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Résumé / Abstract 
 

GARCH models and their variants are usually estimated using quasi-Maximum Likelihood (QML). 

Recent work has shown that by using estimates of quadratic variation, for example from the daily 

realized volatility, it is possible to estimate these models in a different way which incorporates the 

additional information. Theory suggests that as the precision of estimates of daily quadratic variation 

improves, such estimates (via LAD- ARCH approximation) should come to equal and eventually 

dominate the QML estimators. The present paper investigates this using a five-year sample of data on 

returns from all 466 S&P 500 stocks which were present in the index continuously throughout the 

period. The results suggest that LAD-ARCH estimates, using realized volatility on five-minute returns 

over the trading day, yield measures of 1-step forecast accuracy comparable or slightly superior to 

those obtained from QML estimates. Combining the two estimators, either by equal weighting or 

weighting based on cross-validation, appears to produce a clear improvement in forecast accuracy 

relative to either of the two different forecasting methods alone. 
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1 Introduction

The GARCH model (Bollerslev 1986) and its numerous variants remain the most com-
monly used models for forecasting financial volatility. The model is generally estimated
by quasi-Maximum Likelihood (QML), with volatility treated as a latent variable. With
the wide availability of intraday return data, however, alternative forecasting methods
have become available. Using intraday return data to estimate the daily variance
(quadratic variation), for example via the daily realized variance or other estimate
such as one of those proposed by Zhang et al. (2005), it is possible for example to
forecast daily volatility using a simple autoregression on the daily volatility estimates.
Another alternative, suggested by Galbraith, Zinde-Walsh and Zhu (2012), hereafter
‘GZZ’, is to use daily quadratic variation estimates to estimate a GARCH model via
ARCH approximation; the resulting LAD-ARCH estimator is to some degree robust
to estimation error in the estimate of daily quadratic variation (e.g., realized variance)
which it uses. This method has a number of antecedents in the standard conditional
mean time series literature, but has not previously been applied to conditional second
moment models.

The present paper investigates the relative forecasting performance of each of these
methods on a large sample of financial return data. The sample comprises the entire
set of S&P 500 index stocks over a period of approximately five years; we retain for
analysis the 466 stocks that remain in the index continuously throughout the period. As
well, because it is well known that the combination of forecasts from different methods
can often yield better results than any of the individual methods alone, we investigate
combinations of forecasts based on both GARCH model estimators.

The results suggest that the new class of estimates based on intraday data does
clearly have empirical value. Previous theory and simulation imply that as the quality
of intraday volatility information improves, the relative performance of those estimators
which exploit it should improve also, eventually coming to dominate QML. In fact the
number of five-minute returns available per day in a U.S. financial return data set (i.e.,
78 per day) appears, given the simulations in GZZ, to be close to the borderline at
which forecasts using the LAD-ARCH estimator should come to approximately equal
(and later surpass) the performance of QML, for parameter values typical in models
of equity returns (i.e. a sum of GARCH parameters near unity, with the coefficient on
lagged volatility ' 0.9).1

This result is borne out on this large set of empirical examples. The expectation that
combining these two estimators should also yield better measures of forecast accuracy
is also borne out in these 466 empirical examples.

The next section gives a brief description of the forecasting methods that we will
use and the data available. Section 3 reports the results of the pseudo-out-of-sample
forecasting exercise on the set of individual stocks. A final section concludes.

1GZZ find that the number of intra-day observations at which the LAD-ARCH estimator comes
to dominate is lower for GARCH parameters farther from unity, so that in such cases we should see
clearly better performance than for QML at 78 per day; however in US equity price data, with GARCH
parameter in the neighbourhood of 0.0, we expect to observe similar performance of the two methods.
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2 Estimators, forecasts and data

2.1 GARCH model estimators and forecasts

We compare forecasts of daily conditional variance. The primary object of interest is
the daily integrated variance on day t, that is, σ2t =

∫ t
t−1 σ

2
sds. An estimate of this

quantity is is given by σ̂2t =
∑th

j=(t−1)h+1 r
2
j , with r2j = (pj − pj−1)

2, pj indicating
discretely-sampled intra-day observations on a diffusion process {pt} such that pt =
p0 +

∫ t
0 σsdWs, where {Ws} is a Brownian motion process and σ2s is the instantaneous

conditional variance. The estimated quantity σ̂2t is known as the realized variance, or
realized volatility (we will use the former term), and its probability limit as the time
interval between observations decreases is, in the absence of any measurement noise,
the quadratic variation.

