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1 Introduction

In many countries, one finds significant regional variation in the bundles of public goods and
taxes available to individuals. This is clearly the case in federal countries such as Canada
and United States where the provinces and the states have the power to decide the provision
of specific public goods (for instance education) and to collect taxes. But this phenomenon
is also observed in “unitary" countries such as France or the UK where cities have specific
powers in terms of public good production (for instance the financing of primary school
infrastructure) and taxation (local taxes). This heterogeneity in the package of public goods
and taxes offered to the citizens of a same country is sometimes perceived as the source
of unacceptable inequalities. As a result, it is not uncommon to observe attempts made
by central authorities to correct these inequalities by means of various cross-jurisdictions
equalization payments schemes. But one may wonder why central authorities do not push
further this equalizing logic by carrying themselves the task of providing their citizens with
the same package of public goods and taxes instead of maintaining these distinct jurisdictions.
As the recent North American episodes of city mergers in large agglomerations (Boston,
Montreal, Toronto) illustrate, this centralizing solution is sometimes adopted. Yet, the
decision to merge many cities into one large agglomeration that is responsible for providing
the same public goods and taxes package to all its inhabitants has been received with great
skepticism by many. Is this skepticism justified? Is there some argument that can justify
cross-citizens heterogeneity in public goods and taxes packages from a normative standpoint
or, to put it bluntly, federalism? These are the questions that are addressed in this paper.

These questions are not new. They were underlying the above quote from Alexis de
Toqueville and were framed by Wallace Oates (1972) as follows:

“In the absence of cost-savings from the centralized provision of a [local public]
good and of interjurisdictional externalities, the level of welfare will always be at
least as high (and typically higher) if Pareto-effi cient levels of consumption are
provided in each jurisdiction than if any single, uniform level of consumption is
maintained."1

In this paper, we formulate in a precise model Oates’s and Toqueville’s intuition that
a federal provision of public goods in separated jurisdictions can be normatively better
than a centralized provision “in the absence of cost-saving from the centralized provision".
Specifically, we provide a model in which even when the cost-saving case in favour of a
centralized provision of a public good is maximal - namely when the public good is non-rival
- it can be optimal to organize its provision in a federal system when the relevant information
needed to provide the public good is not available to the social planner.

The formal architecture of the model is as follows. There is a collection of individuals who
have the same preferences for one public good and one private good. Each individual has

1A nice survey of the literature on fiscal federalism is provided by Oates (1999).
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an exogenous pecuniary income that is unobserved by the central government. The public
good can be provided locally in distinct jurisdictions organized through a federal system
or centrally in one grand jurisdiction. In either case, public good provision is financed by
taxes in such a way that the budget is balanced within the federation (but not necessarily
within a given jurisdiction). The central government chooses the bundles of local public
good provision and tax payment - one such a bundle for every jurisdiction - in such a way as
to provide incentive for individuals to reveal their willingness to pay for the public good by
their locational choice. As in Tiebout (1956), therefore, individuals “vote with their feet”(see
also Wildasin (1987)). More specifically, the government chooses bundles of public goods
and taxes that maximize a social welfare function under two constraints: 1) a preference
revelation constraint (each individual must prefer the combination assigned to him/her by
the government to any other) and 2) a budget constraint (the taxes raised in all jurisdictions
must be suffi cient to finance public goods that are locally provided in all of them).

From a formal point of view, this problem is somewhat reminiscent of the classical Mirrlees
optimal income taxation problem (see for instance Mirrlees (1971), Mirrlees (1976), Mirrlees
(1986)) with leisure being replaced by a public good. Yet this “replacing”significantly mod-
ifies the nature of the problem. In the Mirrlees setting, since leisure is a purely private good
- the fact that Bob has 24 hours of leisure per day cannot be used to improve Mary’s utility -
there is no intrinsic benefit for the social planner to pool together individuals with different
characteristics. Because of this, Mirrleesian optimal income tax schedules typically involve
significant separation of workers with different characteristics in order to provide workers
with the proper incentives to reveal their type. With public goods, the central planner does
benefit from pooling together individuals with different characteristics since a given quantity
of a non-rival public good may benefit many individuals at no extra cost. Because of this,
the central planner must make a trade-off between the benefit of pooling individuals in order
to reduce the cost of public good provision and the welfare cost associated to the provision
of the same package of public good and taxation to heterogeneous individuals. The nature
of this trade-off determines the optimal level of heterogeneity in public good and taxation
packages for a community. It also determines the choice between a centralized provision of
the public good within a single “grand" jurisdiction or its provision across separated juris-
dictions between which the federal government organizes optimal equalization transfers (see
e.g.; Boadway and Flatters (1982), Buchanan (1950), Flatters, Henderson, and Mieszcowski
(1974) or Gravel and Poitevin (2006)).

While a few models have examined fiscal federalism issues under asymmetric information
in the literature, including those of Aronsson and Blomquist (2008), Bordignon, Manasse,
and Tabellini (2001), Breuillé and Gary-Bobo (2007), Cornes and Silva (2000) and Cornes
and Silva (2002), none that we are aware of have considered the problem of choosing the
appropriate jurisdiction structure — federal or centralized as it may be — for providing a
non-rival public good.

The rest of the paper is organized as follows. In the next section, we set up the notation
and examine in its full generality the problem of the optimal choice of a jurisdiction struc-
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ture under asymmetric information. In section 3, we examine the problem in the (much)
more specific setting where there are only two types of individuals, and where these individ-
uals have additively separable and symmetric preferences over the two goods. We provide
a complete characterization of the solution of the problem in the important case where the
social planner is utilitarian and would like, in the federal solution, to transfer income from
the rich jurisdiction to the poor one. As shown in Gravel and Poitevin (2006), this implies
indeed that the symmetric and additively separable utility function that represents the in-
dividual’s preference is in fact logarithmic with respect to both goods. Section 4 provides
some conclusions.

