
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Montréal 
Septembre 2013 

 

 

 

 
© 2013 Larry G. Epstein, Kyoungwon Seo. Tous droits réservés. All rights reserved. Reproduction partielle 

permise avec citation du document source, incluant la notice ©. 

Short sections may be quoted without explicit permission, if full credit, including © notice, is given to the source. 

 

 

 
Série Scientifique 
Scientific Series 

 

  2013s-35 
 

De Finetti Meets Ellsberg 
 

Larry G. Epstein, Kyoungwon Seo 



CIRANO 

Le CIRANO est un organisme sans but lucratif constitué en vertu de la Loi des compagnies du Québec. Le financement de 

son infrastructure et de ses activités de recherche provient des cotisations de ses organisations-membres, d’une subvention 

d’infrastructure du Ministère du Développement économique et régional et de la Recherche, de même que des subventions et 

mandats obtenus par ses équipes de recherche. 

CIRANO is a private non-profit organization incorporated under the Québec Companies Act. Its infrastructure and research 

activities are funded through fees paid by member organizations, an infrastructure grant from the Ministère du 

Développement économique et régional et de la Recherche, and grants and research mandates obtained by its research 

teams. 

 
Les partenaires du CIRANO 
Partenaire majeur 
Ministère de l'Enseignement supérieur, de la Recherche, de la Science et de la Technologie 

Partenaires corporatifs 
 
Autorité des marchés financiers 

Banque de développement du Canada 

Banque du Canada 

Banque Laurentienne du Canada 

Banque Nationale du Canada 

Banque Scotia 

Bell Canada 

BMO Groupe financier 

Caisse de dépôt et placement du Québec 

Fédération des caisses Desjardins du Québec 

Financière Sun Life, Québec 

Gaz Métro 

Hydro-Québec 

Industrie Canada 

Investissements PSP 

Ministère des Finances et de l’Économie  

Power Corporation du Canada 

Rio Tinto Alcan 

State Street Global Advisors 

Transat A.T. 

Ville de Montréal 

Partenaires universitaires 
École Polytechnique de Montréal 

École de technologie supérieure (ÉTS) 

HEC Montréal 

Institut national de la recherche scientifique (INRS) 

McGill University 

Université Concordia 

Université de Montréal 

Université de Sherbrooke 

Université du Québec 

Université du Québec à Montréal 

Université Laval 

 

Le CIRANO collabore avec de nombreux centres et chaires de recherche universitaires dont on peut consulter la liste sur son 

site web. 

ISSN 2292-0838 
 

Les cahiers de la série scientifique (CS) visent à rendre accessibles des résultats de recherche effectuée au CIRANO afin 

de susciter échanges et commentaires. Ces cahiers sont écrits dans le style des publications scientifiques. Les idées et les 

opinions émises sont sous l’unique responsabilité des auteurs et ne représentent pas nécessairement les positions du 

CIRANO ou de ses partenaires. 

This paper presents research carried out at CIRANO and aims at encouraging discussion and comment. The observations 

and viewpoints expressed are the sole responsibility of the authors. They do not necessarily represent positions of 

CIRANO or its partners. 

Partenaire financier

 

http://www.mesrst.gouv.qc.ca/
http://www.mesrst.gouv.qc.ca/


De Finetti Meets Ellsberg* 
 
 

Larry G. Epstein
 †
, Kyoungwon Seo

‡
 

 

 
 

 

Résumé/abstract  
 

The paper outlines an exchangeable non-Bayesian model of preference generalizing the 

Savage/de Finetti classic model of subjective expected utility preference with an exchangeable 

prior. The treatment is informal, and the emphasis is on motivation and potential applications 

rather than on axiomatic foundations and technical details. The objective is to provide a 

widely accessible introduction to research that is reported in detail elsewhere. 

 

Mots clés/Keywords: Savage/de Finetti classic model, Ellsberg Paradox. 

 

                                                 
*
 We gratefully acknowledge the financial support of the National Science Foundation (awards SES-0917740, 

0918248 and 1216339). Epstein is grateful also for the generous hospitality of CIRANO where some of this 

work was completed. This paper was written for the International Workshop in Economic Theory, Ca.Foscari 

University of Venice, June 28-29, 2013. 
†
 CIRANO and Boston University, lepstein@bu.edu.  

‡
 Korea Advanced Institute of Science and Technology, kseo@kaist.ac.kr.  

mailto:lepstein@bu.edu
mailto:kseo@kaist.ac.kr


1. Introduction

Though subjective expected utility (SEU) theory continues to be the dominant
model of choice under uncertainty, it has been assailed at both normative and
descriptive levels for being unable to accommodate a role for ambiguity, or con�-
dence in beliefs, such as illustrated by the Ellsberg Paradox. This critique moti-
vated development of a number of generalizations of SEU; a prominent example is
maxmin expected utility theory due to Gilboa and Schmeidler (1989). The popu-
larity of SEU is due in part to its appealing and elegant axiomatization by Savage
(1972). However, its prominence, particularly in statistical decision-making and
in learning models, is due also in large part to de Finetti (1937) who considered
settings with repeated experiments (or random events�coin tossing is a common
example) and introduced added structure that is intuitive for such settings. De
Finetti showed that the simple property of exchangeability characterizes beliefs for
which outcomes of experiments are i.i.d. conditional on an unknown parameter;
learning is then modeled by Bayesian updating of beliefs about the parameter.
This celebrated result is the cornerstone of Bayesian learning theory, and Kreps
(1988) refers to it as "the fundamental theorem of (most) statistics" because of
the justi�cation it provides for the analyst to view samples as being independent
and identically distributed with unknown distribution function.
However, de Finetti�s specialization of SEU, typically called the Bayesian ex-

changeable model, is also subject to criticisms. To describe them introduce some
formalism. Consider a countable number of experiments, each of which yields an
outcome in the (�nite) set S. Thus 
 = S1 is the set of all possible sample paths.
An individual must choose between bets, or more generally between acts over 
,
where an act is a mapping f from 
 into a set of payo¤s. She maximizes expected
utility subject to her beliefs about the outcomes of experiments, where beliefs are
represented by a probability measure P , called her predictive prior.1 Say that P
is exchangeable if the probability of a �nite sequence of outcomes does not depend
on the order in which they are realized. De Finetti showed that exchangeability
is equivalent to the following "conditionally i.i.d." representation: There exists a
probability measure � on �(S), the set of probability laws on S, such that

P (�) =
Z
�(S)

`1 (�) d� (`) , (1.1)

1We distinguish between a predictive prior, which describes beliefs about the outcomes of
experiments, and a prior, such as � in (1.1) below, which describes beliefs about unknown
parameters.
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where, for any probability measure ` on S, `1 denotes the corresponding i.i.d.
product measure on 
. Here ` is the unknown parameter and � describes prior
beliefs about the parameter. Thus P is an average, (or expectation, or mixture)
of i.i.d. measures. Though intuitively appealing and elegant, the representation
(1.1) is suggestive of features that might be viewed as overly restrictive in both
statistical analysis and in decision-making more broadly. First, uncertainty about
the probability law ` is expressed via the single prior �, and thus, as is familiar
from the literature inspired by the Ellsberg paradox, the model precludes ambi-
guity about the true parameter. There are other senses in which the Bayesian
exchangeable model assumes self-con�dence that may strike one as excessive or
extreme in complicated environments. Though there is uncertainty about the true
law describing any single experiment, the individual is certain that experiments
are both identical (the same law ` applies to every one) and independent. More-
over, assuming Bayesian updating, under well-known conditions the model implies
that the individual is certain that she will learn the true probability law `� as-
ymptotically given enough data (Savage, 1972, Ch. 3.6). Thus she will learn also
the law describing the sequence of experiments�the i.i.d. product (`�)1�which is
everything she needs to know in order to make decisions given that experiments
are inherently random and only the governing probability law is knowable at best.
Accordingly, the theory leaves no room for doubt about what is well understood
or for more modest ambitions about what is learnable.
This paper proceeds as follows. First, Section 2 provides economic motivation

for the preceding critique through examples taken from the applied literature
where we understand researchers to have expressed similar concerns (to varying
degrees and possibly in di¤erent language). We also consider Ellsberg-style urns as
a canonical example that we use subsequently to illustrate and interpret the issues
and models. Though the paper is largely informal and the treatment of models
is not axiomatic, we nevertheless translate the above critiques into behavioral
terms; Section 3 does this in the context of the urns example. This is the decision-
theoretic component of the paper: interpretations and arguments about preference
speci�cations are made precise by expressing them behaviorally.
The core of the paper outlines a model that generalizes the Bayesian exchange-

able model and that is designed to relax the strong assumptions noted above.2 Our

2The model is a convenient special case of the general axiomatic model in Epstein and Seo
(2012); related axiomatically founded models appear in (2010, 2013). We borrow also from
Epstein and Schneider (2007); for example, our running example of a sequence of Ellsberg urns
is adapted from one of their examples. The latter paper is designed for dynamic applications

