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explains the cross section of expected returns, just as well as the three factor model of Fama and 

French. This is achieved by measuring beta (systematic risk) with short-, medium- and long-run 

components. The short-run component of beta is computed from daily returns over the prior year. 

While the medium-run beta component is from daily returns over the prior 5 years and the long-run 

component from monthly returns over the prior 10 years. More immediate changes in risk such as 

changes in portfolio characteristics are captured in the short-run beta component, whereas, more 

slowly changing risk due to the business cycle is captured in the medium- and long-run beta 

components. 
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1 Introduction

It is well known that the unconditional (or static) version of CAPM fails to account for the cross-sectional variation in

expected returns, especially expected returns on portfolios based on firm characteristics. However, it is still possible, at

least theoretically, that a version of CAPM with time-varying betas explains the cross-sectional variation in expected

returns (see Jagannathan and Wang (1996)). However, the empirical success of such an approach depends critically

on successfully capturing the time-variation of betas.

The theory does not provide much guidance on how to capture time-variation in betas. Although there are several

approaches in the literature, one can group them into two main categories based on the frequency of data used. By far,

the most common approach based on low frequency data is to estimate betas based on a rolling window of monthly

observations over the last 5 years as in Fama and MacBeth (1973). One can also model betas as linear functions of

instruments observed at low frequencies as in Harvey (1989), Shanken (1990), Ferson and Harvey (1991, 1993, 1999),

Cochrane (1996) and Jagannathan and Wang (1996). On the other hand, one can use high frequency data, e.g. daily,

to estimate betas and capture their time-variation as in Andersen, Bollerslev, Diebold, and Wu (2005, 2006), Lewellen

and Nagel (2006), Ghysels and Jacquier (2006) and Hooper, Ng, and Reeves (2008). Independent of the approach,

most studies in the literature make ad hoc choices on the data window and frequency to estimate betas and, thus,

implicitly assume that their choice is the best data window and frequency combination to capture time variation in

betas.

In this paper, we avoid this problem and propose to model the conditional beta of an asset as a weighted average

of three betas estimated over different periods using different frequency data. Our three component beta model is

motivated by two empirical observations. First, there is growing empirical evidence that both volatility and correlations

in equity markets have more than one component. For example, Rangel and Engle (2009) and Engle and Rangel (2010)

provide empirical evidence that both a model with low and high frequency volatility and correlation components

capture the dynamics of returns in equity markets better than a single component model. This, in turn, suggests that

betas themselves might have more than one component. Secondly, there are numerous studies on the relationship of

beta with a variety of firm characteristics and macroeconomic variables, see e.g., Hamada (1972), Rubinstein (1973),

Shanken (1990), Ferson and Harvey (1993, 1999), Berk, Green, and Naik (1999) and Andersen, Bollerslev, Diebold,

and Wu (2005), which tend to move over time at different frequencies. This in turn suggests that a single time-varying

beta estimated based on a single data window and frequency might not be able to capture changes in risk which happen

at different frequencies.

Our three component beta model can be considered as a mixed-frequency approach as the short- and medium-run

beta components are computed from daily returns, whereas, the long-run beta component is computed from monthly

returns. It differs from the approaches in the previous literature in several aspects. First of all, most approaches,

such as estimating betas based on a rolling window of monthly returns over the last 5 years as in Fama and MacBeth

(1973) or estimating realized betas based on daily returns as in Andersen, Bollerslev, Diebold, and Wu (2005, 2006),

Lewellen and Nagel (2006), Ghysels and Jacquier (2006) and Hooper, Ng, and Reeves (2008), need to make an

explicit ad hoc choice on the estimation window and data frequency in order to estimate conditional betas. Instead, we

allow conditional betas to be determined jointly by betas estimated over different periods based on data with different

frequency. Secondly, Harvey (2001) shows that the approach based on instruments is relatively sensitive to the set

of instruments used. We use a data-driven non-parametric approach to capture time variation in betas rather than
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parametric and instrument-based approaches such as those in Harvey (1989), Shanken (1990), Ferson and Harvey

(1991, 1993, 1999), Cochrane (1996), Jagannathan and Wang (1996), Ang and Chen (2007) and Rangel and Engle

(2009).

We show that our three component beta model can account for most of the cross-sectional variation in expected

returns. Specifically, we analyze the performance of our three component beta model relative to the benchmark three

factor model of Fama and French (1993, 1996) with constant factor loadings in accounting for the cross-sectional

variation in expected monthly returns on the 25 size and book-to-market cross sorted portfolios for the period January

1970 to December 2010. To do this, for each month, we first estimate the short and medium-term beta components

using daily data over the previous one and five year periods, respectively, and the long-run beta component using

monthly data over the previous ten year period. We then calculate the average pricing error as the average of the resid-

uals from the estimation of the cross-sectional regression in each month as in Fama and MacBeth (1973). Differently

from our three component beta model, the factor loadings on the three Fama-French factors are estimated only once

based on the whole sample period. In this framework, our three component beta model outperforms the Fama-French

three factor model. Specifically, it does not only achieve lower overall pricing errors as measured by sum of squared

pricing errors (SSPE) but also for each size and book-to-market quintile. Furthermore, it only fails to account for the

expected return on the small-growth portfolio, which is known to be the most difficult portfolio to correctly price,

compared to three mispriced assets under the Fama-French three factor model.

To understand the intuition behind the empirical success of this three component beta model relative to the Fama-

French three factor model, we decompose its overall performance by analyzing the performances of its components.

Specifically, we first analyze the performance of one component beta models, which are simply CAPM with time-

varying betas estimated over different periods using different frequency data. This allows us to analyze the explanatory

power of each component separately in accounting for the cross-sectional variation in expected returns. The one

component beta model with the medium-term beta performs better than the one with the short-term beta which is

in turn better than the one with the long-term beta. These results suggest that the overall performance of our three

component beta model is mostly due to short and medium term betas with the long-term beta contributing only slightly.

We then turn our attention to the two component beta models. Comparing two and three component models allows

us to analyze the pure contribution of a specific beta to the overall performance of the three component beta model

while controlling for relatively moderate levels of correlations between beta components. Specifically, we calculate

the percentage decrease in the SSPE due to the inclusion of a specific component. This percentage decrease in the

SSPE can be interpreted as a partial R2 since it is the change in the variation explained by the part of that component

orthogonal to the other two components. The short and medium term beta components decrease the overall SSPE

by 37% and 48%, respectively, while the long-term beta component decreases it by 18%. Once again, these results

suggest that the overall performance of our three component beta model is mostly due to short and medium term betas

with the long-term beta contributing only slightly. However, these results do not necessarily imply that betas based

on low frequency data are completely useless. As we discuss below, they capture a different dimension of the time

variation in betas that cannot be captured by the short and medium run beta components.

To understand the economic intuition behind the relative success of the three component beta model, we analyze

the relation between the components of beta and the determinants of risk, such as economic conditions and portfolio

characteristics. To this end, we analyze the correlations between annual changes in each beta component and the lagged
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annual change in the book-to-market ratio of the portfolio as well as the Treasury bill rate at the beginning of the year.

The lagged annual change in the book-to-market ratio of the portfolio captures the change in one of the important port-

folio characteristics. The short-run beta components of portfolios, especially those with high book-to-market ratios,

have highly significant positive correlations with the lagged annual changes in their book-to-market ratios. Overall,

there is a pattern of increasing correlations as the book-to-market ratio of the portfolio increases, demonstrating that

an increase in the portfolio’s risk characteristics due to its book-to-market ratio, often results in significant increases

in the short-run beta component. The medium- and long-run beta components have mostly insignificant correlations,

showing that these beta components are less sensitive to the more fast moving risk dynamics of assets. On the other

hand, the Treasury bill rate at the beginning of a year is chosen to measure the economic conditions over the next 12

months. The annual changes in medium- and long-term beta components are significantly negatively correlated with

the Treasury bill rate, especially for portfolios with high book-to-market ratios. This suggests that in recessions when

the Treasury bill rate is low, the medium- and long-run beta components for portfolios with high book-to-market ratios,

tend to rise over the year. Furthermore, the short-run beta components do not seem to be significantly correlated with

the Treasury bill rate suggesting that the dynamics of the short-run beta components are not dominated by the business

cycle. These results suggest that the impact of the business cycle on asset returns in our three component beta model

is primarily captured through the medium- and long-run beta components. This is in line with Adrian and Rosenberg

(2008) who also find that the business cycle is correlated with a long-run component of risk in their factor pricing

model containing a short- and long-run volatility component. Overall, these results suggest that the more immediate

changes in risk such as changes in portfolio characteristics are captured in the short-run beta component while the

medium- and long-run beta components capture more slowly changing risk which we find to be correlated with the

business cycle. In addition, we also analyze the performance of our three component beta model over phases of the

business cycle and find that it has similar pricing errors to the Fama-French three factor model during expansions, and

lower pricing errors during recessions. This in turn suggests that the empirical success of our three component beta

model relative to the Fama-French three factor is due to its success in capturing time-variation in risk of portfolios in

recessions.

Mindful of the Lewellen, Nagel, and Shanken (2010) critique of standard empirical methods used in the asset

pricing literature and other potential problems, we perform a number of robustness checks. First, we should not that

betas estimated with different windows and/or frequencies of data are, not surprisingly, correlated. However, these

correlations are at relatively moderate levels suggesting that the relative performance of our three component models

are not due to correlations between different beta components. Second, we conduct simulation experiments where we

demonstrate that the success of our three component beta models, is unlikely to have been generated by chance. Third,

we extend the number of test portfolios in our analysis to include momentum-sorted portfolios and industry portfolios.

In this setting our three component beta model performs similar to the Fama-French three factor model. Fourth, most

of our study is focused on analyzing the performance of the models in explaining the cross-sectional variation in

monthly returns, though as part of our robustness checks, we also analyze the performance of the models in explaining

the cross-sectional variation in quarterly returns where we again find that our three component beta model to perform

just as well as the Fama-French three factor model. Fifth, our three component beta model performs better than the

Fama-French three factor model over different sample periods. Finally, our performance of our three component beta

model continues to outperform the Fama-French three factor model when we control for nonsynchronous trading in
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estimating the short and medium-run beta components.

The remainder of the paper is organized as follows. Section 2 describes the methodology. Asset pricing perfor-

mance is presented in section 3. We discuss the intuition behind the performance of our three component beta models

in Section 4. We present robustness checks in section 5. Our conclusion is presented in section 6.

2 Methodology

In this section, we first discuss the methodology to estimate different asset pricing models. We start with the three

component beta model before turning our attention to two benchmark models, i.e. the unconditional version of CAPM

with constant betas and the three factor model of Fama and French (1993, 1996) with constant factor loadings. We

then discuss several measures that we use to evaluate the performances of different models in accounting for the

cross-sectional variation in returns.