2 The general structure of the problem

2.1 Notation

There are n ≥ 2 individuals taken from a finite set N . Individual i has a monetary income
wi ∈ R+ and consumes a public good (z) and a private good (x). Individuals are ordered by
their income in such a way that wi ≥ wi+1 for i = 1, ..., n−1. The public good is non-rival in
consumption but is “excludable" in the sense that its consumption may be made contingent
upon the fact of belonging to a specific jurisdiction. Specifically, exclusion can be made by
partitioning the set N of individuals into pairwise disjoint sets Nj for j = 1, ..., l for some
number l ∈ {1, ..., n} such that

⋃l
j=1 Nj = N . Any set Nj of this partition is interpreted as a

jurisdiction and the collection of l such sets {Nj}lj=1 is interpreted as a jurisdiction structure.
The unique jurisdiction structure that is obtained if l = 1 is the grand —or centralized —
jurisdiction structure in which all individuals are pooled into one single jurisdiction. All other
jurisdiction structures obtained for l > 1 are referred to as “federal". An extreme form of
a federal structure is obtained when l = n (each individual forms a jurisdiction on his/her
own). An allocation of public and private goods for the jurisdiction structure J = {Nj}lj=1 is
defined as a list (z1, ..., zl;x1, ..., xn) ∈ Rl+n+ with the interpretation that zj is the consumption
of public good in jurisdiction j (for j ∈ {1, ..., l}) and xi is the consumption of private good
by individual i (for i ∈ N). An allocation of public and private goods (z1, ..., zl;x1, ..., xn) for
the jurisdiction structure J = {Nj}lj=1 is feasible for that jurisdiction structure if it verifies
the federation budget constraint:∑

j∈{1,...,l}

zj +
∑
i∈N

xi ≤
∑
i∈N

wi. (1)

If (z1, ..., zl;x1, ..., xn) is an allocation of public and private goods that is feasible for the
jurisdiction structure J = {Nj}lj=1, we denote by Ti = wi − xi the tax paid by individual i.
An equivalent reformulation of the budget constraint is of course that:∑

j∈{1,...,l}

zj ≤
∑
i∈N

Ti
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(taxes collected must be suffi cient to finance the quantities of the public good provided to
the citizens).

Individuals convert alternative combinations of private and public goods into utility by
the same continuously differentiable, strictly increasing and concave utility function U :
R2+ → R. The utility function is also assumed to be super-modular in the sense of satisfying
Uxz(z, x) ≥ 0 for every bundle (z, x) ∈ R2+. The second part of the paper also assumes that
U is additively separable so that it can be written, for every bundle (z, x) ∈ R2+, as:

U(z, x) = f(z) + h(x),

for some twice continuously differentiable increasing and concave real-valued functions f
and h having both R+ as domain. For further use, we denote by V (V : R3++ → R) the
individual’s indirect utility function defined as usual by:

V (pz, px, R) = max
z,x

U(z, x) subject to pzz + pxx ≤ R. (2)

We also denote by zM(pz, px, R) and xM(pz, px, R) the (Marshallian) demands for public
good and private consumption (respectively) when the prices for these two goods are pz and
px and when the income of the individual is R. These Marshallian demands are defined, as
usual, by the solution to program (2). Given the assumptions imposed on U , it can be seen
easily that Marshallian demands and indirect utility are differentiable functions of prices and
income that are both decreasing with respect to prices and increasing with respect to income
(the two goods are normal if the individuals preferences are represented by a super-modular
utility function). We denote by U the class of all direct utility functions that satisfy all
these properties and by UA the subset of U consisting of those functions that are additively
separable.

We find convenient to represent individual preferences in the (z, T ) space rather than in
the (z, x) one. Preferences in (z, T ) space, which varies across individuals, are represented
by the function U(z, wi − T ). Since the public good is normal, these preferences satisfy the
familiar single-crossing property that the slope of the indifference curves in (z, T ) space is
increasing with respect to wi everywhere, as represented in Figure 1.
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z

T

rich

poor
c

Figure 1: Two indifference curves in (z, T ) space.

Alternative allocations of public and private goods are evaluated by a Paretian social
planner. For much of the analysis, this planner will actually be utilitarian, and will accord-
ingly consider an allocation (x1, z1, ..., xn, zn) to be socially better than (x′1, z

′
1, ..., x

′
n, z
′
n) if

an only if
∑
i

U(zi, xi) ≥
∑
i

U(zi, xi).