3



view is that the above critique is unrelated to the assumption of exchangeability�
as will be amply demonstrated, symmetry is often a natural assumption�but stems
rather from the assumption in SEU that beliefs can be represented by a proba-
bility measure.3 Accordingly, the model we describe combines the inspirations of
Ellsberg and de Finetti in that it adapts to a setting of repeated experiments mod-
els of ambiguity averse preferences (speci�cally, the maxmin model of Gilboa and
Schmeidler (1989)) that were designed to accommodate the behavior pointed to
by Ellsberg, thus paralleling de Finetti�s adaptation of SEU. Just as de Finetti�s
model is generally thought of in prescriptive terms, the model we describe is
primarily normative:4 it is intended to guide choice by sophisticated thoughtful
individuals who are aware of the limits of their understanding of a complex en-
vironment (these are not boundedly rational or behaviorally biased individuals).
Section 4 models ex ante choice, Section 5 illustrates its application, and Section
6 considers how to expand the model to include updating and inference. In the
latter connection our objective is not to model econometricians per se, but rather
to help decision-makers who, as part of their decision-making process, may wish
to draw inferences from available data in order to lead to more informed choices.
Accordingly, we take preference as the primitive and rules for inference are de-
rived from assumptions about preference. It is well known that ambiguity poses
di¢ culties for updating and that there is no consensus updating rule analogous
to Bayes�Rule. The thrust of this section is two-fold. First, we employ Epstein
and Seo (2011, Theorem 2.1) to describe the precise modeling trade-o¤ between
dynamic consistency in updating, exchangeability (or symmetry) and ambiguity
aversion. This gives a unifying perspective on various updating rules that have
been proposed, including the dynamically consistent rule in Epstein and Schneider
(2003a, 2007), and also suggests alternative directions for further study. Second,
we outline an updating rule axiomatized in our (2010) paper that satis�es dynamic
consistency in a limited but important class of environments, and that has a num-
ber of interesting features: It models learning that is less ambitious�some but not
necessarily all unknown features will be learned�and it prescribes inference when
signals are di¢ cult to interpret.
Though the paper describes signi�cant progress towards addressing the cri-

typical in macroeconomics and �nance, while our focus is (and has been) on cross-sectional
applications.

3Thus the culprit in our view is probabilistic sophistication (Machina and Schmeidler, 1992).
4There is a descriptive component to such modeling given the experimental evidence in

Epstein and Halevy (2013).
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tiques of the exchangeable Bayesian model, a message we would like readers to
take away is that there remain interesting projects for future research, including
both applications of the generalized exchangeable model to applied questions in
IO, for example, and also further theoretical developments, particularly in mod-
eling updating.

2. Motivating Examples

2.1. Entry games: multiple equilibria

A policy maker (PM) must choose a policy for a number of markets, the conse-
quences of which depend on how �rms in these markets behave. Her view is that
in the ith market, i = 1; :::; I, two �rms (who di¤er across markets) play the entry
game with payo¤s (in utils) given by the following matrix:

out in
out 0; 0 0; 1� "2i
in 2� "1i; 0 �1 � "1i; �2 � "2i

The parameter � = (�1; �2) 2 � does not vary across markets, but the random
factor "i = ("1i; "2i) does vary. The set of possible outcomes in each market is
S = f0; 1g�f0; 1g, where (1; 0) indicates that �rm 1 chooses in and �rm 2 chooses
out, and so on. Obviously, an experiment in our earlier language is identi�ed here
with a market.5

For concreteness adapt the set up in Ciliberto and Tamer (2009) by taking
�rms to be airlines and markets to be trips between pairs of airports. The decision
maker is the government who is contemplating constructing one small or a large
airport. An important consideration is that one airline is large (�rm 1) and the
other is small (�rm 2) in every market. Thus, were the airport to serve only one
market, then a small airport would be preferable if serving only the small airline
and the large airport would be superior if the large airline were to enter, either
alone or with the smaller one. In this case, construction of a small airport could

5All of the axiomatizations to which we refer, including de Finetti�s seminal result, assume
in�nitely many experiments. That does not require that there literally be in�nitely many mar-
kets, for example; it is enough that the PM view the actual set of I markets as a subset of an
in�nite set where she would satisfy exchangeability and other relevant axioms. Of course, even
that is not necessary if one wishes only to apply the functional forms. Accordingly, we assume
below in both the model description and in all examples that I � 1.
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be thought of as a bet on the outcome (0; 1) and choice of a large airport would
amount to a bet on f(1; 0); (1; 1)g. More generally, the value of the airport is tied
to all markets that begin or end at that airport, and thus a construction plan is an
act, that is, a mapping from SI

0
to the space of payo¤s, where I 0 indexes markets

that begin or end at the constructed airport.6

A key element of PM�s theory is that both � and "i are known to the �rms
and that they play a mixed strategy Nash equilibrium, simultaneously in all mar-
kets. She knows the structure of the game but not the values of � or the "i�s.
She views the latter as distributed i.i.d. across markets according to the measure
m 2 �(E), for some set E ; and she has some information about �, perhaps from
past experience in other markets, and is able to form a set of priors about its val-
ues. However, her remaining uncertainty is more problematic. Importantly, there
may be multiple Nash equilibria in any market, and she does not understand at all
how selection occurs and thus how it may di¤er or be related across markets. In
other words, ignorance of the selection mechanism creates uncertainty (or ambigu-
ity) about possible heterogeneity and correlation across markets that she cannot
describe but that she may suspect is important. As a consequence, she would
be unable to make probabilistic predictions of market outcomes even if she knew
the parameter �; when knowledge of all parameters of a theory are inadequate for
making probabilistic predictions we refer to the theory as incomplete. How should
she choose between available policies?
There are data, consisting of outcomes in markets that have previously played

out, that can be used to inform choice. Speci�cally, PM will generally try to infer
what these data say about the unknown parameter �, which is assumed to be
constant across markets. However, the multiplicity of equilibria and ignorance of
selection also make the inference problem nonstandard. That is because they make
it di¢ cult to interpret what observed outcomes imply about �. In general, an out-
come, say (1; 0) for example, could mean that � and the realized �s take on values
that make (1; 0) very likely to arise from a unique mixed strategy equilibrium,
or it could be that their values are consistent with multiple equilibria and that
(1; 0) is very likely given the selected equilibrium. Given also PM�s general unwill-
ingness or inability to assign a probability to (1; 0) being selected, the question
"what is the likelihood of (1; 0) given �?" does not have a unique answer, which
makes inapplicable inference procedures that come to mind. However inference

6The example assumes that the size of the new airport does not a¤ect the payo¤ of the
players. In Section 5, we demonstrate how to accommodate also policies that a¤ect payo¤s of
the airlines.
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is conducted, two properties are intuitive. First, it will lead to updated beliefs
about � but, because data can be interpreted in more than one way, posteriors do
not necessarily converge to certainty about the truth. Second, PM will not learn
about selection: Given that she does not understand selection well enough even
to theorize about it, she cannot, nor does she expect to, learn about it. Thus even
asymptotically with unlimited data, ignorance of selection will persist.
The above example is indicative of the class of complete information entry

games studied in the applied IO literature; see, for example, Tamer (2003, 2010),
Ciliberto and Tamer (2009) and the references therein. This literature has fo-
cussed on identi�cation, estimation and inference with the novel feature being
that parameters are only partially identi�ed�for example, in general a (nonsin-
gleton) set of values for � is consistent with a sample even asymptotically. We
take from much of that literature the view expressed most forcefully by Manski
(2003) and Tamer (2003, 2010), that modelers should avoid assumptions that are
driven by convenience (for example, adding an ad hoc assumption about the selec-
tion mechanism in order to permit point identi�cation) rather than by economic
theory. These authors often have in mind an empirical modeler, but the same
principle has merit when applied to a decision maker such as our PM, who is
therefore seen as seeking to make decisions that are robust to model uncertainty,
say to the i.i.d. assumption across markets.7

Conclude this example by noting that it can be generalized in many directions.
A broader class of entry games can be considered (Section 5). More signi�cantly,
the PM may be unwilling to commit to the hypothesis of Nash equilibrium. For
example, she may be con�dent only that observed play is rationalizable, which
makes multiplicity even more prominent. Finally, she may not be certain of the
game form and seek robustness also with respect to this uncertainty. For example,
Haile and Tamer (2003) point to the free-form nature of most English auctions in
practice and advocate making weak assumptions about bidders�behavior. Then
equilibrium behavior in each auction is multiple-valued and can be narrowed down
and related across auctions only via heroic and often unjusti�able assumptions.
Haile and Tamer are concerned with an empirical modeler who is trying to draw
inferences about primitives from data on outcomes in a set of related auctions.
However, ambiguity about the game form has implications also for an auctioneer
who is choosing reserve prices for forthcoming auctions (Aryal and Kim, 2013).