2.1 Three Component Beta Models

Following the notation in Ghysels and Jacquier (2006), let βx,y,i,t denote the conditional beta of asset i in period

t estimated using x periods of data up to but not including any data from period t based on returns sampled at y

frequency.1 For example, assuming that t tracks months, β6m,d,i,t denotes the conditional beta of asset i in month t

estimated using daily data over six months of data prior to period t, i.e. between the beginning of month t− 6 and the

end of month t− 1. Then, our three component beta model is expressed as follows:

β̂i,t = w1,i,tβ̂x1,y1,i,t + w2,i,tβ̂x2,y2,i,t + w3,i,tβ̂x3,y3,i,t (1)

In this framework, we choose the pairs of (xj , yj) for j = 1, 2, 3 to capture different components of beta. Specifically,

we assume that the first component captures the fast moving short term component of beta and consider (1m, d),

(3m, d), (6m, d) or (12m, d) for (x1, y1). We consider either (12m, d) or (60m, d) for (x2, y2) so that the second

component can capture the medium term movements in beta. Finally, we consider (120m,m) as the only specification

for (x3, y3) that is designed to capture the slow moving long term component of beta. We use 120 months rather than

the usual choice of 60 months which is already considered for (x2, y2).

Several remarks are in order concerning the specification in Equation 1. First of all, it allows us to capture short,

medium and long term movements in the beta of an asset. Second, it is flexible enough to include common time-

varying beta specifications in the literature as special cases. For example, the standard Fama-MacBeth betas can be

obtained as a special case of the specification in Equation 1 by considering (x3, y3) = (60m,m) and restricting

w1,i,t = w2,i,t = 0 and w3,i,t = 1 for all i and t. Finally, the weights are allowed to change over time with changing

economic conditions and portfolio characteristics. For example, the medium-term beta might be more important in

determining the systematic risk of an asset, and thus, have a relatively higher weight during recessions.

The specification in Equation 1, however, does not provide any information on how to obtain the weights. In this

paper, we allow the weights to be determined in the cross-sectional regressions estimated every period. Specifically,

we first obtain the three components of beta for each asset i = 1, . . . , N and period t = 1, . . . , T by regressing each

asset’s return on the excess market return based on the estimation window and data frequency for the component of

1We also consider including data from period t when estimating βx,y,i,t, our results do not change significantly.
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beta considered. We then estimate the following Fama-MacBeth cross-sectional regression for each period t where the

conditional beta of an asset is defined as the weighted average of its three components as in Equation 1:

Rt = λ0,t + λm,tβ̂t +αt (2)

= λ0,t + λm,t(w1,t ⊙ β̂x1,y1,t +w2,t ⊙ β̂x2,y2,t +w3,t ⊙ β̂x3,y3,t) +αt (3)

where Rt is the N ×1 vector of excess returns on the test assets in period t, β̂t is the N ×1 vector of conditional betas

of the test assets in period t, β̂xj ,yj ,t is the N × 1 vector of the jth component of the test assets’ conditional betas in

period t, and ⊙ denotes element-by-element matrix multiplication.

However, the weights, wj,i,t for j = 1, 2, 3 and i = 1, . . . , N , cannot be all identified in the cross-sectional

regression unless restrictions are imposed. Hence, we restrict the weight of a component in a given period to be the

same across assets, i.e. wj,1,t = . . . = wj,N,t = wj,t for j = 1, 2, 3. Imposing this restriction on the cross-sectional

regression in Equation 2 yields:

Rt = λ0,t + λ1,tβ̂x1,y1,t + λ2,tβ̂x2,y2,t + λ3,tβ̂x3,y3,t +αt (4)

where λj,t = wj,tλm,t for j = 1, 2, 3. In this framework, λj,t for j = 1, 2, 3 cannot be interpreted as factor risk premia

due to two reasons. First, there is only one risk factor, the return on the market portfolio, whose loading is modeled as

a weighted average of its loadings estimated over different periods based on data with different frequencies. Second

and more importantly, λj,t is determined jointly by the weights on different beta components and the market risk

premium, both of which are assumed to be time varying.

In this framework, the average pricing errors can simply be obtained as the sample averages of pricing errors from

the cross-sectional regressions estimated each period as:

¯̂α =
1

T

T∑
t=1

α̂t (5)

where α̂t is the vector of pricing errors obtained from the estimation of cross-sectional regression (Equation (9)) in

period t. The variance-covariance matrix of ¯̂α and its version corrected for autocorrelation are respectively:

cov( ¯̂α) =
1

T 2

T∑
t=1

(α̂t − ¯̂α)(α̂t − ¯̂α)′ (6)

c̃ov( ¯̂α) =
1

T 2

T∑
t=1

(α̂t − ¯̂α)(α̂t − ¯̂α)′ +
1

T 2

q∑
j=1

T∑
t=j+1

(1− j

q + 1
)(α̂t − ¯̂α)(α̂t−j − ¯̂α)′ (7)

where we set q = ⌊(4(T/100)2/9)⌋ and ⌊x⌋ denotes largest integer not greater than x.

2.2 Benchmark Models

In this paper, we consider the three factor model of Fama and French (1993, 1996) with constant factor loadings as

the main benchmark model. For completeness, we also present results for the unconditional version of CAPM with

constant betas.

We consider three different approaches to estimate the benchmark models. One obtains numerically identical av-
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erage pricing errors from these three approaches when the betas are assumed constant (see Cochrane (2001)). These

different approaches allow us to correct the standard errors of average pricing errors for different econometric prob-

lems, such as possible conditional heteroskedasticity of errors from the time series regressions and the well known

errors in variables problem in the cross-sectional regressions due to the fact that betas are not known but estimated

instead. Although it is possible to correct the standard errors for these econometrics problems in a GMM framework

when betas are assumed constant as discussed in Cochrane (2001), it is relatively difficult to do so when betas are

assumed time-varying as in our three component beta models. Here, we follow Cochrane (2001)’s suggestion of com-

paring the standard errors from these different approaches for the benchmark models with constant factor loadings.

This comparison would provide us some intuition about the potential effect of econometric problems might have on

our statistical results in our three component beta models where betas are assumed time-varying. For example, large

differences between the standard errors from these three different estimation of benchmark models would be a warning

sign for potential problems in the standard errors of our three-component beta models.

In all these three approaches, we assume that the betas are constant and estimate them only once via OLS for each

asset separately based on the following time-series regression using the full sample of time-series observations:

Ri,t = ai + β′
ift + εi,t (8)

where ft is the K × 1 vector of factors in period t and βi is the K × 1 vector of factor loadings for asset i.

In the first approach, similar to the one discussed above, we estimate the following cross-sectional regression in

each period:

Rt = β̂λt +αt (9)

where β̂ = [1 β̂′
1; . . . ; 1 β̂′

N ] is a N × (K + 1) matrix that includes a N × 1 vector ones in its first column and

estimated betas in other columns. λt = [λ0,tλ1,t . . . λK,t]
′ is a (K + 1) × 1 vector where λ0,t is the conditional

zero-beta rate and λk,t is the conditional risk premium on the kth factor in period t. The average pricing errors can

be obtained as the sample averages of the pricing errors, as in Equation 5, from the estimation of the cross-sectional

regression in each period. The uncorrected and corrected covariance matrices of the average pricing errors can then

be estimated based on Equations (6) and (7), respectively.

In the second approach, we obtain the average pricing errors as the residuals from the estimation of a single cross-

sectional regression of expected returns (calculated as the average returns over the whole sample) on factor loadings

via OLS:

R̄ = β̂λ+α (10)

where R̄ = 1/T
∑T

t=1 Rt is the N × 1 vector of expected returns; β̂ and λ are as defined above. The uncorrected

covariance matrix of average pricing errors are then given by

cov( ¯̂α) =
1

T
(IN − β̂(β̂′β̂)−1β̂′)Σ̂(IN − β̂(β̂′β̂)−1β̂′) (11)

where Σ̂ = 1/T
∑T

t=1 ε̂tε̂
′
t is an estimate of the covariance matrix of the vector of residuals from the time-series

regressions of asset returns on market returns, ε̂t. The covariance matrix of average pricing errors corrected for the
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errors in variable problem a la Shanken (1992) can then be estimated as:

c̃ov( ¯̂α) =
1

T
(IN − β̂(β̂′β̂)−1β̂′)Σ̂(IN − β̂(β̂′β̂)−1β̂′)(1 + λ̂′Σ̂f λ̂) (12)

where Σ̂f is the covariance matrix of factors.

In the third approach, we estimate the time-series and cross-sectional regressions simultaneously in a GMM frame-

work with OLS factor loadings serving as the weighting matrix as in Section 12.2 of Cochrane (2001). Specifically,

let g(θ) denote the moment conditions implied by the time-series and cross-sectional regressions:

g(θ) =


E[Rt − a− β′ft]

E[(Rt − a− β′ft)⊗ ft]

E[Rt − βλ]

 =


0

0

0

 (13)

where θ = [a′vec(β)′λ′]′ is the vector of parameters. Let gT (θ) denote the sample analogs of the moment conditions.

The GMM estimate of θ is then defined as the set of parameters that set some linear combination of sample means of

the moment conditions, cgT (θ), to zero. To obtain the same estimates as the ones from the first and second approaches,

we use the following weighting matrix:

c =

 IN(K+1) 0

0 β̂′

 (14)

where β̂ is the matrix of OLS factor loadings that also includes a vector of ones as its first column as defined above. The

pricing errors can then be obtained as the sample analogs of the last N moment conditions evaluated at the estimated

parameter values. The covariance matrix of the pricing errors is the part of the covariance matrix of the moment

conditions that corresponds to the last N moment conditions. The covariance matrix of the moment conditions is

given by

cov(gT (θ̂)) =
1

T
(IN(K+2) − d(cd)−1c)S(IN(K+2) − d(cd)−1c)′ (15)

where

d = −


IN (µf ⊗ IN )′ 0N,K+1

µ1,f ⊗ IN µ2,f ⊗ IN 0NK,K+1

0N,N ([λ1 . . . λK ]′ ⊗ IN )′ β̂

 (16)

; µ1,f = 1/T
∑T

t=1 ft and µ2,f = 1/T
∑T

t=1 ftf
′
t . S is the long-run covariance matrix of moment conditions and can

be consistently estimated via the Barlett estimate as in Newey and West (1987).

Cochrane (2001) shows that the uncorrected errors from the first and second approach are identical. Hence, we

consider four sets of standard errors when analyzing the statistical significance of the pricing errors of the benchmark

models. Comparing the corrected and uncorrected standard errors from the first approach allows us have an idea about

the effect of possible autocorrelation on the standard errors of pricing errors. Similarly, comparing the corrected and

uncorrected standard errors from the first approach reveals whether errors in variables problem has an important impact

on the statistical significance of the pricing errors. Finally, the standard errors from the third approach are the most

general and control for not only the errors in variables problem but also for the possibility that errors from the time

series regressions might not be iid, conditionally homoskedastic and independent of the factors. Thus, comparing the

uncorrected standard errors from the first approach and those from the third approach might reveal the effect of these
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potential econometric problems on the statistical errors of the pricing errors. More importantly, as mentioned above,

large differences between these standard errors might signal the unreliability of the standard errors of the average

pricing errors from the three component beta models which are not corrected for potential econometric problems

except autocorrelation.