2.2 The choice of a jurisdiction structure under public information

As is well-known from basic public economics, if individuals’utility and income are public
information, the problem solved by the social planner is easy. Since the public good is
non-rival in consumption, it is a waste to have different individuals consuming different
quantities of the public good. For if (z1, ..., zl;x1, ..., xn) is a feasible allocation of private and
public goods for a jurisdiction structure {Nj}lj=1 with l > 1, one can improve everyone’s
utility by providing everyone with z = maxh∈{1,...,l} zh units of the public good and xi +
(
∑

j∈{1,...,l} zj−z)/n units of the private good. For this reason, the only jurisdiction structure
that can be chosen by a Pareto sensitive social planner in a first-best environment is the grand
jurisdiction structure associated to l = 1. In a first-best world, there is no dispute as to the
superiority of a central provision of a non-rival public good over a federal one. There is, of
course, a (distributive) need to have different individuals paying different taxes for the public
good. More specifically, the utilitarian social planner would choose, in the grand jurisdiction
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structure, a distribution of taxes that solves:

max
(T1,...,Tn)

∑
i∈N

U(
∑
i∈N

Ti, wi − Ti). (3)

Such a distribution of taxes —call it (T ∗1 , ..., T
∗
n) —would satisfy the well-known Samuelson’s

condition that the sum of the individuals marginal rates of substitution between the private
and the public goods equals 1. Since U is concave, and all individuals are consuming the same
quantity of the public good, the solution to program (3) would be achieved by a complete
equalization of private consumptions. In this ideal first-best world, public and private good
consumptions are perfectly equalized, and taxation is individualized by means of Lindahl
pricing.

2.3 The choice of a jurisdiction structure under private informa-
tion

If the information on individuals’characteristics is private, the social planner is no longer
able to levy different taxes on individuals who consume the same quantity of the public
good because these individuals are indistinguishable from its point of view. The social planner
could, however, provide different individuals with different packages of taxes and public good
levels based on, say, their place of residence, in order to make them reveal their willingness
to pay. Individuals would then "vote with their feet" and choose to live in the jurisdiction
offering them their favorite package of public spending and taxes, thus revealing their “type"
to the social planner. Of course, separating individuals in different jurisdictions is costly
because it requires the use of (much) more resources to provide different levels of the public
good in different jurisdictions than what would be needed under a single jurisdiction with a
single level of the non-rival public good for all individuals.

We consider herein the case where the private information concerns the individual’s in-
come, the only variable that differs across individuals. While the income of a particular
individual is unknown to the social planner, we assume that the cumulative density of the
income within the population (e.g., the number of individuals who have a income no greater
than any real number) is known. With this knowledge, the planner chooses a jurisdiction
structure {Nj}lj=1 (for some l ∈ {1, ..., n}) and a feasible allocation of the private and the
public goods that maximizes its social objective, subject to the constraint that every indi-
vidual lives in the jurisdiction that provides his/her preferred package of public good and
tax. This problem is, in its full generality, complex. Its analysis proceeds in two steps.

In the first step, for a given jurisdiction structure {Nj}lj=1 for some l ∈ {1, ..., n}, the
social planner solves the program:

max
z1,T1,...,zl,Tl

l∑
j=1

∑
i∈Nj

U(zj, wi − Tj, ) (4)
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subject to the budget constraint:

l∑
j=1

zj ≤
l∑

j=1

#NjTj (5)

and, for every j ∈ {1, ..., l}, and every i ∈ Nj, the l incentive-compatibility constraints:

U(zj, wi − Tj) ≥ U(zj′ , wi − Tj′) for all j′ ∈ {1, ..., l}. (6)

Let Ψ({Nj}lj=1) denote the value of the objective function of the social planner at the
solution of program (4) under the constraints (5) and (6). The second step of the analysis
consists in choosing the jurisdiction structure {Nj}lj=1 for some l ∈ {1, ..., n} that maximizes
the value of Ψ({Nj}lj=1). This second step is a discrete problem since there is only a finite
number of different possible partitions of N into jurisdiction structures.

A natural starting point for studying program (4) is to consider the centralized juris-
diction structure. Studying program (4) under the centralized jurisdiction structure is easy
because there are no incentive constraints (6) to worry about. In that case program (4)
writes (after substituting the budget constraint (5) satisfied at equality into the objective
function):

Ψ(N) = max
T∈[0,wn]

∑
i∈N

U(nT,wi − T ). (7)

The necessary (and suffi cient by concavity of U) first-order condition for an interior solution
T ∗ of this program can be written as:

n
U
∗
z

U
∗
x

= 1, (8)

where U
∗
k = [

∑
i∈N Uk(nT

∗, wi − T ∗)]/n for k = z, x is the average marginal utility of
good k at the optimal choice. Condition (8) looks somewhat like a Samuelson condition. It
states that the optimal allocation of public good equalizes n-times the marginal of rate of
substitution of a fictitious individual whose marginal rate of substitution is the ratio of the
average marginal utility of the public good over the average marginal utility of the private
good. Since the marginal rate of substitution of this fictitious individual has no reason to
coincide with that of the average one, the centralized second-best provision of the public
good is a priori different from that associated with first-best optimality.

There is, however, an obvious case where condition (8) coincides with the standard
Samuelson condition and where, as a result, Ψ(N) is the maximal sum of individual utilities
that would obtain in the first-best world where the government had all the relevant informa-
tion. This case is when the individuals’utility function is quasi-linear (in the private good)
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so that it writes, for every z and x, as U(z, x) = f(z) + x for some increasing and concave
function f . Indeed with quasi-linear utility, condition (8) writes:

n
∂f(nT ∗)

∂z
= 1, (9)

which is nothing else than the Samuelson’s condition associated with quasi-linear utility.
Hence, with quasi-linear utility, it is possible to achieve a first-best allocation of private and
public goods by pooling everybody in the same jurisdiction. Because of this, in the quasi-
linear case, one has Ψ(N) ≥ Ψ({Nj}lj=1) for every jurisdiction structure {Nj}lj=1 that the
central planner could consider. In a quasi-linear world, it would never be optimal to create
more than one jurisdiction for providing a non-rival public good.

