ since by A2,∑∞

`=1 |γ`| < ∞. Thus E(Z(k + 1,∞)γ(k + 1,∞))2 → 0 and by Chebyshev’s inequality,

Z(k + 1,∞)γ(k + 1,∞)
p→0.

Proof of Theorem 2.

To avoid treating the constant we assume without loss of generality that all variables
are expressed in deviations from the mean. Using the OLS estimator of β, we have

β̂k − β = (X ′MkX)−1X ′Mk(Z(k + 1,∞)γ(k + 1,∞) + ε), (A2.1)
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where Mk = I − Z(k)(Z(k)′Z(k))−1Z(k)′. From Hannan (1960) it follows that under

Assumption A1 (i-iii, v, vi), for any δ1 > 0 and for large enough N,

sup
`1,`2

(N − k̃)E

 1

N − k̃

N∑
i=k̃

W`1,iW`2,i+ξ − φ`1,`2(|ξ|)

2

< δ1,

and so as N →∞, k →∞, and kN−1 → 0,

(N − k̃)−1
N∑
i=k̃

W`1,iW`2,i+ξ − φ`1,`2(|ξ|) = Op(N − k̃)−
1
2 .

Therefore

1

N − k̃
Z(k)′Z(k)− E(

1

N − k̃
Z(k)′Z(k)) = Op(N − k̃)−

1
2 , (A2.2)

1

N − k̃
X ′Z(k)− E(

1

N − k̃
X ′Z(k)) = Op(N − k̃)−

1
2 , (A2.3)

uniformly as N → ∞, k → ∞, and kN−1 → 0. From Assumption A1(iv) it follows that

E( 1
N−k̃Z(k)′Z(k)) is invertible, that its inverse has a finite norm, and from Berk (1974,

Lemma 3), for k2N−1 → 0 it is straightforward to show that10

∥∥∥∥∥
(

1

N − k̃
Z(k)′Z(k)

)−1

−
[
E

(
1

N − k̃
Z(k)′Z(k)

)]−1
∥∥∥∥∥ = op(1). (A2.4)

Thus, substituting from (A2.2–A2.4), we have

‖ 1

N − k̃
X ′MkX −Gk‖ = op(1), (A2.5)

where Gk = E( 1
N−k̃X

′MkX) =

E

[
(

1

N − k̃
)

1
2X ′[I − (

1

N − k̃
)

1
2Z(k)Qk(

1

N − k̃
)

1
2Z(k)′](

1

N − k̃
)

1
2X

]
,

with Qk = (E( 1
N−k̃Z(k)′Z(k)))−1.

10The notation ‖.‖ refers to either the vector or matrix norm in the Euclidean vector space.
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Since by Assumption A1(iv) X cannot belong to the space spanned by the Z ′s, the
eigenvalues of Gk are bounded away from zero independently of k; it is straightforward to
show that ∥∥∥∥∥

(
1

N − k̃
X ′MkX

)−1

−G−1
k

∥∥∥∥∥ p→0. (A2.6)

Next consider 1
N−k̃X

′Mk(Rkθ + ε). For 1
N−k̃X

′Mkε, write

1

N − k̃
X ′ε−

(
1

N − k̃
X ′Z(k)

)(
1

N − k̃
Z(k)′Z(k)

)−1(
1

N − k̃

)
Z(k)′ε.

For 1
N−k̃X

′ε, by Hannan (1960) we have

∥∥∥∥ 1

N − k̃
X ′ε− E(

1

N − k̃
X ′ε)

∥∥∥∥ = Op((N − k̃)−
1
2 ,

and since εi is a martingale difference sequence with respect to Fi, E( 1
N−k̃X

′ε) = 0 and

so 1
N−k̃X

′ε = Op((N − k̃)−
1
2 ). Exactly the same considerations provide 1

N−k̃Z(k)′ε =

Op((N − k̃)−
1
2 ). By (A2.3) and (A2.4),

(
1

N − k̃
X ′Z(k)

)(
1

N − k̃
Z(k)′Z(k)

)−1

= Op(1),

and we obtain that 1
N−k̃X

′Mkε = Op((N − k̃)−
1
2 ).

Finally, 1
N−k̃X

′Mk(Z(k + 1,∞)γ(k + 1,∞)) is an m× 1 vector with `′th component

b` =
1

N − k̃

N∑
j=1

(X ′Mk)`j ·
∞∑
i=1

Zk+i+1γk+i+1.

Then

|b`| ≤
(

1

N − k̃
X ′MkX

) 1
2

 1

N − k̃

N∑
j=k

(
∞∑
i=1

Zk+i+jγk+i+j)
2

 1
2

≤ Op(1)

 1

N − k̃

N∑
j=k

(
∞∑
i=1

Zk+i+jγk+i+j)
2

 1
2

= op(1),

where the second inequality follows from (A2.5) and the last result by Theorem 1.
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It follows that β̂k − β = Op(1) ·
∑∞
i=1 |θk+i|+Op((N − k)−

1
2 ), and Theorem 2 follows.