7The connection between partial identi�cation and axiomatic models of ambiguity averse
preference is due to Epstein and Seo (2013).
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2.2. Cross-country growth and modeling residuals

Suppose that payo¤s to an action depend on the realization of multiple random
events. For example, let the outcome si of the i-th experiment be given by an
equation of the form

si = � � xi + �i, i = 1; 2; :::; I. (2.1)

Experiments may di¤er and the vectors xi describe the observable heterogeneity.
The key issue is the decision-maker�s model of the residuals or unobserved het-
erogeneity �i, which are the source of the uncertainty she faces. If all sources of
heterogeneity of which she is aware are included in the xis, then it is natural,
as in the exchangeable Bayesian model, that she be indi¤erent between any two
bets on the realization of residuals that di¤er only in a reordering of experiments.
However, the decision-maker may not be con�dent that the xis describe all rele-
vant di¤erences between experiments, in which case she may not be certain that
residuals are identical, or that they are related in any particular way. Though she
may not be able to describe further forms of heterogeneity, she may be worried
that there are gaps in her understanding that could be important and thus she
may wish to take into account their possible existence when making choices.
Brock and Durlauf (2001) emphasize the appropriateness of such a lack of

con�dence in the context of the cross-country growth literature; an experiment
corresponds to a country and the outcome is its growth rate. They point to the
open-endedness of growth theories as a reason for skepticism that all possible dif-
ferences between countries can be accounted for (p. 231), and they emphasize the
importance of "heterogeneity uncertainty." Their remarks can be understood to
apply both to an econometrician who is trying to identify the sources of di¤eren-
tial growth rates, and also to a policy maker who must choose between policies
that will a¤ect growth rates.
The model of residuals is also a concern in robust statistics where the �is

are regression residuals and nonrobustness of standard statistical procedures is a
motivation (Huber (1981)). This literature focuses primarily on robustness with
respect to the prior, and much less so on robustness with respect to the likelihood
which will be at least as important in the work we describe. In particular, limited
con�dence in the assumption that residuals are i.i.d. is not addressed. This is also
true in most of the robust Bayesian literature (Kitagawa (2012), for example).
However, Menzel (2011) studies a computational method to e¢ ciently perform
robust Bayesian inference in games while relaxing the assumption that equilibrium
selections are i.i.d. Because it is closest to our model, we discuss it further in
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Section 7 after describing our model. None of the preceding literature addresses
explicitly the connection to preference and choice.

2.3. Urns

As a running example, consider a sequence of I Ellsberg urns. You are told
that each contains 100 balls that are either red or blue. You may also be given
additional information, symmetric across urns, but it does not pin down either the
precise composition of each urn or the relationship between urns. In particular,
the information is consistent with the urns di¤ering in composition. One ball
will be drawn from each urn with all draws being simultaneous. You must choose
between bets on the outcomes of the sequence of draws.
The ranking of bets depends on how the urns are perceived. One conceivable

view of the urns is that they all have identical compositions, with the unknown
proportion � of red balls. In the de Finetti model, beliefs would be represented
by a single prior over possible values of the parameter �. More generally, � may
be ambiguous. Regardless, it is part of a complete theory of the experiments�
knowledge of the parameter � would imply a unique (probabilistic) prediction of
the outcomes of draws from all urns. However, there is no reason to be con�dent
that the urns are identical except in the isolated case where you are told that they
are.
At the other extreme is extreme ignorance, both about the composition of

each urn and about how urns are related. In this case, the only common factor
is that the proportion of red balls lies in [0; 1] for each urn, which interval thus
constitutes the (here known) parameter. The parameter is trivial in the sense that
knowing it does not help to predict outcomes, re�ecting the perception of extreme
heterogeneity.
More generally, consider an intermediate perception. For example, one might

perceive that the fraction � of the 100 balls is selected once and for all by a single
administrator and then placed in each urn, while the other (1� �) 100 vary across
urns in a way that is not understood (as in the extreme perception above). If �
denotes the proportion of red in the common group of balls, then the probability
of drawing red from any urn lies between �� and ��+(1� �). Thus the unknown
parameter that is common across urns can be thought of as the probability interval
for red given by J = [��; �� + (1� �)]. In general, there will be ambiguity both
about the degree � of commonality across urns and about the color composition
of the common group. Thus ambiguity about the correct interval J is to be
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expected. Note that knowledge of J would be useful for prediction, though it
does not yield a unique probability. In addition, since no information is provided
about the relationship between urns, one would expect ambiguity also about the
color composition of the variable component consisting of (1� �) 100 balls, and
about how that color composition varies across urns. The bottom line is that
outcomes of experiments depend on both common factors (parameters), about
which prior beliefs may be imprecise, and on factors that vary across experiments
in some unknown or poorly understood fashion and that could render experiments
heterogeneous.

3. Motivating Behavior

Thus far, both in the critique of the exchangeable Bayesian model and in descrip-
tions of the examples, our language has been informal and vague, and we have
been referring to unobservables such as "perceptions." Here we describe behavior
that is in principle observable and that gives more precise meaning to expressions
such as "aversion to ambiguity about how experiments may di¤er" and so on.
In a normative context, one would pose the choices below to the decision-maker
in order to elicit whether ambiguity is a concern and subsequently whether the
model described in the next section captures it adequately. We describe behavior
in the simplest context possible�the sequence of urns example�and leave it to the
interested reader to refer to the cited sources for more general treatments. Later
we use the behavior identi�ed here as a measuring stick for evaluating models.
We note at the outset that the exchangeable Bayesian model is inconsistent with
all of them.
The set of outcomes for each draw is fR;Bg, and the set of possible sequences

of draws is 
 given by


 = S1 � S2 � :::� SI = SI , where Si = S = fR;Bg for all i.

To emphasize that the draw is from urn i, we sometimes write Si = fRi; Big.
Consider the choice between bets on the colors drawn. A bet on drawing red from
urn i is also denoted Ri; the interpretation is that the individual receives 1 util if
red is drawn and 0 utils otherwise. Payo¤s are denominated in utils as in game
theory.8 Similarly, RiBj denotes both the obvious event and the corresponding

8Justi�cation in our context can be provided by adopting an Anscombe and Aumann domain,
where it is assumed that: (i) the individual can rank bets that deliver state-contingent lotteries
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bet. Given any two (events and) bets A0; A � 
, we consider also their mixture
1
2
A0 + 1

2
A, which is the bet (or in more common usage, the act) that yields the

following payo¤s:

1
2
A0 + 1

2
A �

2664
1 A0 \ A
0 
n (A0 [ A)
1=2 A0nA
1=2 AnA0

3775 .
The interpretation is that after all draws have been completed, an unbiased coin
is tossed to determine whether one receives the payo¤ determined by A0 or that
determined by A. This randomization induces a lottery with prizes denominated
in utils. Therefore, if vNM theory is applied to lotteries, one can simply average
payo¤s as indicated. Randomizing between bets thus smooths out some of the un-
certainty associated with the individual bets. Gilboa and Schmeidler (1989) adapt
�nance terminology and refer to uncertainty being hedged through randomization.
We suggest several intuitive properties of preference over bets and their mix-

tures. Each is interpretable as expressing aversion to a particular form of ambi-
guity.
Consider �rst bets on the color of the ball drawn from the �rst urn. Because

there is no information about the composition of the urn, an individual might
value randomization and exhibit the ranking9

1
2
R1 +

1
2
B1 � R1 � B1. (3.1)

This is the intuitive "ambiguity averse" behavior pointed to by Ellsberg in his
two-urn example, as expressed by Gilboa and Schmeidler (1989). The mixture
hedges all uncertainty and gives the outcome 1

2
with certainty, while the bets on

red and blue, though indi¤erent to one another, are ambiguous and hence strictly
less attractive than the sure bet. The remaining rankings re�ect the perceived
relation between urns and thus relate speci�cally to repeated experiments.
A more novel ranking to consider is

1
2
R1 +

1
2
B1 � 1

2
R1 +

1
2
B2. (3.2)

as payo¤s; and (ii) lotteries (acts that are constant over states) are ranked by von Neumann-
Morgenstern theory. From (ii), one can infer a vNM index that can be used to measure util
payo¤s.

