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the model confidence set approach to statistically infer the set of models that delivers the best 
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1 Introduction

Multivariate volatility models have been used extensively to model financial data such as

stock returns, interest rates, and exchange rates. The resulting dynamics take into account

the interaction and correlation between assets and are therefore more realistic. Forecasts from

these models are typically needed as inputs in empirical asset pricing. For example, there

is quite a large body of work on evaluating a small number of low dimensional models in

terms of portfolio management, see e.g. Fleming, Kirby, and Ostdiek (2001), Fleming, Kirby,

and Ostdiek (2003), Engle and Colacito (2006), Voev (2009), and Chiriac and Voev (2011).

Much less attention has been devoted to the evaluation of multivariate volatility models in the

context of derivative pricing where neglecting the correlation may lead to severe mispricings.

The main reason for this likely is the lack of a flexible general framework. For example, the

existing applications of discrete time models in e.g. van den Goorbergh, Genest, and Werker

(2005) and Zhang and Guégan (2008) are limited to low dimensional, i.e. bivariate, models

and the multivariate stochastic volatility models of e.g. Gourieroux and Sufana (2010) and

Da Fonseca, Grasselli, and Tebaldi (2007) are inherently very complex and rely heavily on

having option data available for calibration. In a recent paper, Rombouts and Stentoft (2011)

fill this gap by directly modeling the dynamics of the underlying stocks using multivariate

models for asset returns. They demonstrate the existence of an equivalent martingale measure,

characterize the risk neutral dynamics, and provide a feasible way for pricing options.

This paper investigates the value of model sophistication by considering a large number

of high dimensional GARCH models and measuring performance in terms of Dow Jones

Industrial Average (DJIA) option pricing accuracy. This approach is appealing because we

get immediately a sense of the short, medium, and long run forecasting behavior of the

models, rather than focussing on specific horizons. Furthermore, since the option price does

not only depend on the conditional variance matrix but also on other conditional moments,

we are actually able to evaluate the full forecasting model, i.e. level, variance, and innovation

distribution. The setup we work with specifies the multivariate risk neutral return distribution

and therefore allows to price any option written on the vector of underlying assets. We choose

to price the index option for which true prices are available, so that we can measure the models’

pricing accuracy by contrasting predicted option prices with the observed ones. The accuracy

of the pricing is evaluated by means of several loss functions like in Hansen and Lunde (2005)
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for example. Apart from investigating directly the value of model sophistication by ordering

the models according to their pricing performances, we also use the model confidence set

(MCS) approach of Hansen, Lunde, and Nason (2011), to statistically infer the set of best

models.

In the empirical option pricing literature, there is strong evidence that models beyond

standard Gaussian dynamic volatility models can substantially improve pricing performance

when using univariate models. Examples in the continuous time stochastic volatility context

are among others Bakshi, Cao, and Chen (1997), Bates (2000), Bates (1991), Eraker (2004),

and Pan (2002). More advanced discrete time models have been used in Christoffersen and Ja-

cobs (2004), Christoffersen, Heston, and Jacobs (2006), Christoffersen, Jacobs, Ornthanalai,

and Wang (2008), Heston and Nandi (2000), Hsieh and Ritchken (2005), Stentoft (2005), and

Stentoft (2008). Our aim is to identify the degree of multivariate model sophistication re-

quired to obtain the most accurate pricing. In principle, the higher the model complexity the

higher the precision of the pricing, thus its economic value measured in dollars. However, as

argued by Giacomini and White (2006), in real data applications more sophisticated models

may overfit the data, and thus be outperformed by (possibly) misspecified but more parsi-

monious models characterized by a lower estimation uncertainty. In this paper, we estimate

248 multivariate GARCH models differing in three dimensions: their specification of the con-

ditional variance, conditional correlation, and innovation distribution. We focus on dynamic

conditional correlation (DCC) models which is not coincidental. In fact, being characterized

by idiosyncratic risk premia, the risk neutral dynamics for the vector of underlying asset

returns provided in Rombouts and Stentoft (2011) allow for the usual factorization of the

likelihood of these models, see Engle (2002). Thus, the models can be consistently estimated

in two steps (first the variances and then the correlation matrix) rendering the estimation

feasible in the thirty dimensional setting of the DJIA constituents.

With respect to the model for the conditional variances of the marginal processes, we con-

sider the entire universe of suitable univariate GARCH models available in the literature, see

Xekalaki and Degiannakis (2010) and Bollerslev (2010) for extensive surveys. By doing this,

we are able to quantify the economic value of different strategies in modeling the conditional

variance, i.e., i) as a linear versus non-linear function of the squared innovations, ii) modeling

asymmetry versus the symmetric response of the variance to the sign of the shocks, iii) di-
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rect specification of the conditional variance versus a functional transformation, iv) constant

versus time varying parameters, and v) single components versus multi-components models.

In terms of correlation dynamics, we first aim to assess wether allowing for simple common

dynamics in correlation outperforms the hypothesis of constant correlation. Then, we further

increase the complexity of the models by allowing for idiosyncratic dynamics (i.e., diagonal

DCC) and asymmetry in the correlation (i.e., asymmetric DCC) respectively. Finally, since

the variable of interest, i.e. the expected index price at some future point in time, is an integral

under the future risk neutral price density, and therefore not only a function of the first two

conditional moments, we evaluate the multivariate models not only under the assumption of a

Gaussian innovation distribution but also under the multivariate Laplace distribution which

has fatter tails.

We evaluate the model performance using a direct evaluation of economic quantities (op-

tion prices). This is in contrast to Laurent, Rombouts, and Violante (2011) and Caporin and

McAleer (2010) for example, who perform large scale comparisons of multivariate GARCH

models using statistical criteria to evaluate statistical quantities (variance matrices). These

papers rank volatility models on the basis of their ability to replicate volatility paths, and be-

ing the latter unobservable, need a proxy (typically computed by using high frequency data)

of the conditional variance matrix. This requires that the loss function must have a specific

functional form in order to avoid distortions in the ranking (Hansen and Lunde (2006) and

Patton (2009), Laurent, Rombouts, and Violante (2009)). The advantage of our evaluation is

that by forecasting option prices for which we observe the true prices, we do not need to rely

on a proxy. Thus, the problem of inconsistency of the ranking does not arise and virtually

any loss function can be used.

Our results suggest that in general more complicated models provide better option pricing

forecasts. It turns out that the most important improvement in pricing comes from increasing

the sophistication in the marginal variance processes. Enriching the model with more complex

correlation models, and relaxing a Gaussian innovation for a Laplace innovation assumption

provides smaller economic gains when considering the entire sample of option prices. Overall,

increasing model sophistication can reduce the dollar loss up to 60%. The model that performs

best, according to the MCS test, is the two component threshold GARCH in combination

with an asymmetric DCC structure and Laplace innovations. When we look at the pricing
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performance for different levels of moneyness, we find that the out-of-the-money contracts,

which have a low average price, are more difficult to price but increasing the complexity of

the model still pays off generally. Also, regarding the maturity of the options, it turns out

that the best performance is for short maturity options, with very close performance between

the different models.

It should be noted that, as the DJIA options are based on an equally weighted portfolio,

the model comparison is based on average dynamics. However, the evaluation could equally

well be conducted in terms of other types of contracts, for instance options on the maximum

or minimum of the assets, which depend on other aspects of the forecasted multivariate

distribution. Unfortunately, data on such options is not readily available and we therefore

limit our attention to the exchange traded average options.

The rest of the paper is organized as follows: Section 2 introduces the Dow Jones Industrial

Average data. In Section 3, we discuss the theoretical framework used for pricing multivariate

options, including the various multivariate models to be considered. Section 4 contains the

empirical results. Finally, Section 5 contains concluding remarks.

2 Data

In this section, we introduce the Dow Jones Industrial Average data. We start by defining

the index. We then provide descriptive statistics for the returns of the 30 constituents as well

as for the aggregate index. Finally we provide an overview of the index option data.

2.1 DJIA return data

The Dow Jones Industrial Average (DJIA) is a price-weighted index, which is composed of 30

of the largest and most liquid stocks listed on the NYSE and NASDAQ exchanges. The index

is calculated by dividing the sum of the prices of the component stocks by a number called

the DJIA divisor or Dow divisor. The index divisor is updated periodically and adjusted to

offset the effect of stock splits and any other change in the component stocks. This ensures

consistency of the index value through time.