Proof of Theorem 3.

From (A2.1) we can write

(N − k̃)
1
2 (β̂k − β) =

(
X ′MkX

N − k̃

)−1

(N − k̃)−
1
2X ′Mk(Z(k + 1,∞)γ(k + 1,∞) + ε).

By (A2.6) this is

[G−1
k + op(1)] [(N − k̃)−

1
2X ′MkZ(k + 1,∞)γ(k + 1,∞) + (N − k̃)−

1
2X ′Mkε].

Since {εi,F〉} is a martingale difference (m.d.) sequence, the moment conditions (v)

imply that the m.d. central limit theorem applies to the m.d. array, and as N→∞, k→∞,
k−1N→∞, for Vk = E( 1

N−k̃X
′Mkεε

′MkX), we have

(N − k̃)
1
2V
− 1

2

k X ′Mkε
D→N(0, Im).

Recall that (N − k̃)−
1
2X ′MkZ(k + 1,∞)γ(k + 1,∞) is an m × 1 vector with `’th

component (N − k)
1
2 b`, where by (A2.8), |b`| ≤ Op(1)

∑∞
i=1 |γk+i|. By the conditions of

Theorem 3,
∑∞
i=1 |γk+i| = o((N − k̃)

1
2 ). Therefore

(N − k̃)
1
2V
− 1

2

k Gk(β̂k − β)
D→N(0, Im).

If ε is independent of (X,Z) then G−1
k VkG

−1
k = σ2

εE
(
X′MkX

N−k̃

)
.

Proof of Theorem 4.

Consider (A2.1) and the last line of (3.1), to write

β̂κ − β = (X ′MκX)
−1
X ′Mκ(R(κ,∞)θ(κ,∞) + ε); (A4.1)

β̂κ,ν − β = (X ′Mκ,νX)
−1
X ′Mκ,ν(R(κ,∞)θ(κ,∞)− Sνθν + ε). (A4.2)

Here we define Pκ,ν as the projection onto the space spanned by S(κ,K) and Sν , and

Mκ,ν = I − Pκ,ν , we note that MκSν = Pκ,νSν = Sν , Pκ,νX = PκX + λ̂−2
ν SνS

′
νX, and

also Mκ,νX = MκX − λ̂−2
ν SνS

′
νX; further, X ′Mκ,νX = X ′MκX − λ̂−2

ν X ′SνS
′
νX.

22



For(X ′Mκ,νX)
−1

we can write

(X ′Mκ,νX)
−1

= (X ′MκX)
− 1

2 [I −D]−1(X ′MκX)
− 1

2 , (A4.3)

where D = λ̂−2
ν (X ′Mκ,νX)

− 1
2X ′MκSνS

′
νMκX(X ′MκX)

− 1
2 .

Next consider the m× 1 vector

Âκ(ν) = λ̂−1
ν (X ′MκX)

− 1
2X ′MκSν , (A4.4)

and the matrix D = Âκ(ν)Âκ(ν)′. Recall that the matrix norm for this matrix is

‖Âκ(ν)Âκ(ν)′‖ = sup‖x‖=1 x
′Âκ(ν)Âκ(ν)′x = Â′κ(ν)Âκ(ν).

For each Xi, Ei = MκXi is the vector of residuals from regressing Xi on the κ included

orthogonal regressors. Consider a regression of Sν on E; the R2 in that regression is

1 ≥ R2 = λ̂−2
ν (S′νE(E′E)−1E′Sν) = Â′κ(ν)Âκ(ν). (A4.5)

We next show that there exists A < 1 such that for any Mκ, Sν ,

P r(Aκ(ν)′Aκ(ν) < A)→ 1 as N,K→∞ under the conditions of Theorem 2.
Consider the Wold decomposition of X,Z expressed in the orthonormal basis of H,

{µν}∞ν=1. By A1(iv) there exists some µ` such that for X` the coefficient on µ`, αµ`(X`),

is non-zero, but for any Zj , αµ`(Zj) = 0. Then for any projection M of X` orthogonally

to any subset of {Z`}, MX` = E`, the coefficient on µ` is αµ`(X`). For any transformation

CZ, where CC ′ = I, of Z, the corresponding coefficient is zero. Then for E`, E(E2
` ) =

E(E` − αµ`(X`)µ`)
2 + αµ`(X`)

2. Under the conditions of Theorem 2, and by methods

similar to the proof of Theorem 2, convergence of sample moments to population moments

follows. Then Pr(Â′κ(ν)Âκ(ν) < A)→ 1 for A = 1−min1≤`≤m

(
αµ` (X`)

2

var(X`)

)
.