9The indi¤erence R1 � B1 is intuitive in the absence of any information that distinguishes
between colors.
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If urns are thought to be identical, there is no meaningful di¤erence between
mixing bets on the same urn versus bets on di¤erent urns. Thus one would expect
indi¤erence. However, if there is (aversion to) ambiguity about heterogeneity, then
the strict preference indicated is intuitive. The mixture on the left eliminates all
ambiguity, (indeed, its payo¤ is 1

2
with certainty), while the mixture on the right

moderates ambiguity about factors that are common across experiments, that is,
about parameters, but it does not hedge ambiguity about how urns may di¤er.
We emphasize that even if urns are not viewed as identical, they are naturally

taken to be indistinguishable in the sense of indi¤erence between any two bets on
sequences of draws that di¤er only in the numbering of urns�this is the preference
version of de Finetti�s exchangeability property for probability measures. The
conceptual distinction between indistinguishable and identical experiments is due
to Epstein and Schneider (2003b). It re�ects the di¤erence between "symmetry
of evidence" and "evidence of symmetry" (Epstein and Seo, 2010).
The following ranking is also interpretable in terms of a concern about hetero-

geneity:
1
2
B1R2 +

1
2
R1B2 � R1B2 � B1R2. (3.3)

The latter indi¤erence says that urns are indistinguishable (or exchangeable). The
strict ranking is the main point. A good scenario for B1R2 is that the �rst urn
has more blue than red balls and the second has the opposite bias, while the
opposite biases constitute a bad scenario. These �good�and �bad�scenarios are
reversed for R1B2. Thus 1

2
B1R2 +

1
2
R1B2 smooths ambiguity about di¤erences,

which motivates (3.3).
Finally, consider

1
2
R1 +

1
2
B2 � R1 � B2. (3.4)

Information about the urns gives no reason for distinguishing between bets on the
same color in di¤erent urns, or between bets on di¤erent colors in the same urn.
Therefore, it is intuitive (even compelling) that R1 � R2 � B2, and transitivity
implies the indi¤erence in (3.4). Turn to the strict preference. The mixture on the
left mixes bets on distinct urns and thus does not hedge ambiguity about idiosyn-
cratic variations across urns. However, it may be valuable if there is a perception
that there exists a common factor, (for example, the interval J = [��; ��+(1� �)]
in the perception of urns described earlier), and if there is ambiguity about the
correct interval. Then mixing between bets on red and blue is valuable, as in
the classic Ellsberg experiment, even where the bets are on the draws from dif-
ferent urns. Thus we interpret (3.4) as indicating aversion to ambiguity about
parameters.
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The exchangeable Bayesian model contradicts each of the behaviors (3.1)-(3.4).
Next we describe a non-Bayesian model that accommodates them all.

4. A Non-Bayesian Exchangeable Model

4.1. Utility

There are I � 1 experiments, indexed i = 1; :::; I. The ordering of experiments
is not temporal, nor is it important. One should think of a cross-sectional setup,
where experiments are conducted simultaneously. It is convenient to �x an order,
which we do, but it is arbitrary. Each experiment yields an outcome in the �nite
set S. The payo¤ to any chosen physical action depends on the entire sequence
of outcomes and thus on the realized state in the state space 
 given by


 = S1 � S2 � :::� SI = SI , where Si = S for all i.

The decision-maker chooses between acts, where each act f is a function from

 into real-valued payo¤s denominated in utils.10 The set of all acts is F . To
describe choice between acts, we adopt as a primitive the preference % on F . In
this section we describe % through its utility function U : F ! R. It is to be
thought of as describing preference conditional on a �xed and suppressed sample
of outcomes for related experiments; ex ante preference corresponds to the case
where the sample is empty. Dependence on the sample, that is, inference, is
treated explicitly in Section 6.
The benchmark is de Finetti�s model, which we rewrite more fully here in

terms of utility:

U (f) =

Z



fdP , and P (�) =
Z
�(S)

`I (�) d� (`) . (4.1)

Following Gilboa and Schmeidler (1989), we generalize by allowing the individual
to entertain a nonsingleton set P of predictive priors. The conditionally i.i.d.
representation suggests that the multiplicity of predictive priors can arise in two
ways: (i) the single prior � is replaced by a setM of priors; and (ii) the (uncertain)
single likelihood is replaced by a (closed and convex) set L of likelihoods.11 More
10Technical details are completely ignored.
11Troughout each L lies in K (� (S)), the set of all closed and convex subsets of the probability

simplex �(S). Priors � over these sets are taken to be de�ned on a (suitably de�ned) Borel
sigma algebra of K (� (S)). Finally, when I =1 one has to replace L1 by its closure in order
to ensure existence of minima; alternatively, one could use in�ma.
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precisely, for any L � �(S), de�ne

LI = f`1 
 :::
 `I : `i 2 Lg , (4.2)

the set of all product measures that can be constructed by taking selections from
L. Then we adopt the following functional form for P and the corresponding
utility function:12

U (f) = min
P2P

Z



fdP and P =
�Z

LId� (L) : � 2M
�
. (4.3)

De Finetti�s model is the special case whereM = f�g is a singleton and where �
attaches positive probability only to sets L that are singletons.
It is useful to write utility in the form

U (f) = min
�2M

Z
VL (f) d� (L) , (4.4)

where

VL (f) =

�
min
P2LI

Z



fdP

�
. (4.5)

Each utility function VL is computed as though there is certainty about the set
of likelihoods. The Bayesian special case has i.i.d. beliefs. For this reason (and
others that we won�t give here), refer to each VL as an I.I.D. utility function.13 It
can be thought of as the special case of U for whichM = f�g where � (L) = 1
for some set L, and thus14

P = LI : (4.6)

For such a utility function VL, the interpretation is that each experiment is
believed to be driven by some probability law in L where L, but not necessarily
the probability law, is common to all experiments. Put another way, LI contains
many nonidentical product measures and di¤erent measures from L may apply to
di¤erent experiments, which suggests that heterogeneity is admitted as a concern.

12If � has �nite support fL1; :::;LNg and �n = � (Ln), then

P = �Nn=1�n � (Ln)I � f�Nn=1�nPn : Pn 2 (Ln)Ig.

More generally, integration is in the sense of Aumann.
13We reserve the lower case acronym i.i.d. for probability measures.
14This special case can be found in Walley and Fine (1982).
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Next, just as the de Finetti representation generalizes i.i.d. to exchangeability, ad-
mit uncertainty about which set L applies. If that uncertainty can be represented
by a prior �, then P is an "average." If there is ambiguity about the correct set L,
then the expression for P in (4.3) is obtained. Being concerned that the outcomes
of experiments may not be i.i.d. and having limited prior information about the
factor common to all experiments, the individual seeks to make decisions that are
robust in both dimensions.
The role of the multiplicity of likelihoods in the form of the sets L merits

emphasis. Because of de Finetti, we are accustomed to thinking of experiments
(or random events) as being parametrized by a probability law, or by a probability
level when the experiment is binary. Here they are parametrized instead by a set
of probability laws, or by a probability interval in the binary case. One should
think of there being ignorance within each set L�there is no distribution within
L. As a result, unlike in the Bayesian model, certainty about the parameter still
leaves scope for some ignorance about the state space (as re�ected by maxmin
utility with P = LI).
Consider also two special cases of the model. Refer to the single likelihood

model if each � in M attaches positive probability only to sets L that are sin-
gletons. Then, in the obvious notation, we can express the corresponding set of
predictive priors in the form

P =
�Z

�(S)

`Id� (`) : � 2M
�
: (4.7)

The representation suggests ambiguity about the true probability law for each
single experiment, but certainty that experiments are i.i.d. Refer to the single
prior model ifM = f�g is a singleton, in which case (4.3) simpli�es to

P =
Z
LId� (L) . (4.8)

The de Finetti model equals the intersection of these two special cases.
Though the functional forms suggest interpretations, these call for behavioral

justi�cation. First note that the model satis�es the natural symmetry condi-
tion, thus justifying the descriptor "exchangeable." To elaborate, let � be any
�nite permutation of f1; 2; :::; Ig. Given an act f , de�ne the permuted act �f by
(�f) (s1; :::; sI) = f

�
s�(1); :::; s�(I)

�
. Then

U (�f) = U (f) . (4.9)
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The other implied behaviors we consider are those given in (3.1)-(3.4) for the
urns example. Thus the next section describes how the model works in that
example.

Remark 1. The above model is intended to give a �avor of the models that have
been developed. We mention some variations or generalizations. In the single
prior model as de�ned above, maxmin is used to aggregate over the set of priors
in (4.7), but one could adapt other forms of aggregation from the literature on
ambiguity averse preferences. See Al Najjar and de Castro (2010), Klibano¤,
Mukerji and Seo (2012), and Cerreia-Voglio et al (2013), for example. However,
none of these generalizations a¤ects the observation below that a model with
single likelihoods cannot rationalize (3.2) or (3.3). There is also an alternative way
to model multiple likelihoods (Epstein and Seo, 2013). Roughly, it di¤ers from
(4.8) by expanding the set LI of product measures to include also some measures
that are not products, thereby modeling ambiguity about the correlation between
experiments.