As of November 21, 2005, the companies in Table 1 constituted the DJIA index. At that
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Table 1: Description of Dow Jones constituent companies
Ticker Company Industry Date Added

1 AA Alcoa Aluminum 1959-06-01
2 AIG American International Group Property & Casualty Insurance 2004-04-08
3 AXP American Express Consumer finance 1982-08-30
4 BA Boeing Aerospace & defense 1987-03-12
5 CAT Caterpillar Construction & mining equipment 1991-05-06
6 C Citigroup Banking 1997-03-17
7 DD EI DuPont de Nemours Commodity chemicals 1935-11-20
8 DIS Walt Disney Broadcasting & entertainment 1991-05-06
9 GE General Electric Conglomerate 1907-11-07
10 GM General Motors Automobiles 1925-08-31
11 HD Home Depot Home improvement retailers 1999-11-01
12 HON Honeywell International Aerospace & defense 1925-12-07
13 HPQ Hewlett-Packard Diversified computer systems 1997-03-17
14 IBM International Business Machines Computer services 1979-06-29
15 INTC Intel Semiconductors 1999-11-01
16 JNJ Johnson & Johnson Pharmaceuticals 1997-03-17
17 JPM JPMorgan Chase Banking 1991-05-06
18 KO Coca-Cola Beverages 1987-03-12
19 MCD McDonald’s Restaurants & bars 1985-10-30
20 MMM 3M Diversified industrials 1976-08-09
21 MO Altria Group Cigarettes 1985-10-30
22 MRK Merck Pharmaceuticals 1979-06-29
23 MSFT Microsoft Software 1999-11-01
24 PFE Pfizer Pharmaceuticals 2004-04-08
25 PG Procter & Gamble Non-durable household products 1932-05-26
26 T AT&T Telecommunication 1999-11-01
27 UTX United Technologies Corporation Aerospace, heating/cooling 1939-03-14
28 VZ Verizon Communications Telecommunication 2004-04-08
29 WMT Walmart Broadline retailers 1997-03-17
30 XOM Exxon Mobil Integrated oil & gas 1928-10-01

Note: This table provides the ticker, company name, industry, and the date when added to
the index for the 30 constituents of the DJIA as of November 21, 2005.

time the value of the Dow divisor was 0.1249, and thus the index was given by

DJIAt =
1

0.1249

N∑
i=1

Pi,t (1)

where Pi,t is the price of the i’th company at time t. As the Dow divisor was less than one, the

index value was actually larger than the sum of the prices of the components, a fact stemming

from the numerous stock splits which have occurred with index constituents throughout the

existence of the DJIA.

In Table 2 descriptive statistics are provided for the 30 constituents as well as for the

DJIA itself. We use daily raw return from December 30, 1997 to December 27, 2006, for a

total of 2246 observations. The assets listed exhibit typical features common to many other

financial data. The table shows that for 19 out of the 30 stocks returns are negatively skewed

and for all 30 stocks returns are leptokurtic. For some the kurtosis is orders of magnitude
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Table 2: Descriptive statistics for Dow Jones companies
Ticker min mean max stddev skewn kurt
AA -11.66 0.03135 13.152 2.3054 0.24098 5.5447
AIG -11.02 0.029612 10.46 1.9135 0.077733 6.2767
AXP -14.614 0.043158 12.018 2.1839 -0.086318 6.3712
BA -11.532 0.044143 8.4307 1.956 -0.13626 6.3866
CAT -17.115 0.050373 16.838 2.1603 0.062693 9.2984
C -15.686 0.055666 10.296 2.1275 -0.20395 6.686
DD -11.695 0.0038985 9.4125 1.892 0.062353 6.2373
DIS -20.289 0.0068601 14.203 2.2575 -0.24388 10.4
GE -11.287 0.032381 11.743 1.8493 0.053849 6.9385
GM -15.045 -0.0017424 16.647 2.298 0.10738 6.9799
HD -33.877 0.035111 12.128 2.3967 -1.3012 23.364
HON -19.079 0.014932 24.852 2.3863 -0.25409 15.002
HPQ -20.701 0.024279 18.991 2.8403 -0.062388 8.5292
IBM -16.892 0.02721 12.366 2.0634 -0.12532 10.602
INTC -24.888 0.0064339 18.335 2.9955 -0.45827 8.8805
JNJ -17.252 0.037201 7.8925 1.5193 -0.61117 13.253
JPM -19.977 0.030022 14.873 2.3612 0.10734 8.67
KO -11.072 -0.0057238 9.2162 1.6461 -0.17626 7.8956
MCD -13.716 0.033771 10.31 1.8828 -0.056628 7.396
MMM -9.3837 0.037487 10.5 1.6286 0.19183 6.3402
MO -14.853 0.045488 14.882 2.0627 -0.19121 11.009
MRK -31.171 0.0021853 12.251 1.9419 -1.9682 35.278
MSFT -16.958 0.036521 17.869 2.2697 -0.19865 9.3492
PFE -11.817 0.012271 9.271 1.9887 -0.30771 6.328
PG -37.658 0.029849 9.0972 1.7905 -4.3843 92.943
T -13.538 0.01585 8.8338 2.0324 -0.082488 5.9627
UTX -33.195 0.066822 9.3762 2.0068 -2.0997 38.005
VZ -12.609 0.013821 11.565 1.918 0.065695 6.9257
WMT -10.26 0.043204 9.0151 1.9876 0.14496 5.6743
XOM -8.8397 0.048885 10.485 1.564 0.054154 5.5619
DJIA -7.396 0.021 6.1547 1.11 -0.1239 6.6772

This table provides descriptive statistics for the 30 constituents of the
DJIA. The sample period is from December 30, 1997, to December 27,
2006, for a total of 2246 observations. The bottom line provides the
equivalent statistics for the index itself. Results are for raw returns
in percentage terms.

larger than that of the Gaussian distribution. This is particularly striking for PG, UTX, and

MRK which are also the most negatively skewed. The returns on the index are also highly

negatively skewed and leptokurtic. As expected the standard deviation of the index is lower

than the individual stock standard deviations showing the diversification effect. Finally, as

can be seen in Figure 1 all the unconditional correlations are positive. For some of the return

pairs the correlation can reach up to 74% percent, i.e., between JP Morgan and Citigroup.

Some stocks are only slightly correlated with the others, e.g., Altria Group. In general, all

the other correlations span from about 20% to 50%. The average correlation is close to 30%.
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Figure 1: Correlations for each stock with the other DJIA stocks (See Table 1 for the names

of the stocks)

2.2 DJIA option data

Options on the DJIA were introduced at the Chicago Board of Options Exchange, or CBOE,

in 1997. Since this time the options have grown to become some of the most popular index

options worldwide. The main reason for this it that investors are able to trade a broad market

by making one DJIA trading decision rather than making the many decisions involved with

investing in the numerous individual stocks. The DJIA options are European style options

and are based on 1/100th of the index level. The options are cash settled and the underlying

dollar value is equal to the index level multiplied by $100.

In this paper, we consider DJIA call options for 2006. However, since the total number

of options traded for 2006 is 54,939 this is clearly too time consuming to deal with and for

this reason we apply a number of filters to the sample that are standard in the option pricing

literature. First, we only consider options on a weekly basis. This is done to balance the

tradeoff between having a long enough time period to be of interest and to have a number

of options which is computationally reasonable. Specifically, we choose options traded on
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Table 3: Properties of the DJIA 30 index options data set

Moneyness

OTM ITM DITM ALL
Price 1.30 2.25 7.71 4.13
number 406 334 497 1237

Time to maturity in days

ST MT LT ALL
Price 4.24 3.93 4.17 4.13
number 428 335 474 1237

Average price in USD and number of call contracts in

the cells of this table. The moneyness and maturity

categories are defined in the text.

Wednesdays as these are less likely to be affected by the so-called weekend effects. Second,

we only consider options which have less than 252 trading days to maturity and, third,

options for which the traded volume on a given Wednesday exceeded 5 contracts. Applying

these filters yields a sample of 1,237 call options.

In Table 3, we provide descriptive statistics for the options in terms of the number of con-

tracts and their average prices. We tabulate data for various categories of maturity measured

in trading days, Mat, and moneyness measured as Mon = S/ (K exp (−rtMat)), where S is

the value of the underlying, K is the strike price, and rt is the risk free interest rate. As

the risk free rate we use the LIBOR rate which starts at 4.4% and ends at 5.2% in 2006.

The moneyness categories are divided into out of the money (OTM), with Mon < 1, in the

money (ITM), with 1 ≤ Mon < 1.02, deep in the money (DITM), with Mon ≥ 1.02. The

maturity categories are divided into short term (ST), with Mat < 24, medium term (MT),

with 24 ≤Mat < 45, and long term (LT), with Mat ≥ 45. The moneyness and maturity cat-

egories are defined such that we have roughly the same number of contracts in each category

while keeping the definitions meaningful.
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3 Pricing options on the DJIA

Letting Ft denote the information set up to time t, we assume that the underlying return

process Rj,t = ln(Pj,t/Pj,t−1) for j = 1, . . . , N can be characterized by

Rj,t = µj,t −Ψt (−ej) + εj,t, (2)

where Pj,t is the price level of asset j on day t. The term Ψt (·) denotes the conditional

cumulant generating function of εj,t, and ej is an N dimensional vector of zeros except for

position j where it is 1. Thus, we have that ln (Et−1 [exp (εj,t)]) = Ψt (−ej), and it follows

that

Et−1 [Pj,t/Pj,t−1] = Et−1 [exp (µj,t −Ψt (−ej) + εj,t)]

= exp (µj,t) . (3)

The specification in (2) therefore implies that µj,t is measurable and can be interpreted as

the expected gross rate of return for asset j. The error term εt = (ε1,t, . . . , εN,t)
′ can be

decomposed as

εt = Σ
1/2
t ηt. (4)

The innovation term ηt in (4) is identically and independently distributed with a N -variate

absolutely continuous distribution function F (i.e. the physical measure) with first two mo-

ments respectively equal to E[ηt] = 0 and E[ηtη
′
t] = IN . The latter assumption makes Σt

the conditional variance matrix of εt. Various specifications for this volatility matrix will be

provided below in Section 3.3.

In the next section, we make two choices about the innovation distribution and explain

how risk neutralization is performed. We then discuss how, by using a simple specification

for the rate of return, estimation can be made easier. Finally, we explain how, based on the

derived dynamics, options can be priced using Monte Carlo simulation.

3.1 Risk neutralization

To perform option pricing, we need the risk neutral dynamics, i.e. the dynamics under Q.