2.3 Performance Measures

To compare the performance of different models in accounting for the cross-sectional variation in returns, we consider

four metrics. The first one is the number of mispriced assets at 1% and 5% significance levels based on the variance-

covariance matrix of ¯̂α corrected for autocorrelation in Equation 7.2 As we discuss below, we also take a closer

look at the pricing errors for individual assets, which allow us to analyze which assets are mispriced across different

models. The second and third metrics are the sum of square pricing errors (SSPE) and root mean square pricing errors

(RMSPE) (see Adrian and Rosenberg (2008)):

SSPE = ¯̂α′ ¯̂α (17)

RMSPE = (SSPE/N)1/2 (18)

Finally, we consider adjusted R2 (see Jagannathan and Wang (1996) and Lettau and Ludvigson (2001)):

Adj. R2 = 1− (T − 1)(1−R2)

(T −K − 1)
(19)

R2 =
varc(R̄)− varc( ¯̂α)

varc(R̄)
(20)

where R̄ = 1/T
∑T

t=1 Rt and varc denotes a cross-sectional variance. We should note here that R2 as defined

in Equation (20) implicitly assumes that the cross-section variance between average fitted returns, ¯̂
R = R̄ − ¯̂α,

and average pricing errors is zero. This is true when betas are assumed constant and guarantees that the R2 in this

framework takes on values between zero and one consistent with the usual definition of R2. However, this is not

case when betas are allowed to change over time. In other words, the cross-sectional covariance between average

fitted returns and average pricing errors can be different than zero and the R2 as defined in Equation (20) is no longer

guaranteed to take on values between zero and one. Although we are aware of this problem, we still choose to present

this performance measure for two reasons. First of all, the R2 never takes on negative values for the models and the

sets of test portfolios considered in this paper. Second and more importantly, it is one of the most commonly used

performance measures and allows us to compare our results to those in the literature.

2.4 Test Portfolios

We analyze the performance of different models in accounting for the cross-sectional variation in monthly excess

returns on the Fama and French’s (1993) 25 size and book-to-market cross-sorted portfolios. The returns on these

portfolios and the value-weighted portfolio of all NYSE, AMEX, and NASDAQ stocks in the CRSP database, which

we use as the proxy for the market portfolio, as well as the risk-free rate are all available from the website of Kenneth

2We also consider the number of mispriced assets based on the uncorrected version of the variance-covariance matrix of ¯̂α in Equation 6. The
number of mispriced assets for a model is almost always the same regardless of whether the standard errors are corrected for autocorrelation or not.
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French at http://mba.tuck.dartmouth.edu/pages/faculty/ken.french/. This data set is now rather standard in asset pricing

tests and Table 1 displays summary statistics of the monthly returns, in excess of the Treasury bill rate, of these

portfolios for our sample period between January 1970 and December 2010. In section 5, we also use 10 portfolios

formed on momentum and 30 industry portfolios as additional test assets, which are also available from the same

website.

3 Asset Pricing Performance

We now analyze the performance of the models in explaining the cross-sectional variation in monthly returns on the

25 size and book-to-market sorted portfolios for the period January 1970 to December 2010. We firstly focus on

the three component beta models, relative to our two benchmark models; the three factor model of Fama and French

(1993, 1996) with constant factor loadings and the unconditional version of CAPM with constant betas. Performance

measures discussed in the prior section are displayed in Table 2.

The three component beta model with β12m,d, β60m,d and β120m,m has the lowest RMSPE and SSPE and highest

adjusted R2. All three of these performance measures are favorable for this component model, relative to the Fama-

French three factor model and CAPM with constant beta. The adjusted R2 for the component model is 0.7536,

compared with 0.7134 for the Fama-French model and 0.1972 for CAPM. Other three component specifications that

perform better than the Fama-French model all have the medium-run component set at β60m,d, providing strong

support for this factor in explaining the cross-sectional variation in monthly returns. The performance of the three

component beta model with β12m,d, β60m,d and β120m,m is very similar to that of the three component beta model with

β6m,d, β60m,d and β120m,m, suggesting that either β6m,d or β12m,d is suitable in capturing the short-run component

of beta. Table 2 also presents the number of mispriced assets at the 1% and 5% significance levels, based on Fama-

MacBeth standard errors with Newey-West correction. Again the three component beta model with β12m,d, β60m,d

and β120m,m or β6m,d, β60m,d and β120m,m is the best performing model with only one asset mispriced at the 1%

significance level. While the Fama-French three factor model has three assets mispriced and the CAPM has six assets

mispriced.

Table 3 reports the average pricing errors along with their standard errors for each asset. As discussed in Section 2,

four sets of standard errors are presented for the benchmark models while only two sets of standard errors are available

for the three component beta models. The Fama-MacBeth standard errors with or without Newey-West correction are

quite similar to standard errors based on the Shanken correction or the GMM estimation. This suggests that correcting

for the errors in variable problem does not significantly affect the standard errors of average pricing errors, at least

for the benchmark models.3 In other words, we can conclude that the Fama-MacBeth standard errors, which do

not correct for the errors in variables problem, are reliable enough to base our statistical testing of the significance

of the average pricing errors from our three component beta models. The Fama-French three factor model fails to

explain the return on three portfolios at the 1% significance level: the small-growth portfolio, the fourth size quintile

in growth portfolios and the fourth book-to-market quintile in large portfolios. In contrast, the only mispriced asset

at the 1% significance level with our three component beta model is the small-growth portfolio, which is known to

be the most difficult portfolio to correctly price. Even for this extreme portfolio, the average pricing error based on

3This is in line with the discussion of the Shanken correction in Section 12.2.3 of Cochrane (2001). He argues that the multiplicative correction
term is quite small at the monthly frequency and ignoring it makes little difference.
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our three component beta model is smaller in absolute value than that based on the Fama-French three factor model.

Furthermore, the returns on all other 25 size and book-to-market portfolios are accounted for at the 1% significance

level by our three component beta model. Table 3 also reports the SSPE for each size and book-to-market quintile.

As is well known, the large pricing errors for the CAPM with constant beta are found to be concentrated in the small,

large, growth and value quintiles. Compared to the CAPM with constant betas, the three factor Fama French models

does better in accounting for the cross-sectional variation in these quintiles except the growth quintile where the SSPE

is 0.2335 compared to 0.2793 for CAPM with constant betas. In contrast, our three component beta model performs

better, in terms of SSPE, than the Fama-French three factor model in accounting for the cross-sectional variation in all

the extreme quintile portfolios, expect the value portfolios where its performance is only slightly worse than that of

the Fama-French three factor model.

Pricing performance can also be examined by comparing the average monthly fitted excess return against the

average monthly realized excess return for each asset and model. This is displayed in Figure 1 as a plot of fitted

versus realized return. Again the deficiencies in the CAPM with constant beta are evident with asset returns deviating

sometimes substantially from the 45 degree line. In contrast, the three factor Fama French and three component beta

models have asset returns relatively close to the 45 degree line, except for one asset, the small-growth portfolio.

4 Understanding the Asset Pricing Performance

4.1 Decomposition of Performance

In this section, we provide some intuition on why the three component beta model performs well. To this end, we

analyze the performances of one and two component beta models which allow us to decompose the overall perfor-

mance of three component beta models. The one component beta models are simply CAPM with betas estimated with

different windows and/or frequencies of data. The two component beta models assume that the beta of an asset is a

weighted average of two betas estimated with different windows and/or frequencies of data.

Panel (a) of Table 4 presents different performance measures of one component beta models. First of all, one

component beta models with β1m,d, . . . , β60m,d perform much better than CAPM with constant betas regardless of

the performance measure considered. For example, the sum of squared pricing errors for the one component beta

model with β60m,d is half that of CAPM while its adjusted R2 is almost threefold that of CAPM. These results suggest

that one can explain more than half of the cross-sectional variation in returns by estimating time varying betas based

on high frequency data. Secondly, although the one component beta model with β120m,m, the most commonly used

approach of capturing time variation in betas, also performs better than CAPM with constant beta, its performance is

far less impressive. However, this does not necessarily imply that betas based on low frequency data are completely

useless. As we discuss below, they capture a different dimension of the time variation in betas that cannot be captured

by betas based on high frequency data. Finally, one can easily analyze the contribution of each beta to the overall

performance of the three component beta model by comparing the performance measures of one component beta

models to those of three component beta models. Consider the three component beta model with β12m,d, β60m,d and

β120m,m as an example. Among the three one component beta models, the one with β60m,d performs better than the

one with β12m,d which is in turn better than the one with β120m,m. This suggests that the overall performance of this

three component beta model is mostly due to β60m,d and β12m,d, with β120m,m contributing only slightly.
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As discussed in the next section, betas estimated with different windows and/or frequencies of data are, not sur-

prisingly, correlated, although at relatively moderate levels. Hence, the performance measures of one component beta

models do not reveal the pure contribution of a specific beta to the overall performance of the three component beta

model. Two component beta models allow us to understand the pure contribution of each beta to the overall perfor-

mance of three component beta models. First, note that two component models perform better than one component

models regardless of how betas are estimated. This comparison illustrates the advantages of combining different betas

in accounting for the cross-sectional variation in returns. Secondly, two component models where both beta compo-

nents are estimated using daily data perform better than those where one of the beta components is estimated using

monthly data. The best performing two component model, the one with β12m,d and β60m,d, performs almost as well

as the Fama-French three factor model. This again demonstrates the advantages of using high frequency data in esti-

mating betas. More importantly, one can easily analyze the pure contribution of each beta to the overall performance

of the three component beta model by comparing the performance measures of two component beta models to those of

three component beta models. For example, the performance measures of the two component beta model with β60m,d

and β120m,m reveal the pure contribution of β12m,d to the overall performance of the three component beta model

with β12m,d, β60m,d and β120m,m: (1) The number of assets mispriced at 5% significance levels decreases by one

from five to four; (2) The RMSPE and SSPE decrease from 0.1466 and 0.5372 to 0.1162 and 0.3376, respectively; (3)

The adjusted R2 increases by almost 15% from 60.88% to 75.36%.

To better understand the contribution of each component to the overall performance of three component beta

models, we take a closer look at the best performing three component beta model, i.e. the one with β12m,d, β60m,d

and β120m,m. To this end, Table 5 presents the percentage decrease in the SSPE due to the inclusion of a specific

component. The percentage decrease in the SSPE can be interpreted as a partial R2 since it is the change in the

variation explained by the part of that component orthogonal to the other two components. β12m,d and β60m,d decrease

the overall SSPE by 37% and 48%, respectively. This is mostly due to their explanatory power for portfolios with

high market capitalizations (2nd quintile and above) and book-to-market ratios (3rd quintile and above). They do not

significantly decrease the SSPE of portfolios with low book-to-market ratios. The inclusion of β12m,d in the three

component beta model actually increases the SSPE of the 2nd quintile of book-to-market sorted portfolios. On the

other hand, β120m,m decreases the overall SSPE only by 18%. It performs relatively poorly in explaining the returns

on portfolios of small and large and has a mixed performance in explaining the returns on book-to-market sorted

portfolios.

4.2 Dynamics of the Components of Beta

To further our understanding of the asset pricing performance of our three component beta model, we now also study

the time variation of beta measurements, β12m,d, β60m,d and β120m,m.