It follows that

(I − Âκ(ν)Â′κ(ν))−1 = I + Âκ(ν)Â′κ(ν) + · · ·+ (Âκ(ν)Â′κ(ν))n + · · · (A4.6)

is a valid expansion; note that

(I − Âκ(ν)Â′κ(ν))−1 = I + Âκ(ν)(I − Â′κ(ν)Âκ(ν))−1Â′κ(ν). (A4.7)

Express the right-hand side of (A4.3) via Âκ+1 from (A4.4); by applying (A4.7) we can

verify that (A4.3) can be written as

(X ′Mκ,νX)
−1

= (X ′MκX)
− 1

2 [I + Âκ(ν)(I − Â′κ(ν)Âκ(ν))−1Â′κ(ν))](X ′MκX)
− 1

2

= (X ′MκX)
−1

+ Ωκ,ν ,

(A4.8)
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where Ωκ,ν = (X ′MκX)
− 1

2 Âκ(ν)(I − Â′κ(ν)Âκ(ν))−1Â′κ(ν)(X ′MκX)
− 1

2 .

Next define v = R(κ,∞)θ(κ,∞) + ε. Then

β̂κ,ν − β = [(X ′MκX)
−1

+ Ωκ,ν ][X ′Mκ − λ̂−2
ν X ′SνS

′
ν ][v − Sνθν ]. (A4.9)

From (A4.1),(A4.4), (A4.8) and (3.1), (A4.9) becomes

β̂κ,ν − β = β̂κ − β − (X ′MκX)
− 1

2 λ̂νθνÂκ(ν) + (X ′MκX)
− 1

2

· [I − Âκ(ν)Â′κ(ν)]−1Âκ(ν)λ̂−1
ν [S′νZ(K + 1,∞)γ(K + 1,∞) + S′νε],

(A4.10)

and (3.8) follows. In ψ2(Âκ(ν)) of (3.7), the factor

(X ′MκX)
− 1

2 [I − Âκ(ν)Â′κ(ν)]−1Âκ(ν) = N−
1
2 (X

′MκX
N )−

1
2 [I − Âκ(ν)Â′κ(ν)]−1Âκ(ν)

= Op(N
− 1

2 ), since ‖Âκ(ν)‖ < A with probability arbitrarily close to 1 (for large enough

N), and

|N− 1
2
Sν

λ̂ν
Z(K + 1,∞)γ(K + 1,∞)| ≤ Op(N−

1
2 )|Z(K + 1,∞)γ(K + 1,∞)|,

which goes to zero in probability by Theorem 1. As well, for any νi and νj , E(Sνiεi) = 0

and cov(Sνiεi, Sνj εj) = 0 since εi is a m.d. sequence. Therefore

sup
ν
P (|N−1

N∑
i=1

Sνiεi| > ε) ≤ sup`E(W 2
` )

Nε
.

Thus (3.9) of Theorem 4 follows. Recall that ψ1(λ̂ν , Âκ(ν)) = (E′κEκ)−1E′κSνθν = ζ̂κ(ν)θν ;
the rest of the theorem then follows.

Proof of Theorem 5.

To simplify the proof consider m = 1. All that we need to show in addition to the
result of Theorem 2 is that uniformly over all processes in Ω,∣∣(X ′MkX)−1X ′S(κ+ 1,K)θ(κ+ 1,K)

∣∣→p 0. (A5.1)

Rewrite

(X ′MkX)−1X ′S(κ+ 1,K)θ(κ+ 1,K) =

(
X ′MkX

N

)−1(
X ′X

N

) 1
2

K∑
ν=κ+1

ρ̂ν
λ̂ν√
N
θν .
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Note that |θν | ≤ ‖γ‖ which by Lemma 1 is bounded. Using the Wold decomposition
similarly to the proof of Theorem 4 we show that convergence of sample moments to
population moments and A1(iv) imply that for some constant C1 independently of Mκ

Pr

{
sup
Mκ

(
X ′MkX

N

)−1(
X ′X

N

) 1
2

> C1

}
→ 0.

Thus

Pr

{(
X ′MkX

N

)−1(
X ′X

N

) 1
2

K∑
ν=κ+1

ρ̂ν
λ̂ν√
N
θν < C1‖γ‖

K∑
ν=κ+1

|ρ̂ν |
λ̂ν√
N

}
→ 1. (A5.2)

Consider a vector (|ρ̂1| λ̂1√
N
, ...., |ρ̂K | λ̂K√N )′; its norm is the same as that of

(ρ̂1
λ̂1√
N
, ...., ρ̂K

λ̂K√
N

)′. By convergence of sample moments and boundedness of the matrix

norm of the covariance matrix, for some constant C2 and any K

Pr


K∑
ν=1

(
ρ̂ν

λ̂ν√
N

)2

> C2

→ 0.

Consider now a set

Ξ = {x = (x1, ..., xK)′ ∈ RK : ‖x‖ = C;xν1 ≥ xν2 for ν1 < ν2}

and solve

max
x∈Ξ

K∑
ν=κ+1

|xν | .

It is easy to see that the solution is x with all components equal to C√
K

; thus the maximized

value is CK−κ√
K
. As K →∞ the maximum goes to zero if κ = K − o(

√
K).

Then for any ε if κ = K − o(
√
K)

Pr

{
K∑

ν=κ+1

|ρ̂ν |
λ̂ν√
N

> ε

}
→ 0

always, and combined with (A5.2) the result of Theorem 5 follows.
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