Rombouts and Stentoft (2011) show that, building on Christoffersen, Elkamhi, Feunou, and
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Jacobs (2010), under the risk neutral measure the conditional cumulant generating function

of εt is given by

ΨQ
t (u) = Ψt (νt + u)−Ψt (νt) , (5)

where νt is a N -dimensional vector sequence. In fact, by using a multivariate generalization of

the exponential affine Radon-Nikodym derivative, this provides a unique equivalent martingale

measure if and only if

0 = Ψt (νt − ej)−Ψt (νt)−Ψt (−ej) + µj,t − rt, (6)

for all j = 1, ..., N .

More concretely, in this paper we consider two distributional assumptions, the multivariate

Gaussian distribution and the fatter tailed multivariate Laplace distribution. When F is the

multivariate Gaussian distribution, the conditional Laplace transform of εt in (4) is given by

Et−1 exp(−u′εt) = exp

(
u′Σtu

2

)
, (7)

and therefore given (5) we obtain

ΨQ
t (u) = Ψt (νt + u)−Ψt (νt)

=
1

2
(νt + u)′Σt (νt + u)− 1

2
ν ′tΣtνt

= u′Σt(θ)νt +
1

2
u′Σtu. (8)

Thus, it follows that the risk neutral dynamics remain Gaussian although with a shifted

mean. This shift in the mean is required to compensate investors for the risk associated with

investing in the underlying risky assets.

Under the Gaussian assumption we may further solve (6) directly for any specification of

µj,t. This can be done by substituting (7) into (6) upon which we obtain the following

0 =
1

2

[
(νt − ej)′Σt (νt − ej)− ν ′tΣtνt − e′jΣtej

]
+ µj,t − rt

= −ejΣtνt + µj,t − rt,

for all j = 1, ...N . Solving for νt we obtain

νt = Σ−1
t (µt − rt), (9)
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where µt and rt are the corresponding vectors of the gross rate of return and the risk-free

interest rate respectively.

The risk neutralization under the multivariate Laplace distribution can be approximated

by the one under the Gaussian distribution. To see this, note that the conditional cumulant

generating function of the (zero mean) multivariate Laplace distribution, see Eltoft (2006), is

given by

Ψt(u) = − log(1− u′Σtu

2
). (10)

If we consider the first order Tailor expansion of log(1− u′Σtu)
2 ) around 1, then we obtain

Ψt(u) ≈ u′Σtu

2
, (11)

which is indeed consistent with the (zero mean) multivariate Gaussian cumulant generating

function. Therefore, while we can apply the same risk neutralization under both distributional

assumptions, the multivariate Laplace distribution will generate fatter tails in the predicted

future price distribution.

3.2 Rate of return specification

To simplify matters further, we make the assumption that the conditional gross rate of return

is given as

µt = rt + Σt � INλ.

This means that the risk premium for asset j only depends on the variance of the asset and

as a function of this it remains constant through time, i.e. λj is constant. Compared to a

more general specification this has the effect of making estimation easier as this can be done

for each asset individually.

The particular choice of conditional mean also implies that the risk neutral dynamics are

simple. To see this, substitute (9) and the mean specification into (8) to obtain

ΨQ
t (u) = u′Σt � INλ+

1

2
u′Σtu. (12)

Thus, for this particular choice the risk neutral mean equals −Σt � INλ, which is readily

interpreted as the compensation an investor requires for holding risky assets. Moreover, from

the specification it makes sense to refer to λ as the price of risk. Finally, it should be noted

that we assume for simplicity that interest rates are constant.
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Table 4: Models for the conditional correlations

Σt = (Σt � IN )1/2Rt(Σt � IN )1/2

Cort = (Qt � IN )−1/2Qt(Qt � IN )−1/2)

CCC Qt = Q̄ Bollerslev (1990)

DCC Qt = (1− α− β)Q̄+ α(ut−1u
′
t−1) + βQt−1 Engle (2002)

DDCC Qt = (1− β)Q̄−AQ̄A′ +Aut−1u
′
t−1A

′ + βQt−1 Cappiello et al. (2006)

ADCC Qt = (1− α− β)Q̄− ΓŪΓ′ + α(ut−1u
′
t−1) + βQt−1+ Cappiello et al. (2006)

+Γ(ut−1u
′
t−1 � 1ut−1<01′ut−1<0)Γ′

Q̄ = E[ut−1u
′
t−1]

Ū = E[ut−1u
′
t−1 � 1ut−1<01′ut−1<0]

ui,t = εi,t/hi,t

3.3 Volatility models

We now define the various multivariate GARCH models that will be applied to the N = 30

stocks in the DJIA. If we define Rt = (R1,t, . . . , RN,t)
′ then given the above discussion on risk

neutralization the econometric model can be written as

Rt = rt + (Σm,t � IN )λ− 1

2
(Σm,t � IN ) + εt

εt = Σ
1/2
m,tηt, (13)

where Σm,t defines the conditional variance matrix for model specification m. To make esti-

mation of this 30 dimensional model feasible, the number of parameters being easily higher

than 100 in our setting, we consider only models for which the conditional variance matrix

can be decomposed as follows

Σm,t = (Σm,t � IN )1/2Corm,t(Σm,t � IN )1/2, (14)

where the first part, (Σm,t � IN )1/2, contains the N conditional standard deviations on the

diagonal and where Corm,t is the conditional correlation matrix.

We consider four specifications for the conditional correlation matrix, see Table 4, ranging

from constant correlations to dynamic correlations that take into account an asymmetry effect.

With respect to the models for the marginal variances ht, we consider most of the models

in the (extensive) glossary of Bollerslev (2010). Since the number of models amounts to 34,

see Table 5, we decide to group them by common characteristics. This approach allows us to

12



appreciate the value of model sophistication in a concise manner. We distinguish models in

five ways: i) linearity in ε2t , ii) symmetry related to impact of shocks, iii) direct specification

of conditional variance, iv) constant parameters, and v) component type of specifications.

More details are given in Table 6.

With respect to the estimation of the model parameters, the specification given in (13)

is particularly appealing because it does not include spill over terms in the conditional mean

and thus it allows for the factorization of the likelihood as suggested in Engle (2002). In fact,

under Gaussianity of the innovations in (13) the total log-likelihood can be decomposed in the

sum of the log-likelihoods of the marginal densities and the (multivariate) log-likelihood of the

joint density of the centered devolatilized returns. Thus, the estimation can be carried out in

two steps: first, the first two conditional moments of the marginal processes and second, the

correlation dynamics of the joint process. Further, in order to ease the computational burden

of the likelihood of the correlation driving process, we replace Q̄ and Ū by the unconditional

second moment of ut and ut � 1ut<1 respectively, see Engle and Mezrich (1995), which saves

465 parameters. Note also that, imposing conditional Gaussianity to all models allows for

a quasi maximum likelihood interpretation of the two step estimator independently of the

assumed distribution (Gaussian or Laplace).

The models are estimated using data from December 31, 1997 to December 30, 2005

which amounts to 2000 observations, results are too numerous to report but are available on

request. To keep computation time reasonable, the parameter estimates are kept fixed over

the 52 weeks for which we price option contracts in 2006. In fact, this is also the reason why we

consider one year of options. It takes roughly one day on one processor to estimate and price

options for each of the 272 model specifications. Due to lack of accuracy in the numerical

optimization during the parameter estimation, 24 specifications involving combinations of

Alt-garch, sqrt-garch and vgarch have been excluded from the analysis.

3.4 Option pricing

The theoretical value at time t of the European call option with a strike price equal to K and

maturity in T days is

Ct(T,K) = e−rt(T−t)EQ
t [max (K − ST , 0)] , (15)
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Table 5: Models for the conditional variance

Garch ht = β0 + β1ε
2
t−1 + β2ht−1 Bollerslev, 1986

GJR ht = β0 + β1ε
2
t−1 + β2ε

2
t−11εt−1<0 + β3ht−1 Glosten et al, 1993

Alt-Garch ht = β0 + β1(ε2t−1/ht−1) + β2ht−1 Knight and Satchell, 2002

β-Garch ht = β0 + (β11εt−1>0 + β21εt−1<0)ε2β4

t−1 + β3ht−1 Guegan and Diebolt, 1994
Agarch(a) ht = β0 + β1ε

2
t−1 + β2εt−1 + β3ht−1 Engle, 1990

Agarch(b) ht = β0 + β1|εt−1|β4 + β2εt−1 + β3ht−1 Engle, 1990

Nagarch ht = β0 + β1(εt−1 + β2
√
ht−1)2 + β3ht−1 Engle and Ng, 1993

Vgarch ht = β0 + β1(εt−1/
√
ht−1 + β2)2 + β3ht−1 Engle and Ng, 1993

√
-Garch ht = β0 + β1(εt−1/

√
ht−1 + β2

√
ht−1)2 + β3ht−1 Heston and Nandi, 2000

Vsarch(a) ht = β0 + β1ε
2
t−1 + β2(ε2t−1/ht−1)1εt−1>0

−β2(ε2t−1/ht−1)1εt−1<0 + β3ht−1 Fornari and Mele, 1995
Vsarch(b) ht = β0 + β1ε

2
t−1 + β2(ε2t−1/ht−1)1εt−1<0 + β3ht−1 Fornari and Mele, 1995

Vsarch(c) ht = β0 + β1ε
2
t−1 + β2ht−1 + β3ε

2
t−11εt−1>0 − β3ε2t−11εt−1<0

+β4(ε2t−1/ht−1 − β5)1εt−1>0 − β4(ε2t−1/ht−1 − β5)1εt−1<0 Fornari and Mele, 1996
Narch(a) ht = β0 + β1|εt−1|β3 + β2ht−1 Engle and Bollerslev, 1986