If the assumption of quasi-linearity is relaxed, it is not clear that the centralized structure
dominates the federal one. The question is thus: under which conditions is a centralized
jurisdiction structure optimal? This question is diffi cult to answer in general. For one thing,
the two-step program described above is hard to solve because if the number of individuals
with different income levels is large, then so is the number of jurisdiction structures that
are to be compared. The single-crossing property simplifies however program (4). Among
other things, it guarantees that all jurisdictions of a given federation that satisfy incentive
constraints (6) will be consecutive (e.g., see Greenberg (1983)) and, therefore, be such that
for any two jurisdictions with distinct per capita income, the richest individual of the poorer
jurisdiction is weakly poorer than the poorest individual of the richer one. Yet, significant
as it is, this simplification leaves the analysis of program (4) in its full generality still quite
diffi cult. One of the diffi culty lies in handling the incentive constraints that may or may not
be binding. Because of this complexity, we focus attention herein on the simpler problem of
characterizing the optimal jurisdiction structure when there are only two types of individuals.

3 The choice of a jurisdiction structure with two types
of individuals

We assume accordingly that the n individuals can be split into two types: n1 individuals of
type 1 (the "rich" with income w1) and n2 individuals of type 2 (the "poor" with income w2).
In this setting the choice of the optimal jurisdiction structure made by the social planner
amounts to comparing the value of its objective function in the centralized jurisdiction
structure with that in a federation where individuals are split into two jurisdictions: one
inhabited by the poor and the other, by the rich. It is clear indeed that, beside this segregated
federation in which all rich individuals live in a jurisdiction and all poor in another, there is no
partition of the set of individuals into (more than one) disjoint subsets that can maximize a
Pareto-inclusive objective while satisfying the incentive-compatibility constraints. We denote
by (N1, N2) the federal jurisdiction structure in which the rich and the poor live in two distinct
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jurisdictions and by N the centralized jurisdiction structure in which all individuals live in
the same jurisdiction.

3.1 The two-type case with general utility functions

Consider first the centralized jurisdiction structure. Let us examine the utility possibility set
of this structure. The Pareto frontier of this set is easy to characterize. It is a curve lying
between two points: One where each poor gets his “ideal utility" associated to his favorite
tax and the rich gets the utility associated with the poor’s favorite tax and the other extreme
situation where the rich gets her ideal utility and the poor gets the utility level associated
to the fact of paying the most preferred tax of the rich.

The favorite tax rate T ∗i of a type i individual is the solution of the program:

max
T∈[0,w2]

U(nT,wi − T ).

for i = 1, 2 It is therefore defined by T ∗i = min[zM(1/n, 1, w2)/n, w2]. Hence the poor’s
ideal utility level is V (1/n, 1, w2) while the rich’s ideal utility level, denoted U1∗SB1 with the
subscript standing for the "second-best 1-jurisdiction") is defined by:

U1∗SB1 =

{
V (1/n, 1, w1) if zM(1/n, 1, w1)/n ≤ w2

U(nw2, w1 − w2) otherwise.

It is immediate to see that, if the public good is normal, T ∗1 > T ∗2 and that:

U1∗SB1 > U(zM(1/n, 1, w2), w1 − T ∗2 ) > V (1/n, 1, w2) > U(nT ∗1 , w2 − T ∗1 ).

Hence, the two extreme points (U(zM(1/n, 1, w2), w1−T ∗2 ), V (1/n, 1, w2)) and (U1∗SB1, U(nT ∗1 , w2−
T ∗1 )) of the Pareto frontier lie in the area where the utility of the rich is larger than that of
the poor. It is therefore impossible to be egalitarian in this second-best world with one juris-
diction. Between its extreme points, the Pareto frontier is defined by the function Θ : R→ R
with Θ(u1) = U(nT SB(u1), w2−T SB(u1)) where the function T SB solves implicitly the equal-
ity:

U(nT,w1 − T ) = u1.

for all T ∈ [T ∗2 , T
∗
1 ]. It is easy to verify by usual implicit function arguments that the function

Θ is decreasing and concave on its domain.

This frontier is illustrated in Figure 2 for a situation where U1∗SB1 = V (1/n, 1, w1) (the
ideal tax of the rich is less than the poor’s income).
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U1

U2
U1 = U2

V(1/n,1,w2)

V(1/n,1,w1)

Pareto Frontier

U(nT2*,w1T2*)

U(nT1*,w2T1*)

Figure 2: Utility possibility set of a second best centralized jurisdiction
structure.

Notice that T ∗2 is the solution that would be selected by an extremely egalitarian leximin
or a maximin social planner.

We now turn to the federal jurisdiction structure (N1, N2) in which the central government
separates the two types into two different jurisdictions by solving program (4) for that case. A
first possibility that can arise is that none of the two IC constraints (6) of this program binds.
If this is the case, one can solve program (4) by ignoring these constraints. This program,
studied for an arbitrary number of jurisdictions in Gravel and Poitevin (2006), describes how
a utilitarian central planner would design optimal equalization payments in a federal system
with an immobile population. Let B(n1, n2, w1, w2) = {(z1, T1, z2, T2) ∈ R4 : n1T1 + n2T2 ≥
z1 + z2 and Ti ≤ wi for i = 1, 2} denote the set of two-jurisdiction packages of public goods
and taxes that are feasible for a two-jurisdiction segregated federation notwithstanding the
IC constraints. It is easy to establish the following lemma, proved, as all formal results of
this paper, in the Appendix.

Lemma 1 Let U be a utility function in U . Then (z∗1 , T
∗
1 , z

∗
2 , T

∗
2 ) is Pareto-effi cient in the set

B(n1, n2, w1, w2) if and only if there exists s∗i ∈ [−wi,+∞) satisfying z∗i = zM(1/ni, 1, wi+s
∗
i )

and T ∗i = wi − xM(1/ni, 1, wi + s∗i ) for i = 1, 2, and n1s∗1 + n2s
∗
2 = 0.