The standard ARCH and GARCH models (Engle 1982; Bollerslev 1986) specify the
daily return as εt = ztσt, where the specification of σ2t for the ARCH model is

σ2t = ω +

q∑
i=1

αiε
2
t−i, (1)

and for the GARCH model:

σ2t = ω +

q∑
i=1

αiε
2
t−i +

p∑
i=1

βiσ
2
t−i, (2)

where εt is defined as rt−µt for a process with conditional mean µt, or εt = rt if there
is no drift. The standardized process zt = εt/σt is taken to follow a distribution such
as the Normal or t− . Estimation is generally by quasi- Maximum Likelihood.

It is well known that the GARCH model can be re-written by recursive substitution
to yield σ2t = κ +

∑∞
`=1 ν`ε

2
t−`. Expressions for κ and ν` are given in GZZ, where this

representation is exploited for an alternative form of estimator in which the realized
variance, or other estimator of the daily quadratic variation, as equal to the true daily
integrated variance plus an error. In truncated finite-sample form the model becomes

σ̂2t = κ+ Σk
l=1νlε

2
t−l + ut, (3)

where the error ut embodies both measurement error and truncation error. Using gen-
eral results on quantile estimation of truncations of infinite-order processes from Zernov
et al. 2009, GZZ show that consistent and asymptotically normal quantile (including
LAD) estimation of the parameters of this truncated ARCH representation is possi-
ble. Correspondingly, consistent and asymptotically normal estimates of the GARCH
parameters may be obtained by minimum distance using the parameters of the esti-
mated ARCH representation, and the known relationship between the parameters of
the GARCH model and the infinite-order ARCH approximation. Closed form expres-
sions for these GARCH parameter estimates are given by GZZ; for the GARCH(1,1)
case considered here these reduce to

α̂ = ν̂1, β̂ =

(
k′−1∑
i=1

ν̂iν̂i+1

)(
k′−1∑
i=1

ν̂2i

)−1
, ω̂ = κ̂(1− β̂), (4)
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where k′ ≤ k is the number of ARCH-approximation terms included in the computa-
tion.2

Combinations of forecasts generated by different procedures often outperform those
obtained from the individual procedures. We include in the comparisons below two
classes of combination: an equal weighting of the two forecasts, and a sample-based
weighting obtained by cross-validation, updated at each sample point, for each one of
the 466 equity issues included in the comparison.3 Both the QML and LAD-ARCH
estimators require selection of some choice parameters: the distribution of standardized
errors to be used as a likelihood function in the first case, the truncation order for the
ARCH approximation in the case of LAD-ARCH.4 We examine sensitivity to these
choices.

Finally, we emphasize that the LAD-ARCH estimator is an estimator of a GARCH
model; ‘-ARCH’ refers to estimation of that model via ARCH approximation. The re-
sults below therefore are largely devoted to exploring whether combining high-frequency
information with low frequency, by this method, can produce gains in short-term volatil-
ity forecasting.

2.2 Data

The study uses a sample of intra-day data on S&P 500 securities beginning on May 1,
2006 and ending on September 16, 2011, a total of 1,357 trading days covering periods
of both high volatility and relative calm. The sample contains only securities that
were components of the S&P 500 for the entire period, or 466 companies. The data
are obtained from intraday one-minute equity data (OMED) provided by Tick Data;
OMED trade data for each one-minute interval include date, time, open, high, low,
close, and volume. Tick Data provides cleaned observations that are fully adjusted for
all corporate actions (such as splits and consolidations), changes in symbols, and erro-
neous trades that were subsequently reversed by the market regulators. 5 Compustat is
used to identify the starting date and ending date for each constituent of the S&P 500

2We also compared with with the pure autoregressive forecasting model on the realized volatilities.
In the results of Andersen et al. (2003), and in our own empirical comparisons, the AR model performs
best on the logarithm of (the square root of) the realized variances, that is, as a model of ln(σ̂). However
we found that the AR-based estimates were outperformed on these data by the GARCH-based forecasts,
and we concentrate on the latter in the results reported below.