Narch(b) h
β4/2
t = β0 + β1|εt−1|β4 + h

β4/2
t−1 Higgins and Bera, 1992

Aparch h
β5/2
t = β0 + β1(|εt−1| − β3εt−1)β5 + β4h

β5/2
t−1 Ding et al, 1993

Hgarch h
β6/2
t = β0 + β1β6h

β6/2
t−1 (|εt−1/(

√
ht−1)| − β2)

−β3(εt−1/(
√
ht−1 − β2)β5 + β4h

β6/2
t−1 Hentschel, 1995

Atgarch
√
ht = β0 + β1|εt−1|1εt−1<0 + β2|εt−1|1εt−1>0 + β3

√
ht−1 Crouhy and Rokinger, 1997

Tarch
√
ht = β0 + β1|εt−1|+ β2|εt−1|1εt−1<0 + β3

√
ht−1 Zakoian, 1990

TS-Garch
√
ht = β0 + β1|εt−1|+ β2

√
ht−1 Taylor and Schwert, 1989

log-Garch log(ht) = β0 + β1 log(ε2t−1) + β2 log(ht−1) Geweke, 1986, Pantula, 1986
Egarch log(ht) = β0 + β1(εt−1/ht−1)

+β2(|εt−1/ht−1| −
√

2/π) + β3 log(ht−1) Nelson,1990
March ht = β0 + β1F (εt−1) + β2ht−1 Friedman et al, 1989

F (εt) = sin(β3ε
2
t )1β3ε2t<π/2

+ 1β3ε2t≥π/2
ST-Garch ht = β0 + (β1 + β2F (εt−1))ε2t−1 + β3ht−1
LST F (εt) = (1 + exp(−β4εt))−1 − 0.5 Gonzalez-Rivera, 1998
EST F (εt) = (1− exp(−β4ε2t )) Hagerud, 1996
GLST F (εt) = (1− exp(−β4ε2t ))/(1 + exp(−β4(ε2t − β5))) Lubrano, 1998
GEST F (εt) = (1− exp(−β4(εt − β5)2)) Lubrano, 1998
ANST-Garch ht = β0 + β1ε

2
t−1 + β2ht−1 + (β3 + β4ε

2
t−1 + β5ht−1)F (εt−1) Nam et al, 2002

F (εt) = (1 + exp(−β6εt))−1
Cgarch ht = qt + β3(ε2t−1 − qt−1) + β4(ht−1 − qt−1) Engle and Lee, 1993

qt = β0 + β1(ε2t−1 − ht−1) + β2qt−1
Acgarch ht = qt + β4(ε2t−1 − qt−1)

+β5(ε2t−11εt−1<0 − 0.5qt−1) + β6(ht−1 − qt−1) Engle and Lee, 1993
qt = β0 + β1(ε2t−1 − ht−1)

+β2(ε2t−11εt−1<0 − 0.5ht−1) + β3qt−1
2C(.)Garch∗ ht = β4st + (1− β4)lt Ding and Granger, 1996

st = β1 + β2ε
2
t−1 + β3st−1

lt = β0ε
2
t−1 + (1− β0)lt−1

∗In the 2C(.)Garch the dynamics of the short term component st can be replaced by more sophisticated
specifications. We consider other than the simple Garch also Tarch and Nagarch. The three specifications
are denoted 2C(I)Garch, 2C(I)Tarch and 2C(I)Nagarch, respectively, where the I denotes the integrated
Garch (IGarch) specification used for the long term component lt. We also consider a different parameter-
ization where the long term component lt is a standard stationary Garch model. The corresponding three
specifications are denoted 2C(G)Garch, 2C(G)Tarch and 2C(G)Nagarch, respectively. See Bollerslev (2010)
for the exact bibliographic references.
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Table 6: Characterizations of conditional variance models

lin Garch, Alt-Garch, GJR, Vsarch (a,b,c), 2C(G)-Garch, 2C(I)-Garch, Cgarch, Acgarch

non lin TSgarch, Narch(a,b), March, Egarch, β-Garch, Tarch, Atgarch, Agarch (a,b), Nagarch
Vgarch,

√
-Garch, Aparch, Hgarch, LST-Garch, EST-Garch, GLST-Garch, GEST-Garch

ANST-Garch, 2C(I)-Tarch, 2C(G)-Tarch, 2C(I)-Nagarch, 2C(G)-Nagarch

sym Garch, Alt-Garch, TSgarch, Narch(a,b), March, EST-Garch, GLST-Garch
2C(G)-Garch, 2C(I)-Garch, Cgarch

asym Egarch, GJR, β-Garch, Atgarch, Tarch, Agarch(a,b), Nagarch, Vgarch,
√

-garch

Aparch, Hgarch, Vsarch(a,b,c), LST-Garch, GEST-Garch, ANST-Garch, 2C(I)-Tarch
2C(G)-Tarch, 2C(I)-Nagarch, 2C(G)-Nagarch, Acgarch

ht Garch, Alt-Garch, Narch(b), March, GJR, β-Garch, Agarch(a,b), Nagarch, Vgarch
√

-Garch, Vsarch(a,b,c), LST-Garch, EST-Garch, GLST-Garch, GEST-Garch, ANST-Garch

2C(G)-Nagarch, 2C(I)-Nagarch, 2C(G)-Garch, 2C(I)-Garch, Cgarch, Acgarch

f(ht) TSgarch, Narch(a), Egarch, Tarch, Atgarch, Aparch, Hgarch, 2C(G)-Tarch, 2C(I)-Tarch

cst par Garch, Alt-Garch, TSgarch, Narch(a,b), March, Egarch, Gjr, β-Garch, Tarch, Atgarch
Agarch(a,b), Nagarch, Vgarch,

√
-Garch, Aparch, Hgarch, Vsarch(a,b,c), 2C(G)-Garch

2C(I)-Garch, 2C(G)-Tarch, 2C(I)-Tarch, 2C(G)-Nagarch, 2C(I)-Nagarch, Cgarch, Acgarch

st EST-Garch, GLST-Garch, LST-Garch, GEST-Garch, ANST-Garch

std Garch, Alt-garch, TSgarch, Narch(a,b), March, Egarch, GJR, β-Garch, Tarch, Atgarch
Agarch(a,b), Nagarch, Vgarch,

√
-Garch, Aparch, Hgarch, Vsarch(a,b,c), LST-garch

EST-Garch, GLST-Garch, GEST-Garch, ANST-Garch

comp 2C(I)-Garch, 2C(G)-Garch, 2C(I)-Tarch, 2C(G)-Tarch, 2C(I)-Nagarch, 2C(G)-Nagarch
Cgarch, Acgarch

Notes: lin (non lin): models linear (non linear) in ε2t , sym (asym): models with symmetric (asym-
metric) impact of shocks wrt the sign of the shock, ht (f(ht)): models where the variance (a
function of the variance) is explicitly modelled, cst (st): models with constant parameters (smooth
transition), std (comp): single component (2-component). The total number of specifications is
34. Categories in each pair are mutually exclusive. See Table 5 for the precise functional forms.

15



where EQ
t means that the expectation is taken under the risk neutral measure Q and where

ST is the value at time T of the underlying index. While closed form solutions to (15) do

exist in a few cases, i.e. the constant volatility Gaussian case, this is not so for more general

specifications of the underlying dynamics. However, even in this case it remains possible to

price the options using numerical methods.

We use a Monte Carlo approach which is easy to implement in the current setting as the

models are simple to simulate from under the risk neutral distribution. The use of Monte

Carlo methods for option pricing goes back at least to Boyle (1977). For the European option

example in (15), given initial values of Pt, rt, Σt, and the parameter estimates of a model, we

simulate B paths of length T − t for the return process under the risk neutral measure. More

precisely

R
(b)
t+i = µt+i −

1

2
Σ

(b)
t+i � IN + ε

(b)
t+i

ε
(b)
t+i = −Σ

(b)
t+i � IN λ̂+ Σ

1/2(b)
t+i η

(b)
t+i

µt+i = rt+i|t + Σ
(b)
t+i � IN λ̂, (16)

where η
(b)
t+i ∼ F (0, IN ) with F either the Gaussian or Laplace distribution, b = 1, . . . , B

denotes the number of paths chosen to be sufficiently large (fixed to 20, 000 in the application),

and rt+i|t is the conditional expectation of the risk free rate which is assumed fixed and equal

to rt. Given each return path, we compute the predicted price of each stock at maturity as

P
(b)
T = Pt exp

(
T−t∑
i=1

R
(b)
t+i

)
, (17)

and the index S
(b)
T using (1). Then, an estimate of the price of a call option is given by

Ĉt(T,K) = e−rt(T−t)
1

B

B∑
b=1

max
(
K − S(b)

T , 0
)
, (18)

where S
(b)
T is the terminal index value simulated under the risk neutral dynamics for the bth

path. More generally, the advantages of generating the multivariate price paths is that it can

be used in any dimension and consequently any type of derivative contract on the underlying

assets can be priced. In addition, with a Monte Carlo approach American options could also

be priced using e.g. the Least-Squares Monte Carlo method of Longstaff and Schwartz (2001),

for which the mathematical foundation was provided in Stentoft (2004).
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4 Evaluating option pricing models

We start by explaining which loss functions we use to contrast predicted option prices to their

realizations. Next, we investigate the pricing accuracy of the models (distinguished by similar

characteristics for the marginal variances, type of correlations, and innovation distribution)

for all options, and then we repeat the analysis for the different categories of moneyness

and maturity. Finally, we provide inference, using the model confidence set approach, on

predictive accuracy of each individual model in order to identify the set of superior models.