4.2. The Urns Example Revisited

Take S = fR;Bg. The binary case permits a simpli�ed description. Each set L
can be identi�ed with a unique closed interval J of probabilities for red:

J = [min
`2L

` (R) ;max
`2L

` (R)] � [0; 1],

Therefore, utility is de�ned given a prior �, or a set of priorsM, over the set of
all subintervals of [0; 1].
Any of the three alternative perceptions described in Section 2.3 can be accom-

modated. Certainty that the urns are identical is modeled by the single likelihood
special case. If also there is a single prior, M = f�g, then there is no ambigu-
ity about the common composition and one obtains the exchangeable Bayesian
model. Alternatively, complete ignorance is modeled by certainty that the interval
J = [0; 1] applies; one obtains an I.I.D. utility function corresponding to (4.6) and
L = �(fR;Bg). Finally, the intermediate perceptions described in Section 2.3
can be accommodated by suitable speci�cations of the set of priorsM.
Excluding knife-edge speci�cations, the non-Bayesian model delivers all of the

rankings (3.1)-(3.4) described in the last section, which fact comprises the norma-
tive case for the model provided herein.15 In addition, these rankings discriminate

15A more complete normative argument would demonstrate that the intuitive behavior also
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between the single priors and single likelihoods special cases and thus make the
distinction between them empirically meaningful.
We give some details supporting these claims. The expression (4.4) for util-

ity indicates that U (f) is a suitable aggregate of I.I.D. utilities. Therefore, it
is enough (with one exception below) to understand what I.I.D. utility functions
imply for the rankings of interest. For bets on a single urn, as in (3.1), VL ac-
commodates Ellsbergian ambiguity averse behavior exactly as shown by Gilboa
and Schmeidler (1989). The second ranking, which amounts to 1

2
� 1

2
R1 +

1
2
B2,

is satis�ed because utility is evaluated via the worst-case scenario and because
the functional form for utility allows urns to di¤er. In particular, the mixture
1
2
R1 +

1
2
B2 is evaluated as if the �rst (second) urn has the smallest (largest) pro-

portion for red consistent with the probability interval corresponding to L. Here
are some details:

VL
�
1
2
R1 +

1
2
B2
�
= min

`1;`22L

�
1
2
`1(R1) +

1
2
`2(B2)

�
= 1

2
min
`12L

`1(R1) +
1
2
min
`22L

`2(B2)

= 1
2
min
`12L

`1(R1) +
1
2
min
`12L

`1(B1)

= 1
2
� 1

2

�
max
`12L

`1(R1)�min
`12L

`1(R1)

�
,

which is strictly less that 1
2
unless L is a singleton. The explanation of why (3.3)

is accommodated is similar. The worst-case for R1B2 is that the �rst urn is biased
towards blue and the second towards red; the opposite pattern is also possible and
is given equal weight (R1B2 and B1R2 are indi¤erent by exchangeability), but the
mixture hedges this uncertainty and thus is preferable.
Finally, for (3.4), it is not enough to focus on I.I.D. utility functions, and

implies the model. Such a characterization of the model would require an axiomatic treatment
that is beyond the scope of this paper. See Section 4.3 for more on the normative case for the
model.
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therefore we o¤er the following elementary proof:

U
�
1
2
R1 +

1
2
B2
�
= min

�2M

Z
VL
�
1
2
R1 +

1
2
B2
�
d�

= min
�2M

Z �
1
2
VL (R1) +

1
2
VL (B2)

�
d�

� 1
2
min
�2M

Z
VL (R1) d�+

1
2
min
�2M

Z
VL (B2) d� (4.10)

= 1
2
U (R1) +

1
2
U (B2)

= 1
2
U (R1) +

1
2
U (B1) = U (R1) .

It remains to see when the weak inequality is actually strict and also R1 � B1.
To illustrate how both conditions may arise, suppose that only two probability
intervals for red are thought relevant�I = [ 7

16
; 11
16
] and its re�ection about 1

2
, I 0 =�

5
16
; 9
16

�
. (Formally, they correspond to sets L and L0 respectively; less formally,

they are the two values thought possible for the parameter that is common to all
urns.) Roughly, every urn is seen as being consistent with a color composition
that is either biased towards red (in the case of I), or towards blue (in the case
of I 0). For simplicity, suppose further that M = f�; �0g, where � (fI; I 0g) =
�0 (fI; I 0g) = 1, and

� (I) = �0 (I 0) .

Thus there is ambiguity about the intervals, but the ambiguity is symmetric in
colors: it is easily seen that R1 � B1. Furthermore, if � (I) > 1

2
, then the weak

inequality above is strict because the worst-case prior for R1 is �0 and that for B2
(or equivalently for B1) is �, and � 6= �0.
The two special cases of the model perform di¤erently with regard to (3.1)-

(3.4). Both can accommodate the standard Ellsberg experiment (3.1). However,
of the remaining behaviors, the single likelihood model can rationalize only (3.4)
and the single prior model can rationalize only (3.2) and (3.3).16

4.3. Prior beliefs and the LLN

It seems like a daunting task to form priors over sets L or equivalently when the ex-
periment is binary, over corresponding probability intervals. A normative exercise
should assist the decision-maker to form priors. In the Bayesian context, guidance

16For the single prior model, the weak inequality in (4.10) is actually an equality. Therefore,
the model implies indi¤erence throughout (3.4). Details are left to the reader.
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is provided by the classical law of large numbers (LLN) through the connection it
a¤ords between beliefs about parameters (` 2 �(S)) and the willingness to pay
for various bets on limiting empirical frequencies; the presumption is that the lat-
ter is more readily accessible to introspection. A similar result can be established
here, through use of a LLN for nonidentical product measures (Hall and Heyde
(1980, Theorem 2.19)), for the single prior special case of our model.17 Naturally,
arguments based on a LLN presume in�nitely many experiments (I =1).
Denote by �n (�) (!) the empirical frequency measure given the sample !;

�n (A) (!) is the empirical frequency of the event A � S in the �rst n experiments.
A decision-maker who is certain that experiments are identical and independent
maximizes subjective expected utility with an exchangeable predictive prior; de-
note by � her prior on �(S). Then the classical LLN for exchangeable measures
implies that, for any K and events Ak � S, k = 1; :::; K, and for any real numbers
ak,18

�(\Kk=1f` 2 �(S) : ` (Ak) � akg) = U
�n
! : lim

n
�n (Ak) (!) � ak 8k

o�
. (4.11)

Thus the prior probability assigned to the sets indicated on the left hand side
equals the utility, indeed the certainty equivalent, of the right hand side bets on
limiting empirical frequencies. Because � is completely determined by its values
on the former sets, a decision-maker can calibrate her prior � if she can arrive at
certainty equivalents for the indicated bets.
Such a calibration method extends to a decision-maker who satis�es the single

prior version of our model. Because she is uncertain about how experiments may
di¤er, she is not certain that empirical frequencies converge. Nevertheless, there
exists the following connection between prior beliefs and certainty equivalents for
suitable bets on empirical frequencies:

�(\Kk=1fL � �(S) : inf
`2L

` (Ak) � akg) = U
�n
! : lim inf

n
�n (Ak) (!) � ak 8k

o�
.

(4.12)
For example, imagine the decision-maker in the sequence-of-urns context strug-
gling with the formation of a prior, and in particular with assessing the prior

17An extension to multiple priors is the subject of current research and will be reported
elsewhere. The result we outline here is modeled on a result in Epstein and Seo (2013) which
also assumes a single prior but di¤ers in that multiple likelihoods are as described in Remark 1.
18f! : lim�n (Ak) (!) � ak 8kg denotes both the event and the bet on the event with winning

and losing prizes 1 and 0. Similarly below.

19



probability of the collection of all sets L for which the minimum probability of
red is at least a. According to (4.12), that prior probability should equal her
certainty equivalent of the bet that, for all � > 0, the empirical frequency of red
is at least a� � in all su¢ ciently large samples.
To obtain a fuller counterpart of the Bayesian calibration result, one needs

to consider not only bets on events as in (4.12), but also more general acts, as
described in the following theorem. For any ! = (s1; :::; si+1; si+2; :::) 2 
 = S1,
T i! � (si+1; si+2; :::), the i-fold shifted sequence. The next theorem, proven in
the appendix, provides a way to calibrate a prior.

Theorem 4.1. Let utility correspond to the single prior special case of (4.3).
Then, for any f1; :::; fK acts over S1 = S, and for any real numbers a1; :::; aK ,

�

�
KT
k=1

�
L : min

`2L

Z
fkd` � ak

��
= U

 (
! : lim inf

n

1

n

nX
i=0

fk
�
T i!

�
� ak 8k

)!
.

(4.13)
Moreover, if �0 satis�es the same condition for all fk and ak, then �0 = �.