This lemma says that any Pareto-effi cient allocation of public goods and tax burdens
in a two-jurisdiction federation —ignoring the incentive compatibility constraints —can be
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thought of as resulting from a two-step procedure: a first step in which a federal government
selects a pair of per capita net equalization subsidies s1 and s2 (one such subsidy for every
jurisdiction, with aggregate subsidies summing to 0) and a second step in which each indi-
vidual allocates his/her income — increased by the subsidy received —between public and
private good expenditures assuming that he/she faces a price of the public good given by
the inverse of the population size of his/her jurisdiction of residence.

An effi cient federal provision of public goods and tax burdens in this sense (that satisfies
the incentive constraints (6)) is depicted on Figure 3.

Public Good

Tax

T1

z1

T2

z2

s1

s2

1/n2

1/n1

Figure 3: An effi cient federal allocation that satisfies the incentive contraints.

Notice that the two subsidies depicted in Figure 3 are progressive. In a two-type setting,
the net subsidy "received" by the rich individual is negative and the net subsidy received
by the poor one is positive. The progressivity of subsidies would seem to be a somewhat
natural feature of a federal organization. For it indicates that "rich" jurisdictions transfer
part of their tax revenues to poorer ones in order to provide comparable access to public
goods of the type often required in federal countries like Canada.2 It happens however that

2"Parliament and the Government of Canada are committed to the principle of making equalization
payments to ensure that provincial governments have suffi cient revenues to provide reasonably comparable
levels of public services at reasonably comparable levels of taxation." (Subsection 36(2) of the Constitution
Act, 1982)
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the progressivity of subsidy is not a genuine characteristic of utilitarian optimal equalization
payments in a federation. As shown in Gravel and Poitevin (2006), it is indeed possible
that the subsidies chosen by a utilitarian social planner be regressive in the sense of being
increasing with respect to individual income. Regressivity may arise whenever (and only
whenever) the objective function of the social planner is not additively separable between
individual income and the price of public good. If the social planner is utilitarian, then a
necessary and suffi cient condition for avoiding this possible regressivity is for the indirect
utility function to be itself additively separable between the price of the public good and
the income of the individual. In Gravel and Poitevin (2006), it was further shown that if
the individual indirect utility function results from an additively separable individual direct
utility functions, then it can be additively separable between the price of the public good
and the income if and only if the direct utility function is either quasi-linear (in the private
good) or logarithmic with respect to the public good. As mentioned above, quasi-linear
utility makes the problem studied in this paper trivial. Hence, if we want to limit our
attention to additively separable utility functions while being sure that the subsidies chosen
by the utilitarian social planner (in the absence of incentive-compatibility constraints) are
progressive, we must assume that the additively separable function is in fact logarithmic
with respect to the public good.

Beside its empirical plausibility, considering (optimally chosen) progressive per capita
subsidies in federations with immobile individuals also simplifies the handling of incentive
compatibility constraints in the study of the optimal jurisdiction structure. For it can be seen
that if a pair of public good and tax packages that is Pareto effi cient in the federation for a
progressive subsidies scheme violates the incentive constraint of the poor, then the centralized
jurisdiction structure Pareto dominates the federal one. We state this fact formally as follows.

Proposition 1 Let U be a utility function in U and assume that (z∗1 , T
∗
1 , z

∗
2 , T

∗
2 ) is effi cient

in B(n1, n2, w1, w2) with respect to a scheme of subsidies s1 and s2 as per Lemma 1 satisfying
s1 < 0 < s2. Then, if U(z∗2 , w2 − T ∗2 ) ≤ U(z∗1 , w2 − T ∗1 ) (incentive compatibility constraint of
the poor is binding or violated), Ψ(N) > Ψ(N1, N2).

Simple as it is, this lemma facilitates the analysis of the two-type case by restricting
attention, in the study of the optimal federal provision of the public good, to the incentive
compatibility constraint of type-1 individuals. Of course, the progressivity of the equalization
subsidies that supports an effi cient federal provision of public goods as per Lemma 1 is crucial
for Proposition 1. Yet, if we take this progressivity as granted, the only relevant possibility
other than that when no IC is binding when analyzing program (4) in the two-type case is
to solve:

max
z1,T1,z2,T2

n1U(z1, w1 − T1) + n2U(z2, w2 − T2) (10)

s.t. z1 + z2 ≤ n1T1 + n2T2

U(z1, w1 − T1) ≥ U(z2, w1 − T2).
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Two general remarks can be made about this program. A first one is that its solution entails
the well-known “no distortion at the top" property that the bundle of public and private
goods consumed by a rich individual in a federal system where her incentive constraint
is binding is the bundle that she would like to consume in such a federal system without
incentive constraint if she was facing a price of public good of 1/n1 and had a income of w1−s
for some per capita subsidy s transferred to the poor jurisdiction. A formal way to state this
is that (ẑ1, T̂1, ẑ2, T̂2) is the solution of program (10) if and only if ẑ1 = zM(1/n1, 1, w1 − ŝ)
and T̂1 = w1−xM(1/n1, 1, w1− ŝ) for the per capita subsidy ŝ that solves, along with (ẑ2, T̂2),
the program:

max
s,T2,z2

n1V (1/n1, 1, w1 − s) + n2U(z2, w2 − T2) (11)

s.t. n1s+ n2T2 ≥ z2

V (1/n1, 1, w1 − s) ≥ U(z2, w1 − T2).