4.1 Evaluation criteria

We will analyze the pricing performance of the models measured in dollar losses. The pre-

dicted option prices are contrasted with the observed option prices using the mean absolute

deviation, or MAD, loss and mean absolute relative deviation, or MARD, loss which mea-

sures the deviation in percentage points. The two loss functions are respectively defined as

W−1
∑W

n

∣∣∣Cn − Ĉn

∣∣∣ and W−1
∑W

n=1

∣∣∣Cn

Ĉn
− 1
∣∣∣ where W is the number of options considered.

Figure 2 visualizes the difference between loss functions.
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Figure 2: MAD (left) - MARD (right)

The choice of these loss functions is not coincidental. In fact, the MAD loss function

interprets the pricing accuracy in average dollar losses and is symmetric in the sense that over

and under predictions are penalized equally. The MARD loss function measures deviations in

percentage terms in a unit free way, and as can be seen from Figure 2 is slightly asymmetric,
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assigning heavier weights to underpredictions.

4.2 Overall results

Table 7 summarizes the results for the variance model groups identified in Table 6 for each

correlation specification and choice of innovation distribution. The evaluation is based on the

MAD loss for each of these categories. For space considerations, the results for the MARD

loss function are found in Appendix 1 and will be commented only briefly.

With respect to the contribution of the marginal variance specification to the pricing

accuracy, we find that modelling nonlinearity, asymmetry and functional transformations of

the conditional variance yields systematic economic gains. Christoffersen and Jacobs (2004)

and Stentoft (2005) also find empirically that nonlinearities and asymmetries are important in

univariate option pricing models. Also in line with recent literature, see e.g. Christoffersen,

Jacobs, Ornthanalai, and Wang (2008), we find that the largest gains are obtained when

moving from a standard single component to a two component approach where the conditional

variance is expressed as a linear combination of a long term (typically slow moving) component

and a short term one. When comparing these two modelling approaches, for a given correlation

specification and innovation distribution we obtain gains of up to 45%. However, increasing

model sophistication does not always pay off. This is the case for smooth transition models

which are systematically and largely outperformed by simpler specifications.

If we focus on the contribution of increasing the model sophistication of the correla-

tion structure, we find that allowing for dynamic correlations produces better price forecasts,

though the gains are of a much smaller order of magnitude compared to the marginal variance

specifications. For example, moving from constant correlations to dynamic correlations pro-

vides gains only up to 3%. Increasing further the complexity of the correlation model provides

only marginal, if not negligible, gains. In fact, in the cases of the symmetric marginal vari-

ance specification with Gaussian innovations and the component specifications with Laplace

innovations the asymmetric correlation specifications perform the worst.

Finally, when comparing the performance for the two choices of innovation distributions,

Table 7 shows that pricing with Laplace innovations in general brings considerable gains. Sim-

ilar findings are reported in Christoffersen, Heston, and Jacobs (2006) and Stentoft (2008) for

univariate models. In the multivariate framework presented here, allowing for non-Gaussian
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Table 7: Mean absolute deviation losses in dollars within each class of models

Panel A: Gaussian innovations
Characteristics of the marginal variances

lin vs. non lin sym vs. asym ht vs. f(ht) cst par vs. st std vs. comp
CCC 0.533 0.529 0.588 0.501 0.539 0.508 0.518 0.598 0.570 0.398
DCC 0.527 0.521 0.581 0.494 0.532 0.499 0.511 0.591 0.562 0.409
DDCC 0.523 0.519 0.577 0.492 0.530 0.499 0.507 0.588 0.560 0.389
ADCC 0.523 0.517 0.591 0.488 0.529 0.495 0.505 0.587 0.559 0.387

Panel B: Laplace innovations
Characteristics of the marginal variances

lin vs. non lin sym vs. asym ht vs. f(ht) cst par vs. st std vs. comp
CCC 0.510 0.441 0.504 0.441 0.498 0.369 0.448 0.516 0.485 0.375
DCC 0.502 0.432 0.489 0.432 0.490 0.361 0.440 0.508 0.476 0.367
DDCC 0.499 0.432 0.489 0.433 0.489 0.359 0.440 0.508 0.476 0.379
ADCC 0.497 0.428 0.486 0.430 0.486 0.355 0.437 0.505 0.472 0.379

Note: lin (non lin): models linear (non linear) in ε2t , sym (asym): models with symmetric
(asymmetric) impact of shocks wrt the sign of the shock, ht (f(ht)): models where the
variance (a function of the variance) is explicitly modelled, cst (st): models with constant
parameters (smooth transition), std (comp): standard GARCH (component GARCH).
See Table 6 for the specific models belonging to each group. With respect to the marginal
variance specifications, this table is read by pairwise columns, i.e. each pair identifies two
mutually exclusive groups of models aggregated by common characteristics which allows
to compare simple specifications (left column) to more complex ones (right column).
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innovations often improves the performance above and beyond that of adding flexibility to

the correlation or variance specifications. For example, changing the distribution for lin-

ear models with a CCC specification decreases the pricing errors by 0.023$, from 0.533$ to

0.510$, whereas allowing for non linearities in the variance or dynamics and asymmetries

in the correlation specification only reduces the pricing errors by 0.006$ and 0.010$, respec-

tively. However, note that once a component structure is used the benefit of allowing for

non-Gaussian innovations is marginal. This is in line with Christoffersen, Dorion, Jacobs,

and Wang (2010) who find that the generalized error distribution does not improve much

on a Gaussian innovation assumption for the component model when valuing options with

univariate models.

As suggested above, the specification for the marginal variances plays a dominant role

in improving pricing performances, followed by the choice for the distribution and, only

marginally by the specification of the correlation dynamics. To this regard, the bubble plot

in Figure 3 provides some more specific insights. Each bubble identifies a cluster of correlation

models (CCC, DCC, DDCC, ADCC) characterized by the same specifications for the vari-

ances of the marginal processes. The bubbles are centered around the within cluster average

loss, their diameter is the range computed on the MAD, which is used as a measure of the

within cluster dispersion. The horizontal axis represents the MAD and the vertical axis the

MARD. Black and grey bubbles identify the models using the Gaussian and Laplace densities

respectively.

With respect to the different choice of the marginal variances (Figure 3, top), we see that

aggregates of models cover a relatively wide range, from 0.24$ to 0.71$, with a high degree

of between models dispersion. Also, at this lower level of aggregation, the potential marginal

gains that can be obtained from deviating from the standard Gaussian assumption, for given

choice of the variance specification, appear clear. Zooming in on the top of the classification

(Figure 3, bottom), we see that, consistently with Tables 7 and 11, the most accurate mod-

els all share similar characteristics, i.e., asymmetry, non-linearity, indirectly modelling the

variance as a functional transformation, and most relevantly the two component structure.

The latter class of models accounts for 7 out of 12 models, with the 2C(I)Tarch specifica-

tions appearing largely superior to the others. Figure 3 (bottom) also allows to measure the

contribution of using a fatter tailed distribution. If we consider again the 2C(I)Tarch spec-
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Figure 3: MAD and MARD losses for all options
Note: MAD (x-axis) and MARD (y-axis). Each bubble identifies a group of correlation models
(CCC, DCC, DDCC, ADCC) characterized by the same specifications for the variance of the
marginal processes. The bubbles are centered around the within group average loss, their
diameter is the range computed on the MAD. Black and grey bubbles identify the models
using the Gaussian and Laplace densities respectively. The second plot zooms in on the square
in the first plot.
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ifications, the models using Laplace conditional density perform about 20% better than the

same specifications using the Gaussian density. The same holds to a similar extent for the

other clusters of models.

4.3 Results across moneyness and maturity

Table 8 reports MAD losses along the different categories of moneyness as defined in Table 3.

The OTM contracts, which have a low average price, are more difficult to price (relative errors

spanning from 30% to 40% as can be seen in Table 12 of the Appendix) and increasing the

complexity of the model still pays off generally. First, with respect to the marginal variances

we find again that the largest improvement is for the two component models (up to 55%) and

that the other pairwise categories give less pronounced differences than for all the contracts

together. Figure 4 (top) illustrates that indeed the individual models are characterized by

substantially different performances. Second, regarding the correlation models it turns out

that idiosyncratic dynamics outperforms asymmetry under a Gaussian innovation assumption

only. Third, relaxing the Gaussian assumption to the Laplace distribution delivers important

gains of larger size than for all the contracts above.

The overall picture of the ITM and DITM options is rather similar to the entire aggregate

of options. As can be seen from the bubble plot in Figure 4, the absolute dollar losses are

similar to the OTM contracts for good models. It is also clear that increasing the model

sophistication of the marginal variances still provides gains, though to a lower extent than

what is observed for OTM contracts. The distributional assumption and the choice of the

correlation model plays a marginal, if not negligible, role. However, looking solely at the

performances of models based on the MAD provides only a partial understanding of the

results. In fact, it has to be mentioned that, unlike OTM options, ITM and DITM contracts

are characterized by a much higher value (see Table 3). Thus, when the pricing accuracy is

measured in terms of relative errors, losses drop into the 11%-16% range for ITM options and

between 4.5% and 5.6% for DITM options, which shows a dramatic increase in the degree

of accuracy with respect to the profitability of the category of options. The two component

models again show overall the best performances. The performance of less accurate models

also improves showing a large reduction in across model variability, hence the value of model

sophistication declines rapidly as the moneyness increases. Evidence of this is the very tight
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interval in which all models cluster, in particular, when used to price DITM contracts.