3Because of the autocorrelations in this time-series context, we use only sample data preceding the
date to be forecast: that is, we obtain loss function measures for each of a set of different weights on
the two models chosen from a grid of values on the [0, 1] interval, evaluating loss function measures up
to time t − 1. The weighting which provides the best forecasts on data up to t − 1 is used to weight
the two input forecasts at time t. The procedure is then repeated to re-evaluate the weights at t and
at each new sample point thereafter. The cross-validated results therefore come from a sequence of
weights which typically change over the interval, rather than from a fixed pair of weights.

4QML estimates are computed using the algorithm contained in Matlab; the LAD estimates use the
quantile regression code for Matlab written by Roger Koenker.

5To verify data quality, we manually examined all periods where returns were over 10% and com-
pared with historical bar quotes from Yahoo. Using this method we identified two cases where the
absence of recorded trades in the first 15 minutes of trading caused the previous day’s price to be used
when there was a stock split. These data points were manually corrected.
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from 1/1/2000 through 9/16/2011. From the list of all companies in the S&P index,
we identify those for which Tick Data has continuous intraday bars from to 5/1/2006
through 9/16/2011, and this filtering leads to our subsample of 466 S&P 500 stocks
that were traded continuously during the study period. Using Tick Data’s TickWrite
software, the 5-minute and daily price-fluctuation bars are extracted for each of the
466 stocks from 9:30 AM to 4:00 PM, retaining the previous value in any case where
there is no trade in a given period.

Five-minute returns are defined as the return from the first trade to the last trade
of the five-minute period; the sample size at the 5-minute frequency is 105,846 for each
company’s stock and 466× 105, 846, or over 49 million, in total. The resulting data set
has the form of a panel consisting of bars (daily and 5 minute; 1,357 or 105,846 rows)
with 466 columns, one for each stock. Our base initial sample for forecast comparison
allows 500 trading days for initial model estimation; with an initial daily observation
lost for estimation and one for computation of one-period-ahead forecasts, we have
855 forecast days, and a total of 855 × 466 or 398,430 daily forecasts computed by
each method. Results are reported for various other values of the initial sample for
estimation.

Figure 1a shows the square roots of the realized variances, averaged over each of
the 466 log-return series, for each of the 1,357 sample days. We see the highest values
occurring between approximately sample points 600 and 700 (mid-2008), so that when
we later take initial samples for estimation large enough to exclude these values from
the set of pseudo-out-of-sample forecasts, we will expect to see changes in measures of
forecast loss relative to samples which include these dates.

Figure 1b plots, rather than the average across all equities, the entire set of 466
× 1,357 daily (logarithmic) realized variances, so that instead of a single point at
each date the figure comprises 1,357 vertical bars, each of which contains 466 coloured
sections representing one of the S&P 500 securities in our sample. Colours toward the
red end of the spectrum indicate higher values. The 466 equities are ordered by average
realized variance across the sample days, with those showing the highest variances at
the top of the figure. We see that as well as substantial variability across time, there is
substantial variability in the cross-sectional dimension. Forecasting volatility on each
of the 466 log-return series therefore represents a diverse set of forecasting exercises.
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Figure 1
Volatility data

1a: realized volatility (square root of realized variance)
mean over 466 log-return series, 1,357 days of sample

1b: square root of realized variance
ordered (largest at top) set of 466, 1,357 days of sample
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2.3 Treatment of outliers

The ‘flash crash’ of May 6, 2010 a number of S&P index securities in our sample
experienced extraordinary prices declines, from 10% to over 95%, over time periods of
around five to thirty minutes. Trades in some securities were subsequently cancelled
or re-priced by securities regulators. This date corresponds with sample point 1012 in
our daily data. Data points 1012 and 1013 are excluded from all samples here, on the
grounds that the extremely high volatility is in some equities during the first of these
days is not a result of the usual volatility process, and estimators using sample point
1012 as a lagged value would also provide anomalous forecasts for the second day. All
estimation methods produced very poor estimates of volatility for the stocks having
extreme movements on the first of these days.