Table 7 reports the mean and standard deviation of these beta components for the 25 size and book-to-market sorted

portfolios over our sample period between January 1970 to December 2010. In regard to the means of these betas,

there is a strong pattern in all three beta measurements, in the form of a decreasing mean beta as the book-to-market

ratio of a portfolio increases. This suggests that the mean betas cannot possibly account for the fact that portfolios

with higher book-to-market ratios also have higher mean returns as presented in Table 1. Although not presented,

this is also in line with the pattern observed in constant betas estimated once using the whole sample. On the other
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hand, there is no clear pattern in the mean of all three beta components as functions of the market capitalization of a

portfolio. Similar to their constant betas, the mean of the long term beta component, β120m,m, increases as the market

capitalization of a portfolio decreases. This suggests that the mean of the long term beta component might account for

the fact that portfolios with smaller market capitalizations have higher mean returns as presented in Table 1. However,

the same cannot be said about the mean of short- and medium-term beta components. There is no clear pattern in

the mean of short- and medium-term beta components. More importantly, if there is any pattern, it tends to work

in the opposite direction with large firms having higher betas than small firms. To summarize, these results suggest

that variation in the means of different beta components cannot possibly account for the observed patterns in mean

returns. Instead, results on the variability of beta will contribute to providing an explanation to the success of our three

component beta model.

To see this, Table 7 presents the standard deviation of different beta components. The standard deviation of

β12m,d, β60m,d and β120m,m increases as the market capitalization of a portfolio decreases and its book-to-market

ratio increases. For example, for the short-run beta component, the standard deviation of the large-growth portfolio is

0.1407, compared with 0.2590 for the small-value portfolio. For the long-run beta component, the standard deviation

for the large-growth and small-value portfolios are 0.0408 and 0.1872, respectively. In addition, summary statistics on

the annual changes in β12m,d for the 25 size and book-to-market sorted portfolios over the January 1970 to December

2010 are presented in Table 9. The variability of these beta changes in respect to standard deviation, minimum,

maximum and range provide insights into the relationship between the dynamics of beta and returns. In particular,

as the book-to-market ratio of a portfolio increases, the maximum annual beta change tends to rise. For example, the

maximum annual change for the small-growth portfolio is 0.5590, whereas the maximum annual change for the small-

value portfolio is 0.7736. For the large-growth and large-value portfolios, the maximum annual change is 0.2169 and

0.8132, respectively. A pattern in the variability of beta changes also exists in relation to the market capitalization

of a portfolio. As the market capitalization of a portfolio increases, the range of annual beta changes (maximum -

minimum) increases. For example, the range of the small-growth portfolio is 1.2147, whereas the range of the large-

growth portfolio is 0.5264. The recent financial crisis also provides further insights and Table 8 reports the mean

and standard deviation of β12m,d, β60m,d and β120m,m for the 25 size and book-to-market sorted portfolios over the

period, January 2009 to December 2010. During this period there is a dramatic change in the pattern of mean betas

for β12m,d and β60m,d. In particular for β12m,d there is now a strong pattern of an increasing mean beta as the market

capitalization of the portfolio decreases and its book-to-market ratio increases. For example, the mean of β12m,d

is 0.7914 for the large-growth portfolio and 1.1699 for the small-value portfolio. This reversal in the pattern of beta,

relative to that over the full sample, demonstrates the dramatic changes in beta during the turmoil of the financial crisis.

These summary statistics suggest that the variability in beta is related to the size and value premia that are evident in

the mean returns of the 25 size and book-to-market sorted portfolios. Part of the success of our three component beta

component model can be attributed to capturing these beta dynamics.

We next investigate the annual change in each beta component, β12m,d, β60m,d and β120m,m, in relation to the

business cycle. Table 10 displays the correlations of the annual beta changes with the Treasury bill rate, for our 25 size

and book-to-market sorted portfolios over the January 1970 to December 2010. The Treasury bill rate at the beginning

of the 12 month period is chosen for measuring economic conditions over the next 12 months. Panel a displays the

correlations for the annual changes of β12m,d which are mostly insignificant, indicating that the dynamics of the short-
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run component are not dominated by the business cycle. In contrast, panel b and c display a number of significant

correlations for annual changes of β60m,d and β120m,m with the Treasury bill rate. A strong pattern is present where

correlations become significantly more negative as the book-to-market ratio of the portfolio increases, with the most

significant negative correlations being approximately -0.5. Thus, in recessions when the Treasury bill rate is low, the

medium- and long-run beta components for portfolios with high book-to-market ratios, tend to rise over the year. It is

widely acknowledged that the business cycle has significant impacts on asset returns, and in our three component beta

model this is primarily captured through the medium- and long-run beta components.

It is not too surprising that the business cycle is not primarily driving the short-run beta component, as typically

the dynamics of the business cycle are slowly changing, whereas the short-run beta component is designed to capture

fast moving beta dynamics. For example, changes in a portfolio’s specific risk characteristics are likely to be more

immediate in nature and have a more rapid impact on the portfolio’s short-run beta component. To illustrate this,

Table 11 displays the correlations of 11 month changes in betas with the prior 12 month change in the value-weighted

average book-to-market ratio of the portfolio. The 11 month change in an asset’s beta component is measured from 1

July to 1 June so that the asset composition remains unchanged, as rebalancing of portfolios occurs at the beginning of

July. The prior 12 month change in the value-weighted average book-to-market ratio of the portfolio is from 1 July and

is obtained from the Kenneth French Data Library. This 12 month change in the book-to-market ratio of the portfolio

captures the change in one of the important portfolio characteristics. Panel a of Table 11, displays correlations for

the short-run beta component of the 25 size and book-to-market sorted portfolios, showing highly significant positive

correlations for the value portfolios with the highest correlation being 0.6329. Overall, there is a pattern of increasing

correlation as the book-to-market ratio of the portfolio increases. Demonstrating that an increase in the portfolio’s

risk characteristics due to an increase in its book-to-market ratio, often results in significant increases in the short-run

beta component. Panels b and c of Table 11 display correlations for the medium- and long-run beta components with

mostly insignificant correlations, showing that these beta components are less sensitive to the more fast moving risk

dynamics of assets.

Finally, Table 6 presents summary statistics on the correlations between the short-, medium- and long-run beta

components for the 25 size and book-to-market sorted portfolios. These correlations are typically not too high, with

the highest mean correlation being 0.6823 which is between the short- and medium-run beta components, and the

lowest mean correlation being 0.1220 which is between the short- and long-run beta components. These relatively

moderate levels of correlation between different components of beta suggest that they do indeed capture different

frequency variations in betas.

5 Robustness Checks

5.1 Some Simulation Results

Lewellen, Nagel, and Shanken (2010) argue that it is relatively easy to come up with factors that explain most of

the cross-sectional variation in the 25 size and book-to-market portfolios due to the strong factor structure in these

portfolios. Specifically, they generate different types of artificial factors and show that these artificial factors can

explain the cross-sectional variation in the 25 size and book-to-market portfolios as well as the Fama-French three

factor model. They provide several suggestions to remedy this problem. We implement some of these suggestions to
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to show that the performance of our three component beta model relative to the Fama-French three factor model is not

due to this strong factor structure in the 25 size and book-to-market portfolios. Before considering their suggestions,

we start in this section with a simulation exercise similar to theirs and analyze whether the relative success of our three

component beta model is due to the possibility that it might be exploiting the strong factor structure present in the 25

size and book-to-market portfolio.

In our framework, instead of several factors with constant loadings, there is only one factor, the return on the market

portfolio, whose loading is assumed to be time-varying and measured as a weighted average of loadings estimated over

different window of observations with different frequencies. Hence, we generate only two artificial factors replacing

the daily and monthly observations of the return on the market portfolio. Specifically, let ωt denote a 3× 1 vector of

random weights drawn from a standard normal distribution. We generate artificial factors as Pt = ω′
tFt + vt where

Ft is a 3× 1 vector of either daily or monthly Fama-French factors and vt is another random variable independent of

ω′
t and Ft. We then estimate the three component beta model with β12m,d,t, β60m,d,t and β120m,m,t based on the time

series of daily and monthly artificial factors. We repeat this exercise 5,000 times and report the summary statistics for

different performance measures in Table 12.

First of all, there are, on average, five to six (two to three) mispriced assets at the 5% (1%) level when we use

artificial factors to account for the cross-sectional variation in the 25 size and book-to-market portfolios. Secondly, the

RMSPE and SSPE based on artificial factors are, on average, 0.1555 and 0.6118, respectively. Thirdly, the average

adjusted R2 based on artificial factors is 0.5536, suggesting that artificial factors can explain a little more than half

of the cross-sectional variation in the 25 size and book-to-market portfolios. These results are consistent with those

in Lewellen, Nagel, and Shanken (2010) who also find that artificial factors can explain a non-negligible part of the

cross-sectional variation in the 25 size and book-to-market portfolios. However, the explanatory power of artificial

factors are still, on average, well below that of our three component beta models. For example, the three component

beta model with β12m,d,t, β60m,d,t and β120m,m,t has an RMSPE of 0.1162, a SSPE of 0.3376 and an adjusted R2 of

0.7536. More importantly, the performance measures of our three component beta models are outside the 5% and 95%

quantiles of these performance measures based on artificial factors. In other words, the probability that the relative

success of our three component beta models is due to luck is less than 5%.

5.2 Additional Test Portfolios

We now turn our attention to analyzing the performance of the models in explaining the cross-sectional variation in

monthly returns with additional test portfolios, namely the 10 momentum sorted portfolios and 30 industry portfolios,

from the Kenneth French Data Library. Performance of the three component beta models as well as the two bench-

mark models, CAPM with constant beta and the Fama-French three factor model, is again evaluated for the period

January 1970 to December 2010. Performance measures for the pricing of the 25 size and book-to-market cross sorted

portfolios, 10 momentum sorted portfolios and 30 industry portfolios are displayed in Table 13.

These results firstly show that when all these assets are priced, there is a substantial increase in pricing errors

across all models, relative to the pricing of just the 25 size and book-to-market cross sorted portfolios. For example,

the adjusted R2 for the best performing three component beta model, Fama-French three factor model and CAPM is

0.3692, 0.2699 and 0.0792, respectively. Whereas, for the pricing of just the 25 size and book-to-market cross sorted

portfolios, the adjusted R2 for the models are 0.7536, 0.7134 and 0.1972, respectively. This substantial increase
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in pricing errors is largely attributed to the inclusion of the industry portfolios, which exhibit relatively little cross

sectional dispersion in average returns as shown in Santos and Veronesi (2006). As discussed in Lewellen, Nagel, and

Shanken (2010), assessing the performance of asset pricing models on additional portfolios to the size and book-to-

market cross sorted portfolios, raises the hurdle in evaluating model performance. In this regard, our three component

beta models start to demonstrate outperformance, relative to the Fama-French three factor model. The best performing

three component beta model is with β3m,d, β12m,d and β120m,m based on RMSPE, SSPE and adjusted R2. The

number of assets that this model misprices at the 1% significance level is 6. While the Fama-French three factor model

misprices 8.

The performance of the three component beta model with β12m,d, β60m,d and β120m,m is again very similar to

that of the three component beta model with β6m,d, β60m,d and β120m,m and the number of assets that these models

misprice at the 1% significance level is also 6. The RMSPE, SSPE and adjusted R2 of these two models is comparable

with the Fama-French three factor model, however, they do not outperform the three component beta model with

β3m,d, β12m,d and β120m,m. Thus, the inclusion of these additional portfolios, favors beta component models with

short- and medium-run components measured over a shorter period. This is consistent with substantial time variation

in industry betas, which has been found in earlier studies such as Ferson and Harvey (1991) and Braun, Nelson, and

Sunier (1995).