Table 9 reports the MAD losses along the different categories of maturity as defined

in Table 3. From this it is clear that short maturity options are much more accurately

priced, with errors within the range of 7.4% and 9.5%, than medium and long term options,

with errors in the 8.4%-13% and 20.3%-29.8% range, respectively. With respect to the short

maturity options, model sophistication pays off to a lesser extent, and as before more complex

marginal variances specifications take the largest share of the potential gains. While there

is some gain in allowing for dynamics in the correlation, the simplest common dynamics

specification (DCC) seem to be sufficient. Finally, regarding the innovation distribution,

deviating from Gaussianity does not yield systematic gains.

As the maturity increases, the choice of an adequate model and thus the value of model

sophistication becomes striking. As appears from Figure 4 (bottom), not only performances

of all models deteriorate (both in absolute and relative terms) but also the forecasts become

less informative (i.e. they converge to their unconditional levels) and model performances

become more dispersed.

4.4 Model confidence sets

The MCS approach of Hansen, Lunde, and Nason (2011) allows to identify, from an initial

set of M models, a subset of forecasts that contains the best forecast at a confidence level

α. Let us denote the initial set of option price forecasts M0 : {Ĉm,n ∈ M0 ∀m = 1, . . . ,M},

where n = 1, ...,W denotes the sequence of option contracts with true price Cn and which are

considered as a cross-section. The starting hypothesis is that all forecasts in M0 have equal

forecasting performance, measured by a loss function Lm,n = L(Cn, Ĉm,n). Here, Lm,n is

either the MAD or the MARD loss function as defined in Section 4.1. Let dij,n = Li,n − Lj,n

∀i, j ∈ M0 define the relative performance of forecast i and j for contract n. The null

hypothesis takes the form H0,M0 : E(dij,n) = 0, ∀ i, j = 1, ...,M . We use the ‘deviation’

statistic defined as TD = M−1
∑

i∈M0 t2i , where ti =
√
Wd̄i/

√
V ar(

√
Wd̄i) represents the

standardized relative performance of forecast i with respect to the average across forecasts,

d̄i = M−1Σj∈M0 d̄ij and d̄ij = W−1ΣW
n=1dij,n is the sample loss difference between forecast

i and j. An i.i.d. bootstrap scheme, producing 10,000 resamples, is used to obtain the

distribution under the null. If the null is rejected, an elimination rule removes the forecast with
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Table 8: Absolute deviation losses in dollars by moneyness

Panel A: Gaussian innovations
Characteristics of the marginal variances

lin vs. non lin sym vs. asym ht vs. f(ht) cst par vs. st std vs. comp
OTM (406 contracts)

CCC 0.779 0.777 0.893 0.720 0.794 0.740 0.753 0.900 0.846 0.555
DCC 0.770 0.767 0.884 0.712 0.784 0.729 0.744 0.891 0.836 0.572
DDCC 0.763 0.761 0.873 0.705 0.778 0.723 0.737 0.882 0.829 0.538
ADCC 0.766 0.763 0.879 0.706 0.781 0.724 0.739 0.885 0.832 0.540

ITM (334 contracts)
CCC 0.460 0.435 0.487 0.419 0.459 0.401 0.431 0.494 0.471 0.344
DCC 0.451 0.424 0.477 0.410 0.449 0.390 0.422 0.484 0.461 0.349
DDCC 0.452 0.428 0.479 0.412 0.452 0.393 0.424 0.486 0.464 0.335
ADCC 0.445 0.420 0.473 0.404 0.445 0.385 0.416 0.479 0.457 0.329

DITM (497 contracts)
CCC 0.382 0.388 0.408 0.376 0.385 0.390 0.379 0.422 0.410 0.307
DCC 0.381 0.384 0.404 0.373 0.382 0.385 0.376 0.418 0.406 0.316
DDCC 0.375 0.383 0.400 0.372 0.379 0.386 0.374 0.416 0.405 0.303
ADCC 0.376 0.382 0.402 0.370 0.379 0.383 0.373 0.416 0.405 0.301

Panel B: Laplace innovations
Characteristics of the marginal variances

lin vs. non lin sym vs. asym ht vs. f(ht) cst par vs. st std vs. comp
OTM (406 contracts)

CCC 0.736 0.620 0.735 0.609 0.717 0.498 0.616 0.756 0.694 0.511
DCC 0.727 0.607 0.723 0.597 0.705 0.484 0.618 0.743 0.681 0.500
DDCC 0.717 0.605 0.719 0.598 0.701 0.481 0.617 0.742 0.679 0.516
ADCC 0.718 0.601 0.718 0.595 0.699 0.477 0.615 0.739 0.676 0.518

ITM (334 contracts)
CCC 0.446 0.377 0.426 0.380 0.432 0.310 0.387 0.436 0.416 0.329
DCC 0.435 0.367 0.415 0.370 0.422 0.299 0.377 0.427 0.405 0.319
DDCC 0.434 0.367 0.415 0.372 0.422 0.297 0.378 0.428 0.406 0.330
ADCC 0.431 0.362 0.411 0.368 0.418 0.293 0.374 0.423 0.400 0.329

DITM (497 contracts)
CCC 0.367 0.338 0.354 0.342 0.364 0.303 0.340 0.374 0.361 0.295
DCC 0.363 0.334 0.349 0.338 0.359 0.301 0.336 0.370 0.357 0.292
DDCC 0.364 0.334 0.351 0.339 0.360 0.300 0.338 0.371 0.358 0.299
ADCC 0.362 0.331 0.348 0.336 0.357 0.297 0.334 0.368 0.354 0.299

Note: lin (non lin): models linear (non linear) in ε2t , sym (asym): models with symmetric
(asymmetric) impact of shocks wrt the sign of the shock, ht (f(ht)): models where the
variance (a function of the variance) is explicitly modelled, cst (st): models with constant
parameters (smooth transition), std (comp): standard GARCH (component GARCH).
See Table 6 for the specific models belonging to each group.

24



Table 9: Absolute deviation losses in dollars by maturity

Panel A: Gaussian innovations
Characteristics of the marginal variances

lin vs. non lin sym vs. asym ht vs. f(ht) cst par vs. st std vs. comp
ST (428 contracts)

CCC 0.189 0.173 0.186 0.173 0.186 0.157 0.176 0.185 0.182 0.162
DCC 0.186 0.168 0.182 0.168 0.180 0.156 0.171 0.181 0.177 0.159
DDCC 0.194 0.179 0.192 0.178 0.192 0.162 0.181 0.191 0.188 0.167
ADCC 0.183 0.167 0.180 0.166 0.180 0.151 0.169 0.179 0.175 0.156

MT (335 contracts)
CCC 0.412 0.380 0.423 0.371 0.409 0.341 0.381 0.425 0.408 0.325
DCC 0.403 0.370 0.413 0.363 0.399 0.330 0.372 0.416 0.398 0.326
DDCC 0.412 0.377 0.420 0.370 0.407 0.337 0.379 0.422 0.406 0.322
ADCC 0.399 0.365 0.410 0.357 0.395 0.326 0.367 0.411 0.394 0.311

LT (474 contracts)
CCC 0.929 0.955 1.068 0.888 0.951 0.942 0.919 1.094 1.035 0.664
DCC 0.924 0.945 1.061 0.881 0.937 0.944 0.911 1.085 1.025 0.690
DDCC 0.898 0.927 1.035 0.862 0.963 0.916 0.891 1.064 1.005 0.637
ADCC 0.918 0.941 1.055 0.874 0.938 0.926 0.906 1.079 1.021 0.650

Panel B: Laplace innovations
Characteristics of the marginal variances

lin vs. non lin sym vs. asym ht vs. f(ht) cst par vs. st std vs. comp
ST (428 contracts)

CCC 0.197 0.177 0.190 0.179 0.193 0.158 0.181 0.190 0.187 0.170
DCC 0.193 0.174 0.187 0.175 0.189 0.155 0.177 0.188 0.183 0.166
DDCC 0.193 0.173 0.185 0.175 0.189 0.154 0.177 0.186 0.182 0.169
ADCC 0.191 0.171 0.185 0.174 0.187 0.152 0.176 0.185 0.180 0.168

MT (335 contracts)
CCC 0.411 0.352 0.392 0.355 0.398 0.296 0.362 0.395 0.381 0.321
DCC 0.400 0.342 0.381 0.346 0.388 0.286 0.352 0.387 0.371 0.312
DDCC 0.400 0.342 0.382 0.348 0.389 0.284 0.353 0.388 0.372 0.320
ADCC 0.398 0.338 0.378 0.342 0.385 0.281 0.348 0.384 0.368 0.309

LT (474 contracts)
CCC 0.862 0.743 0.852 0.735 0.845 0.610 0.750 0.896 0.828 0.598
DCC 0.854 0.730 0.839 0.724 0.833 0.599 0.739 0.882 0.816 0.588
DDCC 0.844 0.729 0.839 0.726 0.830 0.597 0.739 0.883 0.815 0.610
ADCC 0.844 0.723 0.835 0.721 0.827 0.591 0.735 0.878 0.809 0.612

Note: lin (non lin): models linear (non linear) in ε2t , sym (asym): models with symmetric
(asymmetric) impact of shocks wrt the sign of the shock, ht (f(ht)): models where the
variance (a function of the variance) is explicitly modelled, cst (st): models with constant
parameters (smooth transition), std (comp): standard GARCH (component GARCH).
See Table 6 for the specific models belonging to each group.
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Figure 4: Models’ ranking by Moneyness (top) and Maturity (bottom)
Note: MAD (x-axis) and MARD (y-axis). Each bubble identifies a group of correlation models
(CCC, DCC, DDCC, ADCC) characterized by the same specifications for the variance of the
marginal processes. The bubbles are centered around the within group average loss, their
diameter is the range computed on the MAD.
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the largest standardized relative performance. This process is repeated until non-rejection of

the null occurs, thus allowing to construct a (1 − α)-confidence set for the best forecast in

M0.