Very high volatilities are also present in the period roughly from September 2008
through the summer of 2009, or approximately from observations 600 to 800 in the
daily data. These are included in the base sample. As we move to later beginning
dates for out-of-sample forecasting, or the lower forecast sample sizes, these points are
progressively eliminated from the sample, and for sets of forecasts beginning around
daily observation 800 this period is essentially absent. Relative performance of the
estimators is little affected.

3 Empirical forecast evaluation

Each of the techniques is evaluated using both one-step-ahead mean absolute error and
root mean squared error as measures of loss, relative to the daily realized volatility (the
square root of the daily realized variance) as target value; that is,

`1 = n−1f

∑T−1
t=t0+1

(
|σ̂t+1|t − σrv,t+1|

)
(5)

and `2 =
[
n−1f

∑T−1
t=t0+1

(
σ̂t+1|t − σrv,t+1

)2] 1
2

(6)

where t0 is the size of the sample used for initialization of the estimators, T = 1357 is
the full daily sample size, σ̂t+1|t is the one-step-ahead conditional standard deviation
forecast made by any one of the methods, σrv,t+1 is the square root of the realized
variance at time t + 1, and nf = (T − 1) − (t0 + 1) is the number of pseudo-out-of-
sample forecasts available for evaluation.

Before presenting the results in detail, Table 1 gives the overall average of results
across all 466 stocks and the largest set (855) of pseudo-out-of-sample values; the losses
are presented relative to those of QML. The base and alternative cases represent differ-
ent parameter choices for the estimation methods.6 We see in this simple aggregated
comparison that the combined QML- and LAD-ARCH estimators produce the best
overall results.

6Base case: QML: conditionally Normal; LAD-ARCH: k = k′ = 12. Alternative case: QML: con-
ditionally t−; LAD-ARCH: k = 16, k′ = 8. Note that the number of forecasts evaluated is equal to
(1357-2)- t0, where to is the number of observations used for model initialization.
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Table 1

Overall summary of performance by two loss measures, relative to QML:
base and alternative cases, 466 × 855 forecasts

RMSE (base) MAE (base) RMSE (alt) MAE (alt)

QML 1.000 1.000 1.000 1.000
LAD-ARCH 0.940 0.886 0.944 0.891
equal weight 0.874 0.845 0.873 0.839
c.v. weight 0.888 0.837 0.888 0.834

Tables 2 and 3 present more detailed results. In Table 2, the results recorded are
averages across all 466 series, for different numbers of sample points used in initial
model estimation. The sample sizes recorded in the table for forecast evaluation range
from 355 (1000 sample points for initial model estimation) to 855 (500 sample points
for initial model estimation). We consider various initial sample sizes in order to check
robustness of the results to this choice. For both base and alternative cases and at
all of the sample sizes considered, the LAD-ARCH estimator shows the lower loss of
the two main forecast techniques, by both RMSE and MAE. If we consider the cross-
validated combined and equally weighted QML- and LAD-ARCH estimators of the
GARCH model as well, then one or the other of the combined estimators shows lowest
overall loss across all of these cases.

Table 3 gives an indication of the variability of these results across the 466 securities.
In this table we record the proportion of cases in which a given technique shows the
lowest loss, by each loss function, in a two-way comparison of the QML and LAD-
ARCH estimators, also in the four-way comparison in which the combined estimators
are added to the set. In the two-way comparisons, the LAD-ARCH estimator is best in
a majority of cases, but there is a substantial proportion of the 466 series for which the
QML-estimator is best. In the broader comparison which also includes the combined
estimators, one of the two combined estimator produces the best results in the great
majority of cases.