5. Modeling the Entry Game

Our objective here is to demonstrate, using the entry game example from Section
2, that our model can be applied naturally to concrete settings that have been of
interest in the empirical IO literature.
As before take the state space S = f0; 1g � f0; 1g to describe outcomes in

any single market. Any policy yields a payo¤ as a function of the state realized in
every market i = 1; :::; I; denote by I also the set f1; 2; :::; Ig. For example, payo¤s
in utils might be constructed by aggregating the payo¤s accruing from individual
markets. Then any policy is associated with an act f in F . Thus policy choice
can be determined by maximizing the utility function U of the form in (4.3) over
the set of feasible acts. It remains to adopt and motivate a particular speci�cation
of the set P of predictive priors underlying U .
The presence of multiple equilibria is key. For each � and ", denote the set of

equilibrium mixed strategy pro�les in any single market by 	� ("). Thus outcomes
in any single market are summarized by the equilibrium correspondence 	� : E  
�(S), for each possible �. Because the outcomes in all markets are relevant,
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consider the correspondence 	I� : EI  �(S1), where

	I� ("1; :::; "I) =
IO
i=1

	� ("i) � f`1 
 :::
 `I : `i 2 	� ("i) for all ig .

Accordingly 	I� ("1; :::; "i; :::) is the set of all probability distributions on the se-
quence of market outcomes induced by taking all possible selections of equilibria
in the di¤erent markets - corresponding to the policy maker�s ignorance of the
selection mechanism and how it varies across markets - and by assuming that ran-
domizations in di¤erent markets are stochastically independent. Beliefs on EI are
described by the i.i.d. product measure mI . Thus the set of possible likelihoods
for SI (given �) is LI� � �

�
SI
�
given by

LI� =
Z
EI
	I� ("1; :::; "I) dm

I ,

the set of all mixtures, using m and all possible selections from the sets 	� (").19

If we de�ne

L� =
Z
E
	� (") dm; (5.1)

then

LI� =
Z
EI
	I� ("1; :::; "I) dm

I = (L�)I , (5.2)

where the latter is de�ned in (4.2). The following special case illustrates:

=

Z
E

Z
E
f`1 
 `2 : `i 2 	� ("i) for i = 1; 2g dm ("1) dm ("2)

=

Z
E
fp
 `2 : p 2 L�; `2 2 	� ("2)g dm ("2)

= fp
 q : p; q 2 L�g :

Thus the current speci�cation corresponds to the I.I.D. model of beliefs in (4.6).
Finally, � is unknown. Let beliefs about � be given by the (possibly singleton)

set of priorsM � �(�). Each prior � inM leads to the set
R
LI�d� (�) of pre-

dictive priors. Hence, for generalM, one obtains the following set P of predictive
19The meaning of this notation is as in (4.3). If m has �nite support, then the integral over

EI reduces to a �nite sum; in general, integration of the random correspondence is in the sense
of Aumann.
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priors:

P =
[
�2M

�Z
LI�d� (�)

�
.

The corresponding utility function is de�ned as in (4.3).
If the (mixed strategy) equilibrium is unique for all " and � and if there is no

prior ambiguity about �, then P reduces to a singleton consisting of a mixture of
i.i.d.�s, and one obtains de Finetti�s exchangeable Bayesian model. Note that it
is only through the nonsingleton sets LI� that our speci�cation re�ects the policy
maker�s unwillingness to take a stand on the equilibrium selection mechanism and,
in particular, her view that selection can vary across markets in a way that she does
not understand. The exchangeable Bayesian model does not do so. Admittedly,
here we are arguing based on functional forms rather than in terms of behavior,
but the argument can be translated into behavioral terms as was done in the urns
example.
A number of generalizations are possible. First it is important to recognize

that the speci�cation (5.1) corresponds to a very special case of our model. Recall
that 	� (") denotes the set of all distributions over outcomes in a single market
that can be generated by varying over all (mixed strategy) Nash equilibria for
the given " and �. Setting each L� to be an average over � of these large sets
	� (") builds in complete ignorance about selection and thereby also precludes
di¤erences between policy makers in how they regard selection. Neither property
is required by the model in Section 4; in particular, the set of priorsM can vary
with the policy-maker, and so also can the sets L to which some prior � in M
assigns positive probability. In particular, for the entry game one can modify the
utility speci�cation by taking

L� =
Z
E
	� (") dm,

where 	� : E  �(S), is a subcorrespondence of 	�, that is, for each � and �,

	� (") � 	� (") .

At the extreme of no ignorance, each 	� (") consists of only a single measure on
S, say p�;�, which models a policy-maker who is certain about the probabilistic
selection mechanism at work in each market, and thus is able to accommodate
multiplicity by the usual rule for reducing multistage lotteries. For each given
�, her beliefs are described by p� �

R
E p�;"dm for each market and i.i.d. across
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markets. In the absence of ambiguity about �, she behaves as in the de Finetti
model using the single predictive prior

R
(p�)

Id� (�). More generally, she might
view p�;" as a focal distribution, but not being completely con�dent in its validity,
she might use 	� given by

	� (") = (1� a) fp�;"g+ a	� (") (5.3)

= f(1� a) p�;" + aq : q 2 	� (")g,

where a lies between 0 and 1. The two extremes of complete ignorance and no
ignorance correspond to a = 1 and 0 respectively. Because each set 	� (") expands
as a increases, intermediate values for a provide a simple way to parametrize
di¤erences in ambiguity aversion between policy-makers.
Turn to other generalizations. Any �nite number of �rms is easily accom-

modated. So is an incomplete information game with Bayesian-Nash equilibria
because multiplicity of Bayesian-Nash equilibria generates multiple likelihoods
just as the complete information game does. The assumption that "i follows a
particular measure m can be relaxed. Instead of assuming a known distribution
m on E , we could allow m = m� to depend on a �nite dimensional parameter �
that would be appended to �.
Another generalization is to permit di¤erences both between markets and be-

tween players. Accordingly, suppose that payo¤s in the entry game for market
i depend also on a variable xi that is a characteristic of the market and/or the
players and is observable to both players and the analyst. For example, consider
the following payo¤ matrix:

out in
out 0; 0 0; �1x1i � "2i
in �2x2i � "1i; 0 �1x1i � �1 � "1i; �2x2i � �2 � "2i

(5.4)

The numbers �1 and �2 re�ect the e¤ect of competition. The variable xi = (x1i; x2i)
can represent the size of the airlines, aviation regulations or the sum of the pop-
ulations of the two cities connected by market i. If xi includes the size of the
airport, then airline payo¤s are allowed to depend on airport size. For each i, xi
lies in the �nite set X. Now de�ne the state space S for each market by

S = (f0; 1g � f0; 1g)X ,

the set of functions from X to outcomes. This speci�cation makes intuitive sense:
uncertainty regarding market i concerns which outcomes will be realized for each
given xi.
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To complete the speci�cation, assume that beliefs about ("1i; "2i) are described
by m�, where � is an unknown parameter. Let � = (�1; �2; �1; �2; �). For each
xi 2 X and "i 2 E , denote the set of equilibrium mixed strategy pro�les by
	�;xi ("i) � �(f0; 1g � f0; 1g). Thus we have the equilibrium correspondence

	� : E  (� (f0; 1g � f0; 1g))X ;

where 	� ("i) = (	�;xi ("i))xi. However, (� (f0; 1g � f0; 1g))
X can be identi�ed

with a subset of�
�
(f0; 1g � f0; 1g)X

�
. (Identify p = (px)x2X , px 2 �(f0; 1g � f0; 1g),

with the product measure 
x2Xpx, an element of �
�
(f0; 1g � f0; 1g)X

�
.) Thus

we arrive at the equilibrium correspondence

	� : E  �
�
(f0; 1g � f0; 1g)X

�
= �(S) .

Finally, the set P and the utility function U can be constructed as above.
Just as in the simpler set up discussed earlier, objects of choice correspond

naturally to acts. For example, a bet on the outcome f(1; 0); (1; 1)g in market i,
where xi = �x is given, corresponds to the act f i, f i : S ! [0; 1], where for each
s 2 S = (f0; 1g � f0; 1g)X ,

f i (s) =

�
1 if s (�x) = (1; 0) or (1; 1)
0 otherwise.

To illustrate the generality of the framework, consider a more complex and
realistic version of the airport construction decision problem. Let zji be the size
of airline j in market i, let yji indicate whether airline j in market i plays in
(yji = 1) or out (yji = 0), and denote by I the set of markets that begin or end
at the new airport. Then H =

P
j2f1;2g;i2I yji � zji is the total size of all airlines

entering these markets. The government chooses d, the size of the airport, to
maximize u (d=H) � c (d) where u and c are increasing functions that represent
the bene�ts and the costs of constructing an airport. Normalize u and c so that
u (d=H)� c (d) 2 [0; 1] for all possible values of d and H. Another consideration
is that airlines�payo¤s may depend on the size of the airport. Thus we take xji
in payo¤matrix (5.4) to be the vector (zji; d). Now we can translate the policy of
constructing an airport of size d into the act fd from SI to [0; 1] de�ned by

fd (!) = u (d=H)� d,

where H =
P
i2I
yji � zji, and (y1i; y2i) = !i ((z1i; d) ; (z2i; d)) .
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(Again, for ! 2 SI , each !i 2 S is a function from X to f0; 1g � f0; 1g.) Given
a �nite feasible set of airport sizes, the choice between them is modeled by maxi-
mizing the utility function U over the corresponding set of acts.