The second remark concerns the relation between the per capita subsidy given by rich in-
dividuals to poor ones when the incentive constraint of the rich individual binds (Program
(11)) and the subsidy when this incentive constraint does not bind (Lemma 1). As shown
in the following proposition, the per capita subsidy given by the rich jurisdiction to the
poor one will always be smaller when the incentive constraint binds than when the incentive
constraint does not bind. Hence, as in the Mirrleesian optimal taxation literature, giving
incentives to the rich to stay in their jurisdiction somewhat mitigates the equalizing propen-
sity of the social planner as compared to what it would do if the incentives of the rich were
not constraining.

Proposition 2 Let U be a utility function in U and s∗ be the solution of the program:

max
s
n1V (1/n1, 1, w1 − s) + n2V (1/n2, 1, w2 + n1s/n2). (12)

Let (ŝ, ẑ2, T̂2) be the solution of program (11). Then ŝ ≤ s∗ and ẑ2 ≤ zM2 (1/n2, 1, w2 +
n1s

∗/n2).

The reason for the fact that the subsidy from the rich to the poor in a federation is smaller
when the incentive constraint binds than when it does not is clear. When the incentive
constraint does not bind, the subsidy serves to some extent the purpose of equalizing the
marginal utility of income of both types of individuals. It acts therefore as a redistributing
device. When the incentive compatibility constraint is binding, the central planner must
cool down its redistributive propensity and must leave rich individuals with a higher income
and a lower marginal utility of income than that of the poor. This is achieved with a lower
subsidy. Note that the cost of redistribution is in terms of distortion of the amount of public
good consumed by the poor individual. If the two goods are normal, this means that the
rich individual will consume more of the public good when the constraint is binding than
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when it is not. As for the poor individual, he will consume less of the public good when the
constraint is binding. In general, it is not possible to determine whether the tax paid by the
poor individual is larger or smaller when the incentive constraint binds as compared to the
situation where it does not bind. On the one hand, less resources are needed since less public
good is provided. On the other hand, the subsidy received from the rich is smaller so that
more taxes may need to be raised.

We have so far established two noticeable general results. First, we have shown that the
central structure always dominates the federal one when the incentive constraint of the poor
is binding (Proposition 1). We have also demonstrated that the per capita subsidy given
to the poor is lower when the incentive constraint of the rich is binding than when it is
not (Proposition 2). In order to get more specific results, we consider in the next section a
specialization of our model to additively separable utility functions.

3.2 The two-type case with logarithmic utility functions

In what follows, we compare the federal and the centralized provisions of the public good
with private information in the two-type case from the view point of a utilitarian social
planner when the individual’s utility function writes:

U(z, x) = ln z + lnx. (13)

The relevance of this specification has already been discussed in the preceding section. An-
other advantage of this specification is that, for the most part, it makes the choice between a
federal and centralized structure depending upon only two parameters: the ratio of the high
income over the small one (the interquartile ratio) and the ratio of the number of rich over
the number of poor (demographic ratio). As will be seen, this two-dimensional representa-
tion is quite useful for identifying the set of parameters that determine the social planner’s
preference for the federal structure over the centralized one. Among other things, it enables
a nice two-dimensional geometric depiction of the situation.

We start by finding the provision of public good and tax that the planner would choose in
the centralized jurisdiction structure as per program (7). The first-order condition of program
(7) writes:

n1Uz(z
sb1, w1−T sb1)+n2Uz(z

sb1, w2−T sb1) =
n1Uc(z

sb1, w1 − T sb1) + n2Uc(z
sb1, w2 − T sb1)

n
.

Applying this to the logarithmic utility function defined by (13) yields (after lengthy manip-
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ulations done with the precious help of Mathematica):3

zsb1 =
n1w1 + n2w2 + 2n1w2 + 2n2w1 − g(n1, n2, w1, w2)

4
,

T sb1 =
zsb1

(n1 + n2)
,

where:

g(n1, n2, w1, w2) = (−8(n1 + n2)
2w1w2 + (n2(2w1 + w2) + n1(w1 + 2w2))

2)1/2,

and where the superscript sb1 refers to the 1-jurisdiction second-best allocation.

We now consider the optimal allocation of public good and taxes that the utilitarian
social planner would choose in the federal system in which the two types of individuals are
separated into two distinct jurisdictions. Again, this amounts to analyzing program (4) for
the specific logarithmic utility function of equation (13).

As discussed above, we start this analysis by first considering the case where the two
incentive constraints are satisfied and where the social planner solves:

max
z1,T1,z2,T2

n1[ln z1+ln(w1−T1)]+n2[ln z2+ln(w2−T2)] s.t. z1+z2 ≤ n1T1+n2T2. (14)

It is not diffi cult to show that the solution of program (14) is:

zfb21 =
n1(n1w1 + n2w2)

2(n1 + n2)
,

zfb22 =
n2(n1w1 + n2w2)

2(n1 + n2)
,

T fb21 =
n1w1 − n2w2 + 2n2w1

2(n1 + n2)
,

T fb22 =
n2w2 − n1w1 + 2n1w2

2(n1 + n2)
,

where the superscript fb2 refers to the 2-jurisdiction first-best allocation in which incen-
tive constraints are ignored. Two things should be noticed about this solution. First, it
implies that private good consumption is equalized across jurisdictions because the individ-
ual’s income (net of the subsidy received) is equalized across jurisdictions. Notice that the
equalization of income results from the fact that the indirect utility function is additively
separable in the income and the price of the public good. However, the quantity of the public
good consumed in the two jurisdictions differs because the price of the public good (equal
to the inverse of the population size) differs. The second thing that can be observed is that

3All computations performed on Mathematica are available upon request.
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the level of public good in one jurisdiction is increasing with respect to that jurisdiction’s
population and decreasing with respect to the other jurisdiction’s population.