5.3 Alternative Frequencies

In this section, we analyze whether the three component beta models continue to perform just as well as the Fama-

French three factor model in accounting for the cross-sectional variation in quarterly returns on the 25 size and book-

to-market cross sorted portfolios. To this end, we use monthly returns on these portfolios to calculate their quarterly

returns. We then estimate the three component beta models as well as the benchmark models using quarterly instead

of monthly returns.

Table 14 presents the performance measures for the three component beta models and the benchmark models.

Before comparing the performances of the three component beta models to those of the Fama-French three factor

model, we should first note that the RMSPE and SSPE are higher than those based on monthly returns, regardless of

the model considered, since quarterly returns are higher on average than monthly returns. Furthermore, compared to

the results based on monthly returns, there is a deterioration in the performance of CAPM with constant betas when

we consider quarterly returns, while the other models continue to perform similarly. For example, the adjusted R2 of

the CAPM with constant betas based on quarterly returns is only 6% compared to an adjusted R2 of 19% based on

monthly returns.

More importantly, the results in Table 14 suggest that the three component beta models continue to perform as well

as or even sometimes better than the Fama-French three factor model in accounting for the cross-sectional variation

in quarterly returns on the 25 size and book-to-market cross sorted portfolios. First of all, the best performing three

component beta model for monthly returns, namely the one with β12m,d, β60m,d and β120m,m, performs as well as the

Fama-French three factor model based on RMSPE, SSPE and adjusted R2 and outperforms it based on the number

of significantly mispriced assets. Secondly, two similar three component beta models where we replace β12m,d with

either β6m,d or β3m,d actually outperform the Fama-French three factor model based on all measures. These results

suggest that three component beta models are as good of a model or even a better one than the Fama-French three
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factor model in accounting for the cross-sectional variation in both monthly and quarterly returns.

5.4 Alternative Sample Periods

In this section, we analyze how the best performing three component beta model fairs against the benchmark models

especially the Fama-French three factor model over different sample periods. To this end, we firstly analyze the per-

formances of these models over an expanding window of sample periods starting with the first sample period between

January 1970 and January 1990. Given that an increasing number of observations generally improves precision in

estimating sample means, we consider an expanding rather than rolling window of observations in estimating aver-

age pricing errors, which are simply the sample averages of conditional alphas. Figure 2 presents the SSPE of the

three component beta model with β12m,d, β60m,d and β120m,m and the two benchmark models for the period between

January 1990 and December 2010. The SSPEs of the three component beta model and the Fama-French three factor

model are quite stable over different sample periods, whereas that of the CAPM model is less stable. Specifically,

CAPM performs performs better when we consider sample periods between 1970 and the second half of the 90s,

but its performance decreases, i.e. its SSPE increases, as we add data from the 2000s. More importantly, the three

component beta model with β12m,d, β60m,d and β120m,m performs always better than the Fama-French three factor

model, which in turn performs better than the CAPM with constant betas, as we consider an expanding window of

observations. To summarize, the three component beta model does not only have a stable performance in accounting

for the cross-sectional variation in returns but also its success relative to the Fama-French three factor model is not

due to the specific sample period considered in Section 3 and 4.

Secondly, we analyze the performances of these models over expansion and recession periods during the business

cycle. We classify a month as either part of the expansion or recession phase through the NBER classification. Table

15 presents the SSPE of the three component beta model with β12m,d, β60m,d and β120m,m and the two benchmark

models for each portfolio quintile, over both the expansion periods (displayed in panel a), and over the recession

periods (displayed in panel b.) During expansions, the SSPE of the three component beta model is very similar to

that of the Fama-French three factor model, over all quintiles. However, during recessions (when pricing errors rise

for all the models) the SSPE of the three component beta model is lower relative to that of the Fama-French three

factor model. The largest differences in SSPE between these two models in recessions occurrs in the growth and

value quintiles. For the growth quintile, the SSPE’s for the two models are 0.3197 and 0.5173, respectively. And

for the value quintile, the SSPE’s for the two models are 0.2048 and 0.4000, respectively. The three component beta

model in recessions also produces substantially lower SSPE’s for the small and large quintiles. This suggests that the

three component beta model does a relatively good job in capturing dynamics during recessions. In contrast, the two

benchmark models have inferior performance. The SSPE for CAPM with constant betas in expansions and recessions

is 1.0112 and 2.1113, respectively. The SSPE for the Fama-French three factor model in expansions and recessions is

0.3496 and 1.1480, respectively. Whereas, the SSPE for the three component beta model in expansions and recessions

is 0.3561 and 0.8037, respectively.

5.5 Nonsynchronous Trading

Lo and MacKinlay (1990) point out that nonsynchronous price movements in stocks can occur due to small stocks

having delayed price reactions. While these effects can be important for individual stocks, the impact for broadly
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diversified value-weighted portfolios is much less. However, to ensure our results are not biased, due to nonsyn-

chronous trading, we conduct two further robustness tests. Firstly, we simply remove the 5 test portfolios from the

small quintile from the 25 size and book-to-market cross sorted portfolios. Performance measures of the models for the

pricing of the remaining 20 size and book-to-market cross sorted portfolios for the period January 1970 to December

2010 are displayed in Table 16. Overall, the pricing performance of the Fama-French three factor model and the the

three component beta model with β12m,d,t, β60m,d,t and β120m,m,t remain comparable over the different performance

measures. Both models have lower pricing error from the remove of these 5 test portfolios. The Fama-French three

factor model adjusted R2 rises from 0.7134 to 0.8050. While the three component beta model adjusted R2 rises from

0.7536 to 0.8195. Thus, we can conclude that the 5 small test portfolios are not highly influential in the performance

measurements of the three component beta model.

In addition, to further examine potential bias from nonsynchronous trading, we follow the approach of Dimson

(1979) and Lewellen and Nagel (2006) and estimate our short- and medium-run beta components from daily returns

using the following regression equation

Ri,t = αi + βi0Rm,t + βi1Rm,t−1 + βi2[(Rm,t−2 +Rm,t−3 +Rm,t−4)/3] + +ui,t (21)

with βi = βi0 + βi1 + βi2. We then re-run our analysis of the component beta models over the 25 size and book-to-

market cross sorted portfolios, with performance measures displayed in Table 17, showing relatively little change due

to this correction for nonsynchronous trading. For example, the adjusted R2 for the the three component beta model

with β12m,d,t, β60m,d,t and β120m,m,t only falls from 0.7536 to 0.7325.

6 Conclusions

The prior literature on empirically assessing asset pricing models has most commonly measured systematic risk with

monthly returns and as a single component. In this paper, we propose to model the conditional beta of an asset as a

weighted average of three betas estimated over different periods using different frequency data. Our three component

beta model can be considered as a mixed-frequency approach as the short- and medium-run beta components are com-

puted from daily returns, whereas, the long-run beta component is computed from monthly returns. We demonstrate

that much can be gained when daily and monthly returns are utilized to measure components of systematic risk in

an asset pricing framework. Specifically, we show that our three component beta model can account for the cross-

sectional variation in expected returns, just as well as the Fama-French three factor model. Most of the gain occurs

through the use of daily returns and thus an important implication of this study is that when accurate daily returns are

available, they should be utilized in CAPM applications. Our results also suggest that the more immediate changes in

risk such as changes in portfolio characteristics are captured in the short-run beta component while the medium- and

long-run beta components capture more slowly changing risk which we find to be correlated with the business cycle.

The empirical success of our three component beta model relative to the Fama-French three factor is partly due to its

success in capturing time-variation in risk of portfolios in recessions.
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Figure 1: Realized vs Fitted Returns

(a) CAPM with Constant Beta
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(b) Fama-French Three Factor Model
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(c) Three Comp. Beta Model
with β120m,m & β60m,d & β12m,d
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Note: This figure plots average monthly realized excess returns on the 25 size and book-to-market returns in the y-axis against their fitted values from three asset pricing
models in the x-axis. The numbers on the graphs refer to individual portfolios with the first number denoting the size and the second number denoting the book-to-market
quintile.
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Figure 2: SSPE of Asset Pricing Models for Alternative Sample Periods
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Note: This figure presents the SSPE for 25 size and book-to-market portfolios from asset pricing models over an expanding window of observations starting with the
first window between January 1970 and January 1990 and ending with the last window between January 1970 and December 2010. The dashed, dotted and solid
lines correspond to the SSPEs of the CAPM with constant betas, the Fama-French three-factor model and the three component beta model with β12m,d, β60m,d and
β120m,m, respectively.

22



Table 1: Summary Statistics for Monthly Excess Returns on the 25 Size- and Book-to-Market-Sorted Portfolios

(a) Mean

Small 2nd Quintile 3rd Quintile 4th Quintile Large
Growth 0.0005 0.0035 0.0040 0.0053 0.0038
2nd Quintile 0.0071 0.0067 0.0071 0.0056 0.0055
3rd Quintile 0.0078 0.0085 0.0074 0.0067 0.0047
4th Quintile 0.0095 0.0090 0.0079 0.0079 0.0052
Value 0.0107 0.0096 0.0106 0.0081 0.0060

(b) Standard Deviation

Small 2nd Quintile 3rd Quintile 4th Quintile Large
Growth 0.0828 0.0753 0.0698 0.0624 0.0497
2nd Quintile 0.0708 0.0624 0.0568 0.0547 0.0473
3rd Quintile 0.0614 0.0556 0.0518 0.0528 0.0463
4th Quintile 0.0573 0.0543 0.0502 0.0496 0.0455
Value 0.0628 0.0622 0.0566 0.0569 0.0513

(c) Max

Small 2nd Quintile 3rd Quintile 4th Quintile Large
Growth 0.3937 0.2928 0.2404 0.2524 0.2184
2nd Quintile 0.3821 0.2525 0.2442 0.2000 0.1608
3rd Quintile 0.2777 0.2629 0.2134 0.2335 0.1812
4th Quintile 0.2724 0.2645 0.2283 0.2374 0.1918
Value 0.3219 0.2978 0.2840 0.2732 0.1756

(d) Min

Small 2nd Quintile 3rd Quintile 4th Quintile Large
Growth -0.3478 -0.3342 -0.3017 -0.2654 -0.2224
2nd Quintile -0.3153 -0.3216 -0.2979 -0.2943 -0.2296
3rd Quintile -0.2913 -0.2836 -0.2507 -0.2611 -0.2231
4th Quintile -0.2956 -0.2696 -0.2331 -0.2140 -0.1940
Value -0.2933 -0.2992 -0.2682 -0.2444 -0.1959

Note: This table presents summary statistics for the monthly returns on the 25 size and book-to-market portfolios in excess of the risk-free rate over the period between
January 1970 and December 2010.
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Table 2: Performance Measures of Asset Pricing Models