6. Updating

For simplicity, take I = 1 in this section. Another di¤erence adopted here is
that we deviate from the pure cross-sectional setting and permit some experiments
(those generating the sample) to be resolved earlier than others. We study choice
of acts both ex ante and after observing the outcomes sn = (s1; :::; sn) of the �rst
n experiments, where n is arbitrary.20 It is helpful to picture an event tree, with
generic node (n; sn). To model both choice and inference, we adopt as primitives
the set of conditional preferences f�n;sn : n � 0; sn 2 Sng, where �n;sn is the
preference on F conditional on being at node (n; sn); �0, corresponding to n = 0,
denotes ex ante preference.
A normatively appealing criterion for updating is that the collection of pref-

erences be dynamically consistent : For all 1 � n, samples sn, and acts f 0; f 2 F ,

f 0 �n;sn f for all sn =) f 0 �0 f ,

and the latter preference is strict if, in addition, f 0 �n;sn f for some sn.21 It is well-
known that there is a tension between dynamic consistency and ambiguity aversion
(or non-Bayesian models more generally). However, it will help to organize our
discussion of inference if we �rst outline a particularly stark result from Epstein
and Seo (2011) that describes the modeling trade-o¤s involved in a setting with
repeated exchangeable experiments.
Suppose that: (i) �0 is exchangeable, that is, it satis�es the appropriate form

of (4.9); (ii) unrealized parts of the tree do not matter�f 0 �n;sn f for any two
acts that coincide on the continuation of the tree from node (n; sn)�a property
commonly called consequentialism; (iii) the collection of preferences is dynami-
cally consistent; and (iv) every preference satis�es extremely weak (we would say
innocuous) continuity and monotonicity properties. Then �0 and all conditional
preferences are additive, that is, they can be represented by utility functions that

20We remind the reader that experiments have been ordered, though thus far and in the sequel,
the speci�c order does not matter.
21Dynamic consistency requires also that conditionals at any node

�
k; sk

�
be suitably consis-

tent with conditionals at subsequent nodes. For notational simplicity, we have stated the formal
property only for k = 0.
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are additive across states. The signi�cance of additivity is that if each condi-
tional preference has the form in Section 4, then each must conform to SEU. Thus
it is not possible to extend the model so as to satisfy dynamic consistency and
also consequentialism, without the model collapsing back to de Finetti�s and thus
sharing its limitations. The same applies to all other non-Bayesian exchangeable
models that we have cited. One can also point to a behavioral functional-form-free
implication of the noted additivity: Given the latter, then aversion to ambiguity
about heterogeneity in the sense of (3.2) implies also that22

1
2
R1 +

1
2
R2 � R1. (6.1)

A positive value for randomizing between the bets R1 and R2 is intuitive in some
special scenarios�for example, recalling the perceptions described in Section 2.3, if
it is thought that there is only one urn for which the variable component contains a
red ball but where the identity of the urn is unknown. However, one would expect
indi¤erence in (6.1) if there is no reason for believing that the variable components
of urns are related in any particular way. In sum, therefore, for the setting we are
modeling, given exchangeability and consequentialism, then dynamic consistency
and aversion to ambiguity about heterogeneity imply counterintuitive behavior in
the form (6.1).
The lesson is that "one can�t have everything." The theorem tells the modeler

that if she insists on capturing uncertainty about how experiments may di¤er,
then she must decide which of the three key properties�exchangeability, conse-
quentialism and dynamic consistency�she is willing to relax. This perspective
uni�es some existing and potential future work. Epstein and Schneider (2003a,
2007) drop exchangeability, which is sensible in their temporal setting, but ar-
guably not when experiments are resolved simultaneously and thus where there is
nothing at all, not even time of resolution, that distinguishes between them. They
formulate a recursive model which violates exchangeability but satis�es both dy-
namic consistency and consequentialism. An alternative route that has yet to be
explored formally is to relax consequentialism. For example, frequentist statistical
procedures employ an ex ante perspective whereby all potential data are used in
evaluating a procedure rather than just the realized sample, thus violating con-
sequentialism (Berger, 1985). It remains to be seen whether the present concern
with robustness and ambiguity leads to speci�c violations of consequentialism and
to speci�c procedures as being optimal.

22See Section 2 in Epstein and Seo (2013).
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A third route, followed in our papers (2010, 2013), is to relax dynamic consis-
tency, the rationale being that a weaker property is sometimes adequate. Speci�-
cally, consider situations where an individual �rst samples and observes the out-
comes of the �rst n experiments, and then chooses, once and for all, how to bet on
the outcomes of remaining experiments. In particular, the outcomes in markets
1 to n are �pure�signals and are not payo¤ relevant, while outcomes in markets
n+1 and beyond in�uence payo¤s but are not a source of information for further
updating (which is done only once). In that case, it su¢ ces to have the consis-
tency between ex ante and ex post rankings that is expressed by restricting the
above dynamic consistency condition to apply only to acts f 0 and f that depend
on the outcomes of experiments n+1, n+2 and so on. Call this weaker property
weak dynamic consistency.
In the cited papers, we assume also that f�n;sng satisfy consequentialism and

another property called commutativity�each conditional preference �n;sn is un-
changed if the sample (s1; :::; sn) is permuted. The rationale is that under the
assumption that experiments 1 though n are resolved simultaneously, that is, data
are cross-sectional, then, because there is no natural ordering of cross-sectional
data, the order of past observations should not matter. Finally, we assume that
every conditional preference conforms to the single priors special case of (4.3).23

Thus the conditional utility function at (n; sn) is given by

Un;sn (f) =

Z
VL (f) d�n;sn (L) ,

where VL (�) is de�ned in (4.5), and where �n;sn is the posterior belief over the sets
L of likelihoods. The question at hand is what can be said about how posteriors
are derived from the prior �0 for any sample s

n.
As we have seen, in the urns example, (or more generally for any binary ex-

periments), each set L can be identi�ed with a probability interval J for red, and
thus the issue is how to update probabilistic beliefs about intervals. The di¢ culty
is that there is no obvious unique answer to the question "what is the likelihood
of observing red given the interval J?" Every number in J would seem to qualify
equally as an answer. Based primarily on the preceding assumptions, we show
that the individual should form a unique likelihood by averaging over J and then
use the likelihood constructed in this way and Bayes� rule to update �0. More
precisely, for each J , she should adopt a probability measure �J on [0; 1], with

23Thus ambiguity about parameters is excluded. It is an open question if and how the result
outlined below may be extended.
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�J (J) = 1, to construct L (R j J) according to

L (R j J) =
Z
[0;1]

qd�J (q) ;

and, more generally, for any �nite sample sn, the constructed likelihood is

L (sn j J) =
Z
[0;1]

q n(s
n) (1� q)n� n(s

n) d�J (q) , (6.2)

where  n (s
n) denotes the number of red balls drawn in the �rst n experiments.

The measure �J can depend on the interval J and, importantly, also on the
individual�because signals are di¢ cult to interpret, individuals may interpret
them di¤erently and thus the subjectivity of the measures f�Jg is an appealing
feature of the model.

Remark 2. The preceding extends in the obvious way to general (nonbinary)
experiments. In that case, a likelihood is constructed by using a measure �L on
�(S), �L (L) = 1, to average over all i.i.d. measures that can be constructed
using measures in L. Formally,

L (sn j L) =
Z
�(S)

p1 (sn) d�L (p) .

It may be instructive to verify that weak dynamic consistency is implied. Let
n > 0 and de�ne

L (sn) =

Z
L (sn j L) d�0 (L) .