We can compute the per capita subsidy (as per Lemma 1) of type i that goes from the
rich to the poor because of the progressivity associated with the considered preferences.
This subsidy, denoted sfb2i , is the per capita difference between tax revenues and public good
expenditure in jurisdiction i

sfb2i ≡ T fb21 − zfb2i

ni
=
nj(w1 − w2)
n1 + n2

. (15)

for i, j = 1, 2 and j 6= i. The subsidy is monotonically increasing with respect to the income
difference between the two types of individuals. The subsidy is also increasing with respect to
the population size of each jurisdiction. When population increases in one jurisdiction, the
demand for public good increases. For the assumed utility function, the increase in public
good is exactly financed by the increase in population so that per capita taxes do not have
to increase. When n2 increases, the per capita subsidy to the poor decreases so that the
marginal utility of income for the poor increases. To restore the equality of marginal utility
of income across jurisdictions, the subsidy has to increase. When n1 increases, the per capita
subsidy from the rich decreases so that their marginal utility of income has increased. The
subsidy then has to increase for optimal redistribution.

We now consider the incentive compatibility constraints. Since we do not need to worry
about the incentive constraint of the poor type in so far as the comparison of the federal and
the centralized provision of the public good is concerned thanks to Proposition 1, we restrict
our attention to the program:

max
z1,T1,z2,T2

n1[ln(w1 − T1) + ln z1] + n2[ln(w2 − T2) + ln(z2)]

s.t. z1 + z2 ≤ n1T1 + n2T2 (16)

ln(w1 − T1) + ln z1 ≥ ln(w1 − T2) + ln z2.

If the incentive constraint of the rich does not bind at the solution of program (16), then
the solution of this program is precisely that of program (14) above. Hence, we start by
evaluating the incentive constraint of the rich at the solution of program (14). We can show
(again with the help of Mathematica) that:

ln(w1 − T fb21 ) + ln zfb21 ≥ ln(w1 − T fb22 ) + ln zfb22

is equivalent to:

n21w1 + n22(w2 − 2w1) + 3n1n2(w2 − w1)
n2(3n1w1 + 2n2w1 − 2n1w2 − n2w2)

≥ 0. (17)

Since the denominator is positive, only the numerator matters for the sign of the expression.
We can restrict the number of parameters by replacing n1 by a ∗ n2 and w1 by b ∗w2 where:

a = n1/n2
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is the demographic ratio (of the number of rich over the number of poor) and

b = w1/w2

is the interquartile ratio (the ratio of the highest income over the smallest income in this
two-type world). By assumption a > 0 and b > 1. Condition (17) can then be equivalently
rewritten as:

IC1(a, b) ≡ a2b− 3(b− 1)a+ 1− 2b ≥ 0. (18)

When inequality (18) holds, the incentive constraint for the rich individual is satisfied at the
fb2 allocation. While, thanks to Proposition 1, this is not needed for the comparison of the
federal and the centralized structures, we can also write down the inequality that corresponds
to the incentive constraint of the poor. This inequality can be shown to be equivalent to:

IC2(a, b) ≡ a2(b− 2) + 3(b− 1)a+ 1 ≥ 0. (19)

Figure 4 provides a graphical representation of these two incentive constraints in (a, b)-space.

0 1 2 3 4 5
1

2

3

4

5

demographic

interquartile

IC1 < 0

IC2 > 0

IC1 > 0

IC2 < 0

Figure 4: Incentive constraints in (a, b)-space.

As can be seen, the curves IC1 and IC2 intersect at a = b = 1, which is to be expected.
When b = 1, all individuals have the same income. Hence, if they live in two separated
jurisdictions, they will only differ by their consumption of the public good, which depends on
the population of their jurisdiction. When a = 1, both jurisdictions have the same population,
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hence the same consumption of the public good. Both incentive-constraints are therefore
satisfied at this point.

For all values of a < 1, the incentive-constraint of the rich individual is violated at the
solution of program (14). That is, rich individuals always have an incentive to move from
their jurisdiction to that of the poor when there are more poor than rich. Indeed, when
the number of rich is lower than that of the poor, the rich face a larger price of public
good and, as a result, consume less public good than the poor. Since the poor also pay less
tax than the rich, the rich have incentive to join the poor jurisdiction. In the case where
the number of rich is smaller than that of the poor, the social planner will face a binding
incentive constraint of the rich if it chooses a federal structure. Will it? In order to answer
this question, we first compare the centralized and the federal structures when the incentive
constraint of the rich is satisfied at allocation fb2.

The social welfare at the second-best allocation with one jurisdiction is:

SW sb1 = n1U(zsb1, w1 − T sb1) + n2U(zsb1, w2 − T sb1). (20)

while the social welfare at the two-jurisdiction federal allocation without incentive constraints
is:

SW fb2 = n1U(zfb21 , w1 − T fb21 ) + n2U(zfb22 , w2 − T fb22 ). (21)

After some manipulations (again performed by Mathematica), we can show that:

SW fb2 − SW sb1 ∝ 41+aaa(1 + ab)2+2a − (1 + a)1+a (1 + 2b+ a(2 + b)− h(a, b))1+a×
(3 + 2a− 2b− ab+ h(a, b)) (−1− 2a+ 2b+ 3ab+ h(a, b))a

where a = n1/n2, b = w1/w2, and:

h(a, b) =
√
−8(1 + a)2b+ (1 + 2b+ a(2 + b))2.