Number of Mispriced Number of Mispriced RMSPE SSPE Adj. R2

Assets at 1% Level Assets at 5% Level
Three Comp. Beta Model with

β120m,m & β12m,d & β1m,d 3 4 0.1263 0.3985 0.7092
β120m,m & β12m,d & β3m,d 2 4 0.1285 0.4128 0.6988
β120m,m & β12m,d & β6m,d 3 4 0.1321 0.4365 0.6815
β120m,m & β60m,d & β1m,d 2 3 0.1209 0.3655 0.7333
β120m,m & β60m,d & β3m,d 2 3 0.1230 0.3783 0.7239
β120m,m & β60m,d & β6m,d 1 4 0.1167 0.3404 0.7516
β120m,m & β60m,d & β12m,d 1 4 0.1162 0.3376 0.7536

Fama-French Three Factor Model 3 4 0.1253 0.3927 0.7134
CAPM with constant β 6 11 0.2102 1.1047 0.1972

Note: This table presents performance measures for asset pricing models. Number of mispriced assets is the number of assets out of 25 size and book-to-market portfolios
with an average pricing error significantly different than zero at 1% and 5% levels based on Fama-MacBeth standard errors with Newey-West correction. RMSPE, SSPE
and Adj. R2 are root mean square pricing error, sum of square pricing errors and adjusted R2, respectively.
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Table 3: Average Pricing Errors

(a) CAPM with Constant Beta

Small 2nd Quintile 3rd Quintile 4th Quintile Large SSPE
Growth -0.3791** -0.0989 -0.0903 -0.0297 -0.3417* 0.2793

(0.0823) (0.0630) (0.0793) (0.0977) (0.1362)
(0.0814) (0.0621) (0.0860) (0.1029) (0.1566)
[0.0832] [0.0637] [0.0802] [0.0987] [0.1377]
{0.0931} {0.0668} {0.0873} {0.1023} {0.1560}

2nd Quintile 0.1273 0.0696 0.0658 -0.0955 -0.2082* 0.0779
(0.0973) (0.0616) (0.0674) (0.0816) (0.0967)
(0.0882) (0.0623) (0.0670) (0.0801) (0.1010)
[0.0983] [0.0623] [0.0681] [0.0824] [0.0977]
{0.0964} {0.0626} {0.0698} {0.0818} {0.1068}

3rd Quintile 0.1159 0.1508* 0.0126 -0.0303 -0.3278** 0.1447
(0.0988) (0.0664) (0.0602) (0.0783) (0.0953)
(0.0972) (0.0670) (0.0646) (0.0749) (0.0968)
[0.0998] [0.0672] [0.0609] [0.0791] [0.0963]
{0.1002} {0.0673} {0.0635} {0.0731} {0.1071}

4th Quintile 0.2203* 0.1737* 0.0262 0.0251 -0.3193** 0.1820
(0.1129) (0.0738) (0.0612) (0.0660) (0.0745)
(0.1106) (0.0710) (0.0609) (0.0658) (0.0786)
[0.1141] [0.0746] [0.0619] [0.0667] [0.0753]
{0.1139} {0.0730} {0.0626} {0.0664} {0.0828}

Value 0.3895** 0.3078** 0.3394** 0.1124 -0.2157 0.4209
(0.1128) (0.1028) (0.0929) (0.1083) (0.1099)
(0.1239) (0.1185) (0.1043) (0.1045) (0.1145)
[0.1140] [0.1038] [0.0939] [0.1095] [0.1111]
{0.1336} {0.1210} {0.1100} {0.1040} {0.1149}

SSPE 0.3736 0.1623 0.1286 0.0242 0.4160 1.1047

(b) Fama-French Three Factor Model

Small 2nd Quintile 3rd Quintile 4th Quintile Large SSPE
Growth -0.4122** -0.0139 0.0768 0.2261** 0.0801 0.2335

(0.0810) (0.0506) (0.0541) (0.0542) (0.0681)
(0.0805) (0.0479) (0.0521) (0.0553) (0.0699)
[0.0828] [0.0517] [0.0553] [0.0554] [0.0695]
{0.0962} {0.0571} {0.0631} {0.0676} {0.0716}

2nd Quintile 0.0004 0.0185 0.0898 0.0034 0.0515 0.0111
(0.0549) (0.0598) (0.0646) (0.0611) (0.0594)
(0.0537) (0.0611) (0.0662) (0.0680) (0.0590)
[0.0561] [0.0611] [0.0660] [0.0624] [0.0607]
{0.0618} {0.0617} {0.0720} {0.0691} {0.0703}

3rd Quintile -0.0343 0.0476 -0.0169 0.0062 -0.1205 0.0183
(0.0414) (0.0561) (0.0606) (0.0620) (0.0713)
(0.0413) (0.0564) (0.0634) (0.0674) (0.0680)
[0.0423] [0.0573] [0.0619] [0.0633] [0.0729]
{0.0477} {0.0665} {0.0649} {0.0713} {0.0805}

4th Quintile 0.0404 0.0312 -0.0389 0.0229 -0.2113** 0.0493
(0.0392) (0.0565) (0.0594) (0.0646) (0.0664)
(0.0409) (0.0559) (0.0554) (0.0650) (0.0652)
[0.0401] [0.0577] [0.0607] [0.0660] [0.0679]
{0.0499} {0.0598} {0.0688} {0.0740} {0.0775}

Value 0.1042 0.0380 0.1761* 0.0260 -0.1912 0.0806
(0.0608) (0.0616) (0.0701) (0.0676) (0.1074)
(0.0699) (0.0612) (0.0769) (0.0658) (0.1100)
[0.0622] [0.0630] [0.0716] [0.0691] [0.1097]
{0.0724} {0.0670} {0.0877} {0.0739} {0.1150}

SSPE 0.1835 0.0052 0.0468 0.0524 0.1048 0.3927

(c) Three Comp. Beta Model with β120m,m & β60m,d & β12m,d

Small 2nd Quintile 3rd Quintile 4th Quintile Large SSPE
Growth -0.4022** -0.0242 0.0635 0.1690* 0.0350 0.1962

(0.0828) (0.0548) (0.0599) (0.0670) (0.0847)
(0.0964) (0.0572) (0.0616) (0.0816) (0.0916)

2nd Quintile 0.0489 0.0083 -0.0010 -0.0069 0.0994 0.0124
(0.0798) (0.0621) (0.0706) (0.0684) (0.0628)
(0.0803) (0.0608) (0.0765) (0.0747) (0.0599)

3rd Quintile -0.0167 0.0584 -0.0512 -0.0540 -0.0314 0.0102
(0.0597) (0.0537) (0.0593) (0.0843) (0.0761)
(0.0620) (0.0562) (0.0607) (0.0766) (0.0660)

4th Quintile 0.0102 -0.0413 -0.0958 -0.0029 -0.1538* 0.0347
(0.0648) (0.0586) (0.0610) (0.0672) (0.0695)
(0.0670) (0.0565) (0.0587) (0.0661) (0.0760)

Value 0.0985 0.1380 0.2119* 0.0365 -0.0962 0.0842
(0.0751) (0.0755) (0.0854) (0.0937) (0.1025)
(0.0828) (0.0823) (0.0909) (0.0920) (0.1024)

SSPE 0.1742 0.0248 0.0607 0.0329 0.0450 0.3376

Note: This table presents average pricing errors from asset pricing models. The uncorrected Fama-MacBeth standard errors are presented in parentheses immediately
below the average pricing errors. The second set of standard errors in parentheses are the Fama-MacBeth standard errors corrected for autocorrelation a la Newey and
West (1987). The standard errors corrected for the errors in variables problem a la Shanken (1992) are presented in square brackets while the GMM standard errors are
presented in curly brackets. ** and * denote significance at, respectively, 1% and 5% levels based corrected Fama-MacBeth standard errors. SSPE is the sum of square
pricing errors. 25



Table 4: Performance Measures of One and Two Component Beta Models

(a) One Component Beta Model

Number of Mispriced Number of Mispriced RMSPE SSPE Adj. R2

Assets at 1% Level Assets at 5% Level
One Comp. Beta Model with

β1m,d 2 4 0.1631 0.6650 0.5168
β3m,d 2 2 0.1568 0.6147 0.5533
β6m,d 1 3 0.1586 0.6286 0.5432
β12m,d 1 4 0.1615 0.6523 0.5259
β60m,d 1 3 0.1535 0.5888 0.5721
β120m,m 5 10 0.1972 0.9725 0.2933

(b) Two Component Beta Model

Number of Mispriced Number of Mispriced RMSPE SSPE Adj. R2

Assets at 1% Level Assets at 5% Level
Two Comp. Beta Model with

β1m,d & β12m,d 1 3 0.1408 0.4953 0.6393
β3m,d & β12m,d 2 2 0.1461 0.5334 0.6116
β6m,d & β12m,d 1 3 0.1474 0.5430 0.6046
β1m,d & β60m,d 1 3 0.1321 0.4364 0.6822
β3m,d & β60m,d 2 4 0.1448 0.5245 0.6181
β6m,d & β60m,d 1 3 0.1377 0.4743 0.6546
β12m,d & β60m,d 1 3 0.1282 0.4109 0.7008
β1m,d & β120m,m 2 5 0.1517 0.5753 0.5810
β3m,d & β120m,m 2 4 0.1440 0.5186 0.6224
β6m,d & β120m,m 4 4 0.1478 0.5464 0.6021
β12m,d & β120m,m 4 5 0.1524 0.5810 0.5769
β60m,d & β120m,m 3 5 0.1466 0.5372 0.6088

Note: This table presents performance measures for one and two component beta models. The one component beta models are simply CAPM with betas estimated
with different windows and/or frequencies of data. The two component beta models assume that the beta of an asset is a weighted average of two betas estimated with
different windows and/or frequencies of data. Number of mispriced assets is the number of assets out of 25 size and book-to-market portfolios with an average pricing
error significantly different than zero at 1% and 5% levels based on Fama-MacBeth standard errors with Newey-West correction. RMSPE, SSPE and Adj. R2 are root
mean square pricing error, sum of square pricing errors and adjusted R2, respectively.
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Table 5: Percentage Decrease in the SSPE due to Individual Beta Components

β12m,d β60m,d β120m,m

Small 17% 23% 2%
2nd Quintile 45% 54% 14%
3rd Quintile 56% 52% 33%
4th Quintile 45% 35% 58%
Large 48% 64% -32%

Growth 9% 12% 5%
2nd Quintile -44% 3% -105%
3rd Quintile 79% 83% 69%
4th Quintile 34% 47% -69%
Value 60% 62% 42%

Total 37% 42% 18%

Note: This table presents the percentage decrease in the sum of square pricing errors for each set of portfolio that can be attributed to the beta component presented in
column headings. The percentage decrease in the SSPE is calculated as the difference between the SSPEs of the three component beta model with β12m,d, β60m,d

and β120m,m and the two component beta model that excludes the component presented in the column heading divided by the SSPE of the same two component beta
model. A positive number suggests a decrease in the SSPE while a negative number an increase.
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Table 6: Correlations Between Beta Components

Mean Median Std. Dev. Min Max
β12m,d and β60m,d 0.6823 0.6968 0.0881 0.3547 0.8463
β12m,d and β120m,m 0.1220 0.1620 0.2592 -0.2608 0.5566
β60m,d and β120m,m 0.4426 0.4795 0.2410 -0.0568 0.7876

Note: This table presents summary statistics on the correlations between the short-, medium- and long-run beta components for the 25 size and book-to-market portfolios.
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Table 7: Summary Statistics for Beta Components, January 1970 to December 2010