Figures 2 and 3 present information similar to that in the tables, but with results
are recorded for every sample size in the interval from earliest to latest starting date,
rather than at every 50th value, as in the tables. The sample sizes in the tables are
therefore a subset of those recorded in the figures. As well, for the loss-function cases
the figures present ratios of statistics relative to the QML values, rather than the
absolute values of the loss functions. Figure 2 is analogous to Table 2, and shows that
averaging over the 466 return series, the LAD-ARCH and combined estimators produce
lower loss than QML at all sample sizes in the range considered. Figure 3 is analogous
to Table 3, but provides a more detailed set of results across the full range of sample
sizes rather than the overall average across the maximum sample size. We see again
that the combined estimators reliably produce the best results for a large proportion of
the 466 return series. In the two-way comparison of the techniques, we again see that
the LAD-ARCH estimator tends to produce the lowest loss in the highest proportion
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of cases, but there are some sample sizes at which, by the RMSE criterion, the QML
estimator has a slightly higher proportion of cases in which it produces the lowest loss.

It is of course a commonly observed result that an equal weighting of forecasts can
outperform more sophisticated data-based weighting methods, because the efficiency
cost of estimation of weighting parameters may exceed the benefit of deviating from
equality. This is more likely to arise if, as is the case here, the component forecasts
have approximately equal forecast error variance.

3.1 Statistical inference on differences in forecast loss

We now consider statistical inference on the differences in forecast performance among
the methods considered. First we provide Diebold-Mariano (1995) pairwise tests on
each of the 466 individual stocks, for various one-sided hypotheses. Although the
Diebold-Mariano (DM) test is asymptotic, the overall pattern observable in these cases
indicates some clear distinctions in test performance.

Each panel of Table 4 shows the results of the DM test on the null hypothesis that
the mean squared errors for two given methods are equal, vs the alternative that the
test named in the left-hand column shows lower loss; significance levels of 1% and 5%
are reported. Number given are a count of the number of stocks, out of 466, for which
we reject the null hypothesis. Large values are evidence of the superiority of the test
named on the left, within the given pairing.

The results show that the loss reductions from combination versus the component
methods are significant in a large number of stocks. The difference between the two
combination methods, by contrast, does not show an unambiguous pattern favour-
ing one rather than the other, although the preponderance of significant results does
favour equal weighting. LAD-ARCH forecasts show a substantial degree of significant
improvement over QML, but again these tend clearly to be dominated by forecast
combinations.

Table 5 presents overall results, aggregating the 466 stocks, using a White (2000)
reality-check test. This test takes a particular method as the basis for comparison and
tests the hypothesis that all other methods considered have equal or greater forecast
loss; a rejection is therefore indicative of the existence of a lower-loss method among
the alternatives in the set. Failure to reject indicates lack of evidence against the
hypothesis that the method of interest has the lowest forecast loss.

The results are compatible with those in Table 4; we see that we tend to reject
the hypothesis that QML or LAD-ARCH forecast loss is equal to or better than that
of the alternative methods, but we do not reject such a hypothesis for either forecast
combination.
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4 Concluding remarks

This study has attempted to report a very broad set of results in order to give a
clear and reliable picture of the relative forecasting performance of GARCH-based
forecasting methods based on substantially different principles. All of the methods use
the parametric GARCH form.

Several results emerge. First, performance of the LAD-ARCH estimator is consistent
with the performance predicted in GZZ; at the parameter values typical in daily equity
return data and with 78 five-minute returns available per day, QML and LAD-ARCH
should be similar in performance, with perhaps a small advantage to LAD-ARCH. This
prediction is borne out by the empirical results.

Perhaps the most useful result concerns forecast combination for this problem. Al-
though many methods are available, a simple average is often competitive with more
sophisticated forecast combination devices, and we use here the sample mean of two
forecasts to illustrate the potential for forecast combination. The QML and LAD-
ARCH estimators are based on different information sets, and so a priori we might
expect that a combined estimator could perform better than either alone, at least in
regions of the parameter space where neither is dominated. This is what we observe:
the combined estimator produces the lowest loss in a wide variety of cases, a result
which is robust to sample period, to choice of loss function and to parameter choices
for estimation methods. Cross-validated combination weights also perform well, but
tend overall to be outperformed by an equally weighted combination. Statistical infer-
ence tends to confirm that the advantage of forecast combination over either constituent
method, whether by equal weighting or cross-validated weights, is genuine.