The MCS approach has been applied for all options and for each category of moneyness

and maturity. The results are summarized in Table 10 for the MAD loss. The MARD results

are in line with this and presented in Table 14 of Appendix 1. When considering all option

contracts, the MCS consists of a single model allowing for asymmetry in the variances and

correlations, non-linearity and conditional leptokurtosis, i.e., the asymmetric DCC model with

2-component TARCH marginal variances and Laplace conditional density. A more informative

picture appears when we examine the contracts grouped by maturity/moneyness. As appears

in Table 8, OTM and, to some extent ITM, contracts are the most difficult to price, showing

the largest losses and loss differentials between models. The MCS is thus relatively small and

reflects the large variability between model performances (within the range 0.27$ - 1.08$). The

MCS does not reject the hypothesis of constant correlation (when coupled with a sufficiently

sophisticated model for the marginal variances) but strongly supports the Laplace density

against the Gaussian.

Differently, DITM contracts are relatively easier to price and hence characterized by rel-

atively close differences between models and an overall good accuracy (within the range

0.24−0.47). In line with this evidence, the MCS suggests the absence of statistically relevant

gains from the choice of the distribution or the model for the correlation (the hypothesis of

constant correlation is not rejected). However, there is still evidence of significant gains from

non-linearity, asymmetry, and 2-component modelling strategies.

A different picture emerges when we focus on the maturity structure of the set of con-

tracts under consideration. Short maturity contracts show extremely small differences in

performances between models, e.g., the losses lie in the band 0.12$ - 0.21$. However, the

MCS delivers a singleton, which indicates that although models’ sample performances are

extremely close, they are also extremely stable thus allowing to efficiently discriminate be-

tween models. It is worth noting also that this is the only case where the Laplace assumption

generates systematically larger losses than the pricing under Gaussianity. As the maturity

increases, accurately pricing contracts becomes more difficult and we see large differences

between model performances (within the range 0.37$ - 1.30$). For very long maturities, the
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Table 10: Model confidence sets (MAD loss, α = 1%)

Correlation Variances Distribution Loss

All options ADCC 2C(I)Tarch Laplace 0.243

ADCC 2C(I)Tarch Laplace 0.276
DDCC 2C(I)Tarch Laplace 0.278
DCC 2C(I)Tarch Laplace 0.286

OTM CCC 2C(I)Tarch Laplace 0.298
ADCC Agarch(b) Laplace 0.299
DDCC Agarch(b) Laplace 0.301
DCC Agarch(b) Laplace 0.303
CCC Agarch(b) Laplace 0.315

ITM ADCC 2C(I)Tarch Laplace 0.201

ADCC Agarch(b) Gaussian 0.239
DCC Agarch(b) Gaussian 0.239
CCC Agarch(b) Gaussian 0.242
ADCC 2C(I)Tarch Laplace 0.244
DDCC Agarch(b) Gaussian 0.244

Moneyness DDCC 2C(I)Tarch Laplace 0.245
DCC 2C(I)Tarch Laplace 0.247
CCC 2C(I)Tarch Laplace 0.250
ADCC 2C(I)Garch Laplace 0.251
DDCC 2C(I)Garch Laplace 0.252
CCC 2C(I)Garch Laplace 0.253
DCC 2C(I)Garch Laplace 0.253
ADCC 2C(I)Garch Gaussian 0.254

DITM DDCC 2C(I)Garch Gaussian 0.255
DCC 2C(I)Garch Gaussian 0.256
CCC 2C(I)Garch Gaussian 0.260
ADCC 2C(I)Nagarch Laplace 0.261
DDCC 2C(I)Nagarch Laplace 0.262
ADCC 2C(I)Nagarch Gaussian 0.263
CCC 2C(I)Nagarch Laplace 0.264
DCC 2C(I)Nagarch Gaussian 0.264
DCC 2C(I)Nagarch Laplace 0.264
DDCC 2C(I)Nagarch Gaussian 0.266
CCC 2C(I)Nagarch Gaussian 0.269
ADCC 2C(I)Tarch Gaussian 0.270
DCC 2C(I)Tarch Gaussian 0.273
DDCC 2C(I)Tarch Gaussian 0.276
ADCC Agarch(b) Laplace 0.277
ADCC Egarch Laplace 0.277
DDCC Agarch(b) Laplace 0.277
DCC Agarch(b) Laplace 0.278
DCC Egarch Laplace 0.280
CCC Agarch(b) Laplace 0.286

ST ADCC 2C(I)Tarch Gaussian 0.124

MT ADCC 2C(I)Tarch Laplace 0.212

ADCC 2C(I)Tarch Laplace 0.368
DDCC 2C(I)Tarch Laplace 0.370

Maturity DCC 2C(I)Tarch Laplace 0.378
CCC 2C(I)Tarch Laplace 0.388

LT DDCC Agarch(b) Laplace 0.401
ADCC Agarch(b) Laplace 0.402
DCC Agarch(b) Laplace 0.406
CCC Agarch(b) Laplace 0.414
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MCS delivers a relatively small MCS. Gaussianity is rejected as well as symmetry and lin-

earity in the marginal variances. Also in this case there is no significant gain in modelling

the dynamics of the conditional correlation. The rejection of the dynamic correlation speci-

fication is in some case somewhat surprising. In fact, it is likely that the functional forms of

the correlations models considered in this paper are not sufficient in the thirty dimensional

case of the DJIA (e.g. two DCC parameters for 435 correlations), and therefore yield biased

correlation forecasts. Evidence of this has also been reported by Audrino (2011) and Laurent,

Rombouts, and Violante (2011).

5 Conclusion

Multivariate volatility models have been used extensively to model financial data and fore-

casts from these models are typically used as inputs in empirical asset pricing. This is par-

ticularly important for derivative pricing where the underlying of some of the most liquidly

traded options, the index options, are portfolios of equally weighted assets. Despite the large

availability of multivariate models of asset returns, the problem of model selection based on

derivative pricing accuracy has received little attention. This paper investigates the value of

model sophistication by considering a large number of high dimensional GARCH models and

measuring performance in terms of Dow Jones Industrial Average option pricing accuracy.

Since the option price does not only depend on the conditional variance matrix but also on

other conditional moments, we are actually able to evaluate the full forecasting model.

In total we consider 248 multivariate GARCH models differing along three dimensions:

the specification of the conditional variance, the conditional correlation, and the innovation

distribution. The results of our application are first of all that in general more complicated

models provide better option pricing forecasts. It turns out that the most important improve-

ments in pricing come from increasing the sophistication in the marginal variance processes

and from relaxing the Gaussian innovation for a Laplace innovation assumption. Enriching

the model with more complex correlation models, and relaxing a Gaussian innovation for a

Laplace innovation assumption improves the pricing in a smaller way. Overall, increasing

model sophistication can reduce the dollar loss up to 60%. The model that performs best, ac-

cording to the model confidence test, is the two component threshold GARCH in combination

with an asymmetric DCC structure and Laplace innovations.
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The results of this paper provide clear support for the use of models beyond standard

multivariate volatility models for option pricing. However, the best models are often close

to the boundary of sophistication. Since we consider only four correlation type specifications

and two relatively close innovation densities, compared to the thirty-four univariate volatility

models, it is expected that more flexible correlation models, e.g. Audrino and Trojani (2011),

and especially innovation densities (which will require further developments for feasible option

pricing) will further enhance the option pricing performance. An example is the dynamic

copula approach of Fengler, Herwartz, and Werner (2010). Finally, given the evidence for

example in Driessen, Maenhout, and Vilkov (2009), another challenging extension is to price

correlation risk. This would require additional parameters and one step estimation in a thirty

dimensional setup.
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Appendix 1: results for mean absolute deviation loss function

Table 11: Mean absolute relative deviation losses in percentages within each class
of models

Panel A: Gaussian innovations
Characteristics of the marginal variances

lin vs. non lin sym vs. asym ht vs. f(ht) cst par vs. st std vs. comp
CCC 18.86 18.17 19.72 17.67 18.84 17.22 18.05 19.88 19.25 15.43
DCC 18.48 17.75 19.45 17.55 18.55 16.39 17.75 19.56 18.96 15.28
DDCC 18.71 18.01 19.55 17.51 18.69 17.03 17.89 19.73 19.11 15.19
ADCC 18.55 17.70 19.19 17.30 18.41 16.81 17.60 19.54 18.81 15.03