(a) β12m,d

Small 2nd Quintile 3rd Quintile 4th Quintile Large
Growth 0.9794 1.1263 1.1251 1.1198 1.1208

(0.2740) (0.2193) (0.1654) (0.1514) (0.1407)
2nd Quintile 0.8317 0.9013 0.8946 0.9174 1.0229

(0.2560) (0.2246) (0.1532) (0.0902) (0.1130)
3rd Quintile 0.7303 0.7966 0.7901 0.8606 0.9515

(0.2473) (0.2646) (0.1846) (0.1454) (0.1401)
4th Quintile 0.6575 0.7530 0.7668 0.8308 0.9062

(0.2561) (0.2828) (0.2094) (0.1720) (0.1658)
Value 0.6680 0.8506 0.8647 0.9230 0.9683

(0.2590) (0.3037) (0.2525) (0.2548) (0.2088)

(b) β60m,d

Small 2nd Quintile 3rd Quintile 4th Quintile Large
Growth 0.9908 1.1213 1.1294 1.1209 1.1321

(0.2332) (0.1630) (0.1332) (0.0972) (0.0927)
2nd Quintile 0.8252 0.8782 0.8774 0.9115 1.0143

(0.2131) (0.1459) (0.0817) (0.0534) (0.0951)
3rd Quintile 0.7131 0.7732 0.7648 0.8429 0.9398

(0.1963) (0.1852) (0.1214) (0.1043) (0.1090)
4th Quintile 0.6401 0.7154 0.7427 0.8060 0.8916

(0.1922) (0.1759) (0.1325) (0.1291) (0.1324)
Value 0.6420 0.8085 0.8437 0.9018 0.9390

(0.1898) (0.2018) (0.1654) (0.1920) (0.1404)

(c) β120m,m

Small 2nd Quintile 3rd Quintile 4th Quintile Large
Growth 1.4558 1.4426 1.3696 1.2571 1.0071

(0.1565) (0.0819) (0.0779) (0.0645) (0.0408)
2nd Quintile 1.2374 1.1801 1.1150 1.0764 0.9485

(0.1441) (0.1204) (0.0830) (0.1002) (0.0919)
3rd Quintile 1.0862 1.0356 0.9822 0.9900 0.8573

(0.1675) (0.1543) (0.1219) (0.1054) (0.0608)
4th Quintile 1.0019 0.9807 0.9144 0.9191 0.7912

(0.1862) (0.1485) (0.1302) (0.1190) (0.1056)
Value 1.0325 1.0648 0.9931 0.9958 0.8320

(0.1872) (0.1614) (0.1651) (0.1898) (0.1193)

Note: This table presents mean and standard deviation in parenthesis of selected beta components.
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Table 8: Summary Statistics for Beta Components, January 2009 to December 2010

(a) β12m,d

Small 2nd Quintile 3rd Quintile 4th Quintile Large
Growth 1.0639 0.9940 0.9807 0.9230 0.7914

(0.0615) (0.0751) (0.0263) (0.0437) (0.0620)
2nd Quintile 1.0154 1.0417 0.9600 0.9987 0.9437

(0.0842) (0.0680) (0.0614) (0.0256) (0.0510)
3rd Quintile 1.0210 1.1160 1.0199 1.1531 1.0213

(0.1174) (0.0972) (0.0803) (0.0463) (0.0645)
4th Quintile 1.0548 1.1782 1.1300 1.0991 1.1618

(0.1370) (0.1356) (0.1404) (0.0455) (0.0530)
Value 1.1699 1.4356 1.2131 1.2996 1.1991

(0.1735) (0.2318) (0.1810) (0.0974) (0.1286)

(b) β60m,d

Small 2nd Quintile 3rd Quintile 4th Quintile Large
Growth 1.0419 1.0015 1.0120 0.9418 0.8517

(0.0040) (0.0141) (0.0112) (0.0110) (0.0152)
2nd Quintile 0.9803 1.0427 0.9482 0.9685 0.9293

(0.0054) (0.0067) (0.0020) (0.0025) (0.0058)
3rd Quintile 0.9539 1.0850 0.9866 1.1013 1.0661

(0.0133) (0.0045) (0.0047) (0.0097) (0.0073)
4th Quintile 0.9491 1.0969 1.0150 1.0714 1.1309

(0.0224) (0.0124) (0.0157) (0.0062) (0.0122)
Value 1.0114 1.2388 1.0481 1.1644 1.0880

(0.0315) (0.0351) (0.0263) (0.0255) (0.0210)

(c) β120m,m

Small 2nd Quintile 3rd Quintile 4th Quintile Large
Growth 1.5266 1.3525 1.2950 1.2307 0.9310

(0.0634) (0.0383) (0.0344) (0.0508) (0.0152)
2nd Quintile 1.2376 1.0640 1.0345 0.9853 0.7898

(0.0364) (0.0143) (0.0179) (0.0213) (0.0220)
3rd Quintile 0.9883 0.9612 0.9104 0.9923 0.8334

(0.0130) (0.0342) (0.0390) (0.0419) (0.0345)
4th Quintile 0.9155 0.9717 0.9026 0.9682 0.7630

(0.0240) (0.0481) (0.0649) (0.0383) (0.0630)
Value 1.1079 1.1541 0.9821 1.0447 0.9066

(0.0528) (0.0661) (0.0663) (0.0624) (0.0673)

Note: This table presents mean and standard deviation in parenthesis of selected beta components during the financial crisis.
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Table 9: Summary Statistics for β12m,d,t − β12m,d,t−12

(a) Mean

Small 2nd Quintile 3rd Quintile 4th Quintile Large
Growth -0.0136 -0.0121 -0.0122 -0.0065 -0.0096
2nd Quintile -0.0068 0.0008 0.0017 -0.0014 0.0009
3rd Quintile -0.0002 0.0053 0.0040 0.0085 0.0010
4th Quintile 0.0058 0.0130 0.0132 0.0075 0.0064
Value 0.0110 0.0182 0.0134 0.0115 0.0126

(b) Standard Deviation

Small 2nd Quintile 3rd Quintile 4th Quintile Large
Growth 0.2257 0.2028 0.1669 0.1538 0.0981
2nd Quintile 0.1920 0.1612 0.1356 0.1006 0.1014
3rd Quintile 0.1714 0.1576 0.1268 0.1097 0.1236
4th Quintile 0.1888 0.1801 0.1519 0.1268 0.1280
Value 0.1890 0.1920 0.2190 0.1903 0.1908

(c) Max

Small 2nd Quintile 3rd Quintile 4th Quintile Large
Growth 0.5590 0.5552 0.3908 0.5880 0.2169
2nd Quintile 0.5765 0.5010 0.3334 0.3114 0.3222
3rd Quintile 0.6175 0.5428 0.2921 0.3590 0.3216
4th Quintile 0.7761 0.6311 0.3825 0.5203 0.4844
Value 0.7336 0.5739 0.5482 0.5241 0.8132

(d) Min

Small 2nd Quintile 3rd Quintile 4th Quintile Large
Growth -0.6557 -0.6318 -0.5328 -0.5253 -0.3095
2nd Quintile -0.4929 -0.4182 -0.3788 -0.2492 -0.3399
3rd Quintile -0.3905 -0.4612 -0.3765 -0.3488 -0.3951
4th Quintile -0.4041 -0.4348 -0.4659 -0.3697 -0.2814
Value -0.4995 -0.4432 -0.5146 -0.4449 -0.3696

Note: This table presents summary statistics for the annual change in β12m,d.
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Table 10: Correlation of 12 Month Change in Betas with Treasury Bill Rate

(a) β12m,d,t − β12m,d,t−12

Small 2nd Quintile 3rd Quintile 4th Quintile Large
Growth -0.1536 -0.1547 0.1391 0.0335 0.2436

(0.1603) (0.1603) (0.1606) (0.1621) (0.1573)
2nd Quintile -0.2478 -0.1763 -0.1519 -0.1541 -0.1311

(0.1572) (0.1597) (0.1603) (0.1603) (0.1608)
3rd Quintile -0.2739 -0.2350 -0.1587 -0.1127 -0.0349

(0.1560) (0.1577) (0.1602) (0.1612) (0.1621)
4th Quintile -0.2301 -0.1658 -0.1024 -0.0132 0.0160

(0.1579) (0.1600) (0.1614) (0.1622) (0.1622)
Value -0.2520 -0.2417 -0.1689 -0.1100 -0.1186

(0.1570) (0.1574) (0.1599) (0.1612) (0.1611)

(b) β60m,d,t − β60m,d,t−12

Small 2nd Quintile 3rd Quintile 4th Quintile Large
Growth -0.1075 -0.0631 0.0717 0.1679 0.3120

(0.1613) (0.1619) (0.1618) (0.1599) (0.1541)
2nd Quintile -0.1805 -0.2242 -0.1420 -0.1557 0.0619

(0.1596) (0.1581) (0.1606) (0.1602) (0.1619)
3rd Quintile -0.2022 -0.1862 -0.2430 -0.2862 0.1243

(0.1589) (0.1594) (0.1574) (0.1554) (0.1610)
4th Quintile -0.2173 -0.3039 -0.3920 -0.3177 -0.2094

(0.1583) (0.1545) (0.1492) (0.1538) (0.1586)
Value -0.3767 -0.5182 -0.4563 -0.4943 -0.3884

(0.1503) (0.1387) (0.1443) (0.1410) (0.1495)

(c) β120m,m,t − β120m,m,t−12

Small 2nd Quintile 3rd Quintile 4th Quintile Large
Growth -0.0645 -0.0020 0.0469 0.1927 0.2508

(0.1619) (0.1622) (0.1620) (0.1592) (0.1570)
2nd Quintile -0.1695 -0.1955 -0.1756 -0.1110 0.0867

(0.1599) (0.1591) (0.1597) (0.1612) (0.1616)
3rd Quintile -0.2203 -0.2586 -0.2296 -0.1764 -0.0369

(0.1582) (0.1567) (0.1579) (0.1597) (0.1621)
4th Quintile -0.2956 -0.3830 -0.3378 -0.3349 -0.2021

(0.1550) (0.1499) (0.1527) (0.1529) (0.1589)
Value -0.4516 -0.4034 -0.3916 -0.4317 -0.3893

(0.1447) (0.1484) (0.1493) (0.1463) (0.1494)

Note: This table presents correlation of 12 month changes in beta components and the Treasury bill rate at the beginning of the 12 month period. The standard errors are
presented in parenthesis.
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Table 11: Correlation of 11 Month Change in Betas with 12 Month Change in Value-Weighted Average of Portfolio
Book-to-Market Ratio

(a) β12m,d,t − β12m,d,t−11

Small 2nd Quintile 3rd Quintile 4th Quintile Large
Growth -0.1057 -0.2518 -0.2287 -0.2712 -0.3063

(0.1613) (0.1570) (0.1579) (0.1561) (0.1544)
2nd Quintile -0.0845 0.0763 -0.0530 -0.0859 -0.3015

(0.1616) (0.1617) (0.1620) (0.1616) (0.1547)
3rd Quintile 0.0437 -0.0858 -0.0017 0.0828 -0.0158