We conclude that the LAD-ARCH estimator of the GARCH model provides a useful
practical addition to the set of forecasting tools for conditional volatility in financial
markets. Simple equally weighted average forecasts, obtained by averaging the stan-
dard QML estimator with the LAD-ARCH estimator, substantially outperform either
component forecast.

It remains to be seen whether the principle of quantile-based estimators of ARCH
models can provide useful gains in multivariate contexts.
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Table 2

Pseudo-out-of-sample forecast performance, average over 466 series
Empirical forecast losses, RMSE and MAE 7

QML, LAD-ARCH, equal- and cv-weight combinations

Base case

Panel A: RMSE Number of forecasts evaluated

355 405 455 505 555 605 655 705 755 805 855

QML 0.549 0.540 0.537 0.541 0.548 0.582 0.637 0.730 0.937 0.943 0.926
LAD-ARCH 0.509 0.500 0.500 0.506 0.518 0.547 0.612 0.680 0.886 0.891 0.878
equal weight 0.479 0.471 0.470 0.474 0.483 0.508 0.561 0.627 0.820 0.826 0.814
c.v. weight 0.484 0.475 0.475 0.480 0.489 0.514 0.571 0.636 0.839 0.846 0.833

Panel B: MAE

355 405 455 505 555 605 655 705 755 805 855

QML 0.395 0.391 0.390 0.394 0.398 0.418 0.448 0.495 0.574 0.581 0.570
LAD-ARCH 0.347 0.340 0.341 0.345 0.353 0.370 0.403 0.438 0.514 0.520 0.514
equal weight 0.335 0.330 0.330 0.334 0.339 0.353 0.380 0.414 0.482 0.488 0.481
cv weight 0.331 0.325 0.325 0.329 0.335 0.349 0.378 0.410 0.482 0.488 0.482

Alternative case

Panel A: RMSE Number of forecasts evaluated

355 405 455 505 555 605 655 705 755 805 855

QML 0.549 0.540 0.537 0.541 0.548 0.582 0.637 0.730 0.937 0.943 0.926
LAD-ARCH 0.508 0.499 0.500 0.506 0.518 0.549 0.617 0.688 0.896 0.900 0.887
equal weight 0.477 0.469 0.468 0.473 0.481 0.506 0.560 0.626 0.820 0.827 0.815
cv weight 0.482 0.473 0.473 0.478 0.488 0.513 0.572 0.637 0.843 0.849 0.837

Panel B: MAE

355 405 455 505 555 605 655 705 755 805 855

QML 0.395 0.391 0.390 0.394 0.398 0.418 0.448 0.495 0.574 0.581 0.570
LAD-ARCH 0.347 0.339 0.340 0.346 0.354 0.372 0.407 0.444 0.521 0.527 0.521
equal weight 0.333 0.328 0.328 0.331 0.336 0.350 0.378 0.411 0.480 0.486 0.480
cv weight 0.328 0.322 0.322 0.326 0.332 0.347 0.377 0.410 0.483 0.489 0.483

7Base case: QML: conditionally Normal; LAD-ARCH: k = k′ = 12. Alternative case: QML: con-
ditionally t−; LAD-ARCH: k = 16, k′ = 8. Note that the number of forecasts evaluated is equal to
(1357-2)- t0, where t0 is the number of observations used for model initialization.
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Table 3

Proportion of cases in which a technique shows best performance,
by the criterion of average RMSE or MAE

466 series and 855 pseudo-out-of-sample observations8

Compared: QML and LAD-ARCH (2),
or QML, LAD-ARCH, equal- and cv-weight combinations (4)

Base case

by RMSE (2) by RMSE (4) by MAE (2) by MAE (4)

QML 0.251 0.004 0.118 0.001
LAD-ARCH 0.749 0.006 0.882 0.028
equal weight 0.742 0.508
cv weight 0.247 0.464

Alternative case

by RMSE (2) by RMSE (4) by MAE (2) by MAE (4)

QML 0.268 0.005 0.132 0.001
LAD-ARCH 0.732 0.006 0.868 0.021
equal weight 0.753 0.520
c.v. weight 0.236 0.457

8Entries are the proportions of cases that a given technique has the lowest value of the given loss
measure in the indicated comparison. Base case and alternative case as defined earlier. The numbers
(2) or (4) in parentheses in column headings indicate the number of techniques being compared in the
given column; all columns add to one.
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Table 49