Panel B: Laplace innovations
Characteristics of the marginal variances

lin vs. non lin sym vs. asym ht vs. f(ht) cst par vs. st std vs. comp
CCC 18.47 16.43 18.17 16.38 18.10 14.34 16.68 18.45 17.62 14.84
DCC 18.24 16.15 17.90 16.11 17.86 14.04 16.41 18.22 17.36 14.57
DDCC 18.16 16.10 17.87 16.14 17.82 13.95 16.41 18.20 17.33 14.89
ADCC 18.12 16.00 17.81 16.05 17.75 13.84 16.33 18.11 17.22 14.88

Note: lin (non lin): models linear (non linear) in ε2t , sym (asym): models with symmetric
(asymmetric) impact of shocks wrt the sign of the shock, ht (f(ht)): models where the
variance (a function of the variance) is explicitly modelled, cst (st): models with constant
parameters (smooth transition), std (comp): standard GARCH (component GARCH).
See Table 6 for the specific models belonging to each group.
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Table 12: Absolute relative deviation losses in percentages by moneyness

Panel A: Gaussian innovations
Characteristics of the marginal variances

lin vs. non lin sym vs. asym ht vs. f(ht) cst par vs. st std vs. comp
OTM (406 contracts)

CCC 36.99 35.84 38.98 34.73 37.01 34.13 35.54 39.17 37.88 30.46
DCC 36.69 35.46 38.70 34.45 36.69 33.69 35.23 38.87 37.54 30.88
DDCC 36.67 35.46 38.61 34.37 36.68 33.70 35.17 38.84 37.56 29.95
ADCC 36.80 35.28 38.54 34.16 36.54 33.47 35.01 38.67 37.38 29.84

ITM (334 contracts)
CCC 16.34 15.28 16.75 14.97 16.19 14.09 15.31 16.81 16.27 13.23
DCC 16.05 14.91 16.41 14.68 15.87 13.69 15.00 16.48 15.92 13.29
DDCC 16.22 15.13 16.61 14.83 16.07 13.91 15.18 16.66 16.16 13.02
ADCC 15.88 14.77 16.29 14.45 15.72 13.52 14.81 16.33 15.79 12.69

DITM (497 contracts)
CCC 5.73 5.69 5.99 5.56 5.78 5.52 5.60 6.19 6.03 4.63
DCC 5.69 5.61 5.92 5.50 5.72 5.44 5.54 6.12 5.95 4.73
DDCC 5.71 5.68 5.96 5.55 6.23 5.51 5.59 6.18 6.02 4.60
ADCC 5.63 5.57 5.89 5.44 5.67 5.39 5.49 6.08 5.92 4.51

Panel B: Laplace innovations
Characteristics of the marginal variances

lin vs. non lin sym vs. asym ht vs. f(ht) cst par vs. st std vs. comp
OTM (406 contracts)

CCC 36.14 32.19 35.97 31.88 35.39 28.25 32.61 36.41 34.51 29.10
DCC 35.81 31.71 35.55 31.43 35.00 27.68 32.16 36.00 34.07 28.63
DDCC 35.56 31.58 35.43 31.45 34.88 27.50 32.12 35.94 33.97 29.19
ADCC 35.56 31.46 35.40 31.34 34.82 27.35 32.04 35.84 33.85 29.22

ITM (334 contracts)
CCC 16.12 14.07 15.53 14.16 15.71 12.05 14.41 15.67 15.14 12.91
DCC 15.79 15.18 15.18 13.85 15.40 11.70 14.07 15.40 14.82 12.57
DDCC 15.78 13.72 15.18 13.91 15.42 11.63 14.11 15.40 14.81 12.89
ADCC 15.68 13.57 15.06 13.76 15.28 11.48 13.97 15.26 14.65 12.84

DITM (497 contracts)
CCC 5.61 5.14 5.40 5.20 5.58 4.52 5.19 5.64 5.50 4.50
DCC 5.54 5.06 5.32 5.12 5.50 4.46 5.11 5.58 5.42 4.43
DDCC 5.55 5.06 5.34 5.14 5.51 4.45 5.13 5.59 5.43 4.55
ADCC 5.52 5.00 5.29 5.08 5.46 4.39 5.08 5.54 5.36 4.54

Note: lin (non lin): models linear (non linear) in ε2t , sym (asym): models with symmetric
(asymmetric) impact of shocks wrt the sign of the shock, ht (f(ht)): models where the
variance (a function of the variance) is explicitly modelled, cst (st): models with constant
parameters (smooth transition), std (comp): standard GARCH (component GARCH).
See Table 6 for the specific models belonging to each group.
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Table 13: Absolute relative deviation losses in percentages by maturity

Panel A: Gaussian innovations
Characteristics of the marginal variances

lin vs. non lin sym vs. asym ht vs. f(ht) cst par vs. st std vs. comp
ST (428 contracts)

CCC 9.37 9.31 9.26 8.59 9.23 7.85 8.74 9.17 9.03 8.12
DCC 9.18 8.39 9.04 8.42 9.02 7.62 8.55 8.98 8.81 8.08
DDCC 9.48 8.73 9.37 8.71 9.35 7.95 8.86 9.30 9.16 8.18
ADCC 9.09 8.30 8.99 8.27 8.94 7.52 8.44 8.88 8.73 7.81

MT (335 contracts)
CCC 18.46 17.19 18.83 16.88 18.29 15.75 17.28 18.78 18.20 15.32
DCC 18.17 16.83 18.52 16.61 17.99 15.35 16.98 18.48 17.87 15.37
DDCC 18.42 17.04 18.72 16.76 18.22 15.54 17.16 18.66 18.10 15.14
ADCC 18.04 16.69 18.41 16.37 17.85 15.17 16.79 18.32 17.73 14.79

LT (474 contracts)
CCC 27.70 27.51 29.81 26.43 27.91 26.73 27.00 30.34 29.21 22.12
DCC 27.57 27.28 29.65 26.28 27.73 26.48 26.83 30.15 29.02 22.62
DDCC 27.24 27.07 29.34 26.00 27.47 26.28 26.55 29.90 28.80 21.57
ADCC 27.44 27.18 29.54 26.10 27.64 26.34 26.69 30.03 28.93 21.73

Panel B: Laplace innovations
Characteristics of the marginal variances

lin vs. non lin sym vs. asym ht vs. f(ht) cst par vs. st std vs. comp
ST (428 contracts)

CCC 9.59 8.65 9.27 8.72 9.40 7.73 8.83 9.24 9.09 8.29
DCC 9.37 8.47 9.10 8.51 9.21 7.55 8.63 9.10 8.90 8.10
DDCC 9.38 8.41 9.06 8.52 9.19 7.48 8.63 9.04 8.86 8.21
ADCC 9.31 8.35 9.02 8.44 9.13 7.42 8.56 8.99 8.79 8.17

MT (335 contracts)
CCC 18.35 16.13 17.79 16.18 17.89 14.00 16.50 17.81 17.22 15.09
DCC 18.03 15.78 17.45 15.84 17.57 13.59 16.14 17.54 16.88 14.73
DDCC 18.01 15.74 17.43 15.91 17.58 13.51 16.17 17.55 16.87 15.04
ADCC 17.93 15.61 17.34 15.78 17.47 13.38 16.06 17.43 16.73 15.00

LT (474 contracts)
CCC 26.58 23.66 26.46 23.43 26.10 20.55 23.88 27.21 25.61 20.58
DCC 26.41 23.36 26.18 23.17 25.87 20.21 23.62 26.93 25.35 20.31
DDCC 26.20 23.30 26.14 23.19 25.79 20.11 23.61 26.92 25.30 20.82
ADCC 26.22 23.18 26.08 23.10 25.74 19.97 23.53 26.83 25.18 20.85

Note: lin (non lin): models linear (non linear) in ε2t , sym (asym): models with symmetric
(asymmetric) impact of shocks wrt the sign of the shock, ht (f(ht)): models where the
variance (a function of the variance) is explicitly modelled, cst (st): models with constant
parameters (smooth transition), std (comp): standard GARCH (component GARCH).
See Table 6 for the specific models belonging to each group.
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Table 14: Model confidence sets (MARD loss, α = 1%)

Correlation Variances Distribution Loss

All options ADCC 2C(I)TARCH Laplace 10.0

ADCC 2C(I)TARCH Laplace 19.3
DDCC 2C(I)TARCH Laplace 19.4
EDCC 2C(I)TARCH Laplace 19.8
CCC 2C(I)TARCH Laplace 20.4

OTM ADCC AGARCH(b) Laplace 21.0
DDCC AGARCH(b) Laplace 21.0
EDCC AGARCH(b) Laplace 21.2

Moneyness CCC AGARCH(b) Laplace 21.8
DDCC 2C(I)TARCH Gaussian 22.9

ITM ADCC 2C(I)TARCH Laplace 8.6

DITM ADCC 2C(I)TARCH Laplace 3.5

ADCC 2C(I)TARCH Gaussian 6.1
ADCC 2C(I)TARCH Laplace 6.1

ST EDCC 2C(I)TARCH Gaussian 6.2
DDCC 2C(I)TARCH Laplace 6.2

MT ADCC 2C(I)TARCH Laplace 10.3

ADCC 2C(I)TARCH Laplace 13.4
Maturity DDCC 2C(I)TARCH Laplace 13.5

EDCC 2C(I)TARCH Laplace 13.8
LT CCC 2C(I)TARCH Laplace 14.2

DDCC AGARCH(b) Laplace 14.9
ADCC AGARCH(b) Laplace 14.9
EDCC AGARCH(b) Laplace 15.1
CCC AGARCH(b) Laplace 15.3
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