Then, for any act f over experiments n+ 1 and beyond,

�sn2SnL (s
n)Un;sn (f) = �sn2SnL (s

n)

�Z
VL(f)d�n;sn (L)

�
=

�Z
VL(f)[�sn2SnL (s

n j L)]d�0 (L)
�

=

Z
VL(f)d�0 (L) = U0 (f) ,

where the second equality relies on Bayesian updating and on the assumption
that the act f is constant with respect to sn (hence the argument does not prove
dynamic consistency). Weak dynamic consistency follows if L (sn) > 0 for all n
and sn.
For greater clarity, we revert to the urns example below.
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A unique likelihood measure on 
 = S1, denoted L (� j J), is induced by the
construction in (6.2) given the �Js. Note that this likelihood is exchangeable
(and generally not i.i.d.). Exchangeable likelihoods are used also by Acemoglu
et al. (2009) to model a di¢ cult to interpret signal. We interpret the likelihood
similarly: it is as if the individual is uncertain, in the way represented by �J ,
what any given realized sample reveals about J . Moon and Schorfheide (2012)
use a likelihood function of this form in their Bayesian econometric approach to
inference in partially identi�ed models. A possibly surprising feature of our model
is that Bayesian inference is compatible with non-Bayesian choice that re�ects an
aversion to ambiguity about heterogeneity.
The fact that inference is Bayesian-like has the advantage that results from

Bayesian learning theory can be adapted to describe the nature of learning in our
model. There is a di¤erence in interpretation however. In our model updating
takes place only once, after observing sn for some given n. Thus, for example,
statements about limiting posteriors describe beliefs if the single updating stage
takes place after a very large sample, and not the asymptotics of a dynamic
process. With that in mind, consider brie�y two important features of learning
assuming that each �J is the uniform distribution over the interval J (see our
(2010) paper for more details and examples). First, beliefs need not converge
to certainty about a speci�c interval: Where �0 assigns positive probability to
overlapping intervals J 0 and J , then along samples ! = (sn; sn+1; :::) for which
the limiting empirical frequency of red lim n (s

n) =n lies in the intersection J 0 \
J , the posterior probability of each interval is positive in general, even in the
limit. Second, the sample leads to inferences being drawn about intervals, which
constitute the parameters which the individual attempts to learn, but there is
no learning within intervals. As described in Section 2.3, intervals with positive
length re�ect the poorly understood idiosyncratic component of each urn; learning
about this component is not attempted.
To illustrate the latter point more concretely, suppose, as in the intermediate

perception described in Section 2.3, that the individual believes that 100� balls
are selected once and for all by a single administrator and then placed in each
urn, while the other 100 (1� �) vary across urns in a way that is not understood.
She is certain about the value of � (for simplicity), but she has a prior � over �,
the proportion of red in the common group of balls. Then the relevant probability
intervals for red are J� = [��; �� + (1� �)], 0 � � � 1, and � induces a prior
over these intervals. The sample is used to draw inferences about �. But the
idiosyncratic nature of the 100 (1� �) balls precludes hoping to learn about them�
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the color compositions of the 100 (1� �) balls in the sampled urns do not provide
any information on the remaining urns. Note that � is subjective: If � = 1,
intervals are degenerate and the individual views everything as learnable, while if
� = 0, she does not attempt to learn at all.
Similar features are present also when the above updating model is applied to

the entry game. Let � = (�1; �2; �1; �2; �) be the parameter vector for the gen-
eral entry game speci�cation outlined in Section 5. Beliefs about � are updated
along a sample, but in general, there will be certainty asymptotically only about
a nonsingleton set of values for �, corresponding to the parameter being partially
identi�ed; this is due to the fact that multiplicity of equilibria and ignorance
of selection imply that the message about parameters inherent in any sample is
not unique. In addition, just as in the urns example she views some aspects of
her environment as unlearnable, similarly here, the decision-maker has a limited
understanding of selection and does not expect her prior ignorance (which is sub-
jective) to be informed by data. When ignorance is modeled as in (5.3), a captures
the size of the unlearnable component. If a = 0, then selection is described by
a single probability law and there is certainty ex ante that all parameters will
be learned. If a > 0, then the individual perceives that to a degree selection is
unrelated across markets and therefore unlearnable.

7. Concluding Remarks

An overview and summarizing comments may best be expressed through a com-
parison with Menzel (2011). He also addresses robustness with respect to the
i.i.d. assumption, but the focus of his paper di¤ers from ours. As he states (p.
4), his paper "is mainly aiming at providing computational tools," while our pri-
mary objective (see particularly our papers dated 2010 and 2013) is to formulate
a model that has clear choice-theoretic axiomatic foundations. Note, however,
that foundations do not come at the cost of tractability at least for inference,
which is Bayesian in our model and hence amenable to familiar computational
methods. Another di¤erence in focus is that "choice" in our model refers to "eco-
nomic choice," where the payo¤s to actions depend on the realized outcomes of
experiments (or markets), as opposed to Menzel�s focus which we would term
"statistical choice," where payo¤s are assumed to depend on the true values of
parameters (such as � in the simple entry game). We emphasize that though
economic choice is our primitive, sharp implications for inference are derived, and
accordingly, our approach is aptly described as providing a unifying framework
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for (economic) choice and inference.
In terms of modeling details, consider the single-prior special case of our model

for which we have modeled updating. Then Menzel has in common with us the
assumption of a single prior over parameters (such as over � in the simple entry
game), and agnosticism about selection modeled through a set of likelihoods (our
L).24 His inference method amounts to applying Bayes�rule for each likelihood
function separately and then using the worst-case posterior to evaluate any given
statistical action, that is, he minimizes Gamma-posterior expected loss. Though
this class of statistical decision rules is common in the robust Bayesian litera-
ture, to our knowledge it has no decision-theoretic foundations in exchangeable
models.25 There is an apparent formal connection to the Gilboa and Schmeidler
(1989) maxmin model; but the latter deals exclusively with a static context and
its foundations are at best suggestive of the decision-theoretic meaning of the
Gamma-posterior expected loss criterion in a dynamic context that includes up-
dating. In particular, as Menzel acknowledges, it leads to dynamic inconsistency.
In contrast, a weak form of dynamic consistency is in large part responsible for
the implication in our model that updating should be Bayesian using a likeli-
hood that is constructed by averaging over L, or more precisely, over LI . Finally,
we note that it is the Gamma-posterior expected loss criterion that creates the
tractability/computational issues addressed by Menzel.

A. Appendix: Proof of Theorem 4.1

For an event E � 
, write L1 (E) instead of infP2L1 P (E).
Step 1. L1

��
! : lim infn

1
n

Pn
i=0 f (T

i!) � a
	�
= 1 if min`2L

R
fd` � a: For

any P = `1 
 `2 
 ::: 2 L1,

lim inf
n

1

n

nX
i=0

f
�
T i!

�
= lim inf

n

"
1

n

nX
i=0

f
�
T i!

�
� 1

n

nX
i=0

Z
fd`i +

1

n

nX
i=0

Z
fd`i

#

� lim
n

"
1

n

nX
i=0

f
�
T i!

�
� 1

n

nX
i=0

Z
fd`i

#
+ lim inf

n

1

n

nX
i=0

Z
fd`i

= lim inf
n

1

n

nX
i=0

Z
fd`i � a, P -a.s.

24Menzel assumes complete agnosticism in the sense of a = 1 in (5.3).
25Epstein and Schneider (2003a) provide foundations for prior-by-prior Bayesian updating in

a temporal recursive model where exchangeability is violated.
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The last equality holds by Hall and Heyde (1980, Theorem 2.19).

Step 2. L1
��
! : lim infn

1
n

Pn
i=0 f (T

i!) � a
	�
= 0 if min`2L

R
fd` < a:

This follows because P
��
! : lim infn

1
n

Pn
i=0 f (T

i!) � a
	�
= 0 if P = `1 andR

fd` < a.

Step 3. (4.13) holds: It follows by Steps 1 and 2 because

L1
 

KT
k=1

(
! : lim inf

n

1

n

nX
i=0

fk
�
T i!

�
� ak

)!
=

�
1 if min`2L

R
fkd` � ak for all k

0 otherwise.

Step 4. Uniqueness: Equip K (�S), the collection of all closed convex subsets
of �(S), with the Hausdor¤ metric d, which renders it compact and separable.
Because each fk is a function on the �nite set S, it is continuous and, by the
Maximum Theorem, so is L 7�! min`2L

R
fkd`. Therefore, all sets of the form

KT
k=1

�
L : min

`2L

Z
fkd` � ak

�
are closed and lie in ��(S), the Borel �-algebra of K (�S). Let �0 � ��(S) be the
�-algebra generated by sets of the above form.

Claim 1: �0 = � on �0, by Aliprantis and Border (2006, Theorem 10.10).

Claim 2: ��(S) � �0. Let D be a countable dense subset of K (�S) and consider
the set N of all open balls centered at some point in D and having a rational
radius. Then N is a countable basis for the Hausdor¤metric topology (Aliprantis
and Border, 2006, Lemma 3.4) and N generates ��(S). Therefore, it su¢ ces to
show that N � �0, or that

fL0 : d (L;L0) < "g 2 �0 (A.1)

for every " > 0 and L 2 K (�S).
For each L, the support function �L : �! R (where � = f� 2 Rn : k�k = 1g

and n =j S j) is de�ned by �L (�) = min`2L
R
�d`. It is known that

d (L;L0) = sup
�2�

j�L (�)� �L0 (�)j � k�L � �L0k
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(Aliprantis and Border, 2006, Theorem 7.58). Fix " > 0 and L 2 K (�S). Since
� is separable, there is a countable set f�1; �2; :::g that is dense in �. Let aj =
�L
�
�j
�
� " and bj = �L

�
�j
�
+ ", for each j = 1; :::. Then�

L0 : aj < �L0
�
�j
�
< bj, for all j = 1; :::

	
2 �0.

The noted denseness and the continuity of support functions imply (A.1).
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