Number of rejections out of 466 one-sided DM tests
H0 : equal forecast loss vs. H1 : test in left column has lower loss

355 405 455 505 555 605 655 705 755 805 855

Panel A: QML vs LAD-ARCH
QML 1% 1 2 1 2 8 8 13 13 1 1 1
QML 5% 4 5 7 9 14 18 31 24 7 5 6
LAD-ARCH 5% 157 163 177 176 153 153 109 173 144 152 151
LAD-ARCH 1% 98 114 119 118 101 105 71 111 76 80 78

Panel B: QML vs equal weight
QML 1% 0 0 0 0 0 0 1 0 0 0 0
QML 5% 0 0 0 0 0 0 1 0 0 0 0
EQ 5% 436 444 444 446 435 431 431 443 433 437 435
EQ 1% 388 403 409 421 416 414 403 418 402 410 410

Panel C: LAD-ARCH vs equal weight
LAD-ARCH 1% 3 3 3 2 3 5 1 0 0 0 0
LAD-ARCH 5% 5 9 8 3 3 7 8 4 0 0 0
EQ 5% 271 273 287 315 342 354 389 354 305 310 323
EQ 1% 161 175 197 222 263 279 332 275 192 200 212

Panel D: QML vs c.v. weight
QML 1% 0 0 0 0 1 2 1 0 0 0 0
QML 5% 0 0 0 2 3 3 5 0 0 0 0
CV 5% 346 348 351 354 344 338 326 380 365 370 368
CV 1% 272 288 298 305 295 291 270 336 301 313 314

Panel E: LAD-ARCH vs c.v. weight
LAD-ARCH 1% 1 1 1 1 1 1 0 1 1 1 1
LAD-ARCH 5% 2 3 1 1 1 1 0 2 6 6 4
CV 5% 377 376 387 390 400 403 412 366 280 283 285
CV 1% 323 326 349 358 368 370 385 319 243 239 242

Panel F: equal weight vs c.v. weight
EQ 1% 41 45 58 67 88 106 129 123 120 126 129
EQ 5% 112 118 128 138 167 178 200 189 190 202 206
CV 5% 47 49 49 48 45 52 32 46 24 24 21
CV 1% 29 28 28 32 28 31 22 30 11 10 11

9Results are reported for the base case only; alternative case results are qualitatively similar.
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Table 510

White reality-check test, all 466 series combined
H0 : all other methods have equal or greater forecast loss

355 405 455 505 555 605 655 705 755 805 855

QML 0.570 0.562 0.559 0.565 0.577 0.617 0.688 0.792 1.017 1.029 1.010
(0.00) (0.00) (0.00) (0.00) (0.00) (0.00) (0.00) (0.00) (0.00) (0.00) (0.00)

LAD-ARCH 0.532 0.522 0.522 0.529 0.543 0.577 0.658 0.737 0.967 0.976 0.959
(0.00) (0.00) (0.00) (0.00) (0.00) (0.00) (0.00) (0.00) (0.00) (0.00) (0.00)

equal weight 0.532 0.522 0.522 0.529 0.543 0.577 0.658 0.737 0.967 0.976 0.959
(0.91) (0.91) (0.94) (0.96) (0.94) (0.90) (0.94) (0.90) (0.94) (0.90) (0.91)

c.v. weight 0.532 0.522 0.522 0.529 0.543 0.577 0.658 0.737 0.967 0.976 0.959
(0.20) (0.22) (0.18) (0.12) (0.21) (0.25) (0.13) (0.23) (0.14) (0.18) (0.20)

10Results are reported for the base case only; alternative case results are qualitatively similar.
p−values are indicated in brackets; an indicated value of 0.00 indicates a computed p−value less than
0.005.
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Figure 2
Ratios of RMSE’s and MAE’s to those of QMLE

QML, LAD-ARCH, equal-weight and cross-validation weight combinations
Varying initial estimation sample and parameter specifications
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Figure 3
Proportion of cases in which a technique yields lowest loss

QML, LAD-ARCH, equal-weight and cross-validation weight combinations
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