(0.1621) (0.1616) (0.1622) (0.1617) (0.1622)
4th Quintile 0.2030 0.3155 0.3988 0.1987 0.2885

(0.1588) (0.1539) (0.1488) (0.1590) (0.1553)
Value 0.4304 0.5193 0.6329 0.4237 0.3524

(0.1464) (0.1386) (0.1256) (0.1469) (0.1518)

(b) β60m,d,t − β60m,d,t−11

Small 2nd Quintile 3rd Quintile 4th Quintile Large
Growth -0.2406 -0.3013 -0.2676 -0.1309 -0.0287

(0.1575) (0.1547) (0.1563) (0.1608) (0.1622)
2nd Quintile -0.2344 -0.1529 -0.2016 -0.1972 -0.0981

(0.1577) (0.1603) (0.1589) (0.1590) (0.1614)
3rd Quintile -0.1517 -0.1737 -0.2770 -0.0721 -0.1686

(0.1603) (0.1598) (0.1559) (0.1618) (0.1599)
4th Quintile -0.0534 -0.0122 0.0439 -0.0265 -0.0001

(0.1620) (0.1622) (0.1621) (0.1622) (0.1622)
Value 0.0378 0.0142 0.1626 0.1090 0.0539

(0.1621) (0.1622) (0.1601) (0.1613) (0.1620)

(c) β120m,m,t − β120m,m,t−11

Small 2nd Quintile 3rd Quintile 4th Quintile Large
Growth -0.2952 -0.3665 -0.2608 -0.2602 0.1275

(0.1550) (0.1509) (0.1566) (0.1566) (0.1609)
2nd Quintile -0.3149 -0.2380 -0.2211 -0.2377 -0.0854

(0.1540) (0.1576) (0.1582) (0.1576) (0.1616)
3rd Quintile -0.1811 -0.1736 -0.2313 -0.1276 -0.1474

(0.1595) (0.1598) (0.1578) (0.1609) (0.1604)
4th Quintile -0.0983 -0.0619 -0.0532 -0.0963 0.0618

(0.1614) (0.1619) (0.1620) (0.1615) (0.1619)
Value 0.0967 0.0079 0.0174 0.0795 -0.0655

(0.1615) (0.1622) (0.1622) (0.1617) (0.1619)

Note: This table presents correlation of 11 month changes in beta components and 12 month change in the value-weighted average of portfolio book-to-market ratio.
The standard errors are presented in parenthesis.
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Table 12: Summary Statistics for Performance Measures of the Three Component Beta Model based on Simulated
Artificial Factors

Number of Mispriced Number of Mispriced RMSPE SSPE Adj. R2

Assets at 1% Level Assets at 5% Level
Mean 2.5944 5.4892 0.1555 0.6118 0.5536
Median 2.0000 5.0000 0.1550 0.6005 0.5618
Std. Dev. 1.3844 1.9791 0.0174 0.1362 0.0994
5% Quantile 1.0000 2.0000 0.1276 0.4068 0.3778
95% Quantile 5.0000 9.0000 0.1847 0.8527 0.7032

Note: We generate daily and monthly artificial factors replacing the daily and monthly observations of the return on the market portfolio. The three component beta
model is then estimated based on the time series of daily and monthly artificial factors. We repeat this exercise 5,000 times and this table report the summary statistics
for performance measures from these simulations.
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Table 13: Performance Measures of Asset Pricing Models for 25 Size and Book-to-Market, 10 Momentum and 30
Industry Portfolios

Number of Mispriced Number of Mispriced RMSPE SSPE Adj. R2

Assets at 1% Level Assets at 5% Level
Three Comp. Beta Model with

β120m,m & β12m,d & β1m,d 7 17 0.1921 2.3977 0.3316
β120m,m & β12m,d & β3m,d 6 12 0.1866 2.2628 0.3692
β120m,m & β12m,d & β6m,d 7 14 0.1911 2.3728 0.3385
β120m,m & β60m,d & β1m,d 7 16 0.2052 2.7381 0.2367
β120m,m & β60m,d & β3m,d 6 16 0.2106 2.8835 0.1962
β120m,m & β60m,d & β6m,d 6 14 0.2028 2.6746 0.2544
β120m,m & β60m,d & β12m,d 6 15 0.2074 2.7967 0.2204

Fama-French Three Factor Model 8 10 0.2007 2.6191 0.2699
CAPM with constant β 9 17 0.2259 3.3164 0.0792

Note: This table presents performance measures for asset pricing models in accounting for the cross-sectional variation in monthly returns on 25 size and book-to-market,
10 momentum and 30 industry portfolios. Number of mispriced assets is the number of assets out of 25 size and book-to-market portfolios with an average pricing error
significantly different than zero at 1% and 5% levels based on Fama-MacBeth standard errors with Newey-West correction. RMSPE, SSPE and Adj. R2 are root mean
square pricing error, sum of square pricing errors and adjusted R2, respectively.
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Table 14: Performance Measures of Asset Pricing Models for Quarterly Returns on 25 Size and Book-to-Market
Portfolios

Number of Mispriced Number of Mispriced RMSPE SSPE Adj. R2

Assets at 1% Level Assets at 5% Level
Three Comp. Beta Model with

β120m,m & β12m,d & β1m,d 3 6 0.3816 3.6405 0.7063
β120m,m & β12m,d & β3m,d 4 4 0.3894 3.7908 0.6941
β120m,m & β12m,d & β6m,d 3 5 0.4019 4.0371 0.6743
β120m,m & β60m,d & β1m,d 2 5 0.3729 3.4756 0.7196
β120m,m & β60m,d & β3m,d 2 3 0.3503 3.0686 0.7524
β120m,m & β60m,d & β6m,d 1 3 0.3424 2.9314 0.7635
β120m,m & β60m,d & β12m,d 1 3 0.3551 3.1517 0.7457

Fama-French Three Factor Model 3 4 0.3549 3.1497 0.7459
CAPM with constant β 7 11 0.6863 11.7743 0.0617

Note: This table presents performance measures for asset pricing models in accounting for the cross-sectional variation in quarterly returns on 25 size and book-to-market
portfolios. Number of mispriced assets is the number of assets out of 25 size and book-to-market portfolios with an average pricing error significantly different than
zero at 1% and 5% levels based on Fama-MacBeth standard errors with Newey-West correction. RMSPE, SSPE and Adj. R2 are root mean square pricing error, sum of
square pricing errors and adjusted R2, respectively.
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Table 15: SSPE of Asset Pricing Models over the Business Cycle

(a) Expansions

CAPM with Three Factor Three Component Beta Model
Constant Beta Fama-French Model with β120m,m & β60m,d & β12m,d

Small 0.3832 0.1654 0.1726
2nd Quintile 0.1226 0.0062 0.0227
3rd Quintile 0.0857 0.0319 0.0491
4th Quintile 0.0317 0.0503 0.0359
Large 0.3880 0.0959 0.0760

Growth 0.2673 0.1895 0.1833
2nd Quintile 0.0641 0.0200 0.0200
3rd Quintile 0.1213 0.0136 0.0166
4th Quintile 0.1787 0.0538 0.0539
Value 0.3797 0.0726 0.0823

Total 1.0112 0.3496 0.3561

(b) Recessions

CAPM with Three Factor Three Component Beta Model
Constant Beta Fama-French Model with β120m,m & β60m,d & β12m,d

Small 0.4115 0.3763 0.2597
2nd Quintile 0.5357 0.1597 0.0879
3rd Quintile 0.4827 0.2489 0.2489
4th Quintile 0.0561 0.1419 0.1261
Large 0.6253 0.2212 0.0811

Growth 0.3854 0.5173 0.3197
2nd Quintile 0.2858 0.0976 0.1172
3rd Quintile 0.3027 0.0787 0.1178
4th Quintile 0.2267 0.0545 0.0440
Value 0.9108 0.4000 0.2048

Total 2.1113 1.1480 0.8037

Note: This table presents the SSPE for monthly returns on quintiles of size and book-to-market portfolios over the business cycle. A month is classified as expansion or
recession phase of the business cycle through the NBER classification.
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Table 16: Performance Measures of Asset Pricing Models for Monthly Returns on 25 Size and Book-to-Market
Portfolios Excluding Small Firms

Number of Mispriced Number of Mispriced RMSPE SSPE Adj. R2

Assets at 1% Level Assets at 5% Level
Three Comp. Beta Model with

β120m,m & β12m,d & β1m,d 1 3 0.1068 0.2283 0.6924
β120m,m & β12m,d & β3m,d 1 3 0.1071 0.2293 0.6911
β120m,m & β12m,d & β6m,d 1 4 0.1034 0.2140 0.7116
β120m,m & β60m,d & β1m,d 2 2 0.1029 0.2118 0.7147
β120m,m & β60m,d & β3m,d 2 3 0.1029 0.2119 0.7145
β120m,m & β60m,d & β6m,d 2 2 0.0866 0.1498 0.7981
β120m,m & β60m,d & β12m,d 2 2 0.0818 0.1340 0.8195

Fama-French Three Factor Model 2 4 0.0851 0.1447 0.8050
CAPM with constant β 6 9 0.1848 0.6829 0.0837

Note: This table presents performance measures for asset pricing models in accounting for the cross-sectional variation in monthly returns on 25 size and book-to-market
portfolios excluding the five small quintile portfolios. Number of mispriced assets is the number of assets out of 20 size and book-to-market portfolios with an average
pricing error significantly different than zero at 1% and 5% levels based on Fama-MacBeth standard errors with Newey-West correction. RMSPE, SSPE and Adj. R2

are root mean square pricing error, sum of square pricing errors and adjusted R2, respectively.
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Table 17: Performance Measures of Asset Pricing Models for Monthly Returns on 25 Size and Book-to-Market
Portfolios with Short and Medium Term Betas Corrected for Nonsynchronous Trading

Number of Mispriced Number of Mispriced RMSPE SSPE Adj. R2

Assets at 1% Level Assets at 5% Level
Three Comp. Beta Model with

β120m,m & β12m,d & β1m,d 2 4 0.1216 0.3695 0.7304
β120m,m & β12m,d & β3m,d 2 3 0.1203 0.3617 0.7361
β120m,m & β12m,d & β6m,d 1 5 0.1221 0.3725 0.7282
β120m,m & β60m,d & β1m,d 3 4 0.1299 0.4219 0.6922
β120m,m & β60m,d & β3m,d 3 3 0.1212 0.3674 0.7319
β120m,m & β60m,d & β6m,d 2 4 0.1195 0.3567 0.7397
β120m,m & β60m,d & β12m,d 3 4 0.1211 0.3666 0.7325

Fama-French Three Factor Model 3 4 0.1253 0.3927 0.7134
CAPM with constant β 6 11 0.2102 1.1047 0.1972

Note: This table presents performance measures for asset pricing models in accounting for the cross-sectional variation in monthly returns on 25 size and book-to-
market portfolios where betas estimated using daily data are corrected for potential nonsynchronous trading. Number of mispriced assets is the number of assets out of
25 size and book-to-market portfolios with an average pricing error significantly different than zero at 1% and 5% levels based on Fama-MacBeth standard errors with
Newey-West correction. RMSPE, SSPE and Adj. R2 are root mean square pricing error, sum of square pricing errors and adjusted R2, respectively.
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