The sign of SW fb2−SW sb1 is the same as the sign of the expression on the right-hand side.
This is quite a messy expression, but it does depend only upon the demographic and the
interquartile ratios. This expression is plotted (in red color) in (a, b)-space in Figure 5.
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Figure 5: Distributional parameters that determine the choice of the optimal jurisdiction
structure.

Over the region where both incentive constraints (in blue and in green as in Figure 4) are
satisfied —that is, when the allocation fb2 is the solution to the second-best problem —the set
of combinations of values for the parameters (a, b) that lie above the red curve are those for
which the utilitarian social planner prefers the federal structure to the centralized one. As can
be seen, this preference arises when income disparities, as measured by the interquartile ratio
w1/w2, are relatively large (so that there there is a strong motive for income redistribution
and adjustment of the private and public good provision to the heterogeneity of individuals
willingness to pay for the public good). Analogously, the larger is the relative number of rich,
the more likely it is that the federal solution be favoured by the utilitarian planner. When
there are more rich, it is less costly to redistribute to the poor since less income has to be
taken away from each rich individual in order to achieve a given amount of redistribution. In
addition, Figure 5 illustrates the result of Proposition 1 since the red curve on the North East
of which the federal solution dominates the centralized one never intercepts the boundary of
the zone where the incentive constraint of the poor (in green) is violated.
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Figure 5 also uses the Pareto criterion to compare the two structures. The area above the
black curve indicates indeed the set of parameters values for which the utilitarian optimal
federal structure is unanimously preferred to the utilitarian optimal centralized one. The
area above the black curve is simply the set of all parameter values for which:

U(zsb1, w1 − T sb1) ≤ U(zfb21 , w1 − T fb21 )

U(zsb1, w2 − T sb1) ≤ U(zfb22 , w2 − T fb22 ),

so that both types of individuals prefer the fb2 allocation to the sb1.

Unfortunately, the two-dimensional feature of the analysis in (a, b)-space is lost when the
incentive constraint of the rich is binding at the solution of program (16). For we cannot
extend the red curve in Figure 5 to the northwest of the IC1 (blue) curve. In this case, the
choice between the two structures depends upon the four parameters (n1, n2, w1, w2), and
not only upon the ratios a = n1/n2 and b = w1/w2. We can nonetheless state results about
the set of values of the parameters that would lead the utilitarian social planner to favor the
federal system over the centralized one. The key to this part of the analysis is the study of the
subsidy given by the rich to the poor that solves Program (11). As shown in Proposition 2,
this subsidy is smaller when the IC constraint of the rich is binding at the optimal allocation
in a federal structure than when it is not binding. It is even possible for this subsidy to be
negative when the IC constraint of the rich is binding.

Indeed, consider fixing s in program (16) and solving the program for z2 and T2 using the
two constraints for that s. Denote this partial solution z2(s) and T2(s). Now, the optimal
subsidy ŝ solves:

max
s
n1V (1/n1, 1, w1 − s) + n2U(z2(s), w2 − T2(s)). (22)

and satisfies therefore the first-order condition:

−n1VR(1/n1, 1, w1 − ŝ) + n2

(
1

z2(ŝ)

dz2(ŝ)

ds
− 1

w2 − T2(ŝ)
dT2(ŝ)

ds

)
= 0.

There are values of (w1, w2, n1, n2) for which this condition is solved for ŝ = 0. It is not
diffi cult (thanks to Mathematica) to see that the set of parameters for which this happens
depends only upon a and b. This set is in fact described by the equality:

b =
−
√

1− a− 2a

−2a+ a
√

1− a
. (23)

On Figure 5, we have plotted (in yellow) the curve described by equation (23). It is easy to
see that b goes to infinity when a becomes negligible. For all values of a and b to the left
(right) of this line, the optimal subsidy is negative (positive). When a is very small, there
are very few rich individuals. Furthermore, when a is small, the implicit price for the public
good for the rich is very large relative to that for the poor. Hence, the amount of public
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good provided for the rich is small. This implies that the optimal subsidy from the rich to
the poor must be negative in order to prevent the rich from moving to the poor jurisdiction.

As it turns out, if the optimal subsidy chosen by the utilitarian social planner for the
federal solution is 0, then it is always better to choose the centralized provision. This means
that, in Figure 5, an appropriately extended red curve would never cross the yellow one. We
state this formally as follows.

Proposition 3 Suppose the solution to program (22) is ŝ = 0. Then the utilitarian social
planner prefers the centralized jurisdiction structure to the federal one.

When the optimal subsidy is zero in the two-jurisdiction structure, there is no redistrib-
ution from the rich to the poor. Furthermore, there is duplication in the production of the
public good. It is then socially optimal to have only one jurisdiction. The preference for a
federal jurisdiction structure over a centralized one can only appear when it is optimal for
the central planner in a federal structure to redistribute tax revenues across jurisdictions.

The optimal subsidy can also be examined along the IC1 curve, where the incentive
constraint of the rich is weakly binding. Along this curve, the allocation sb2 coincides with
the allocation fb2. The optimal subsidy is then ŝ = sfb21 . As illustrated in Figure 5, there
exists a point on the curve above which the two-jurisdiction structure socially dominates the
one-jurisdiction structure. This occurs for a value of b that is suffi ciently large.

From these two observations, one concludes that the region of social indifference between
the federal and the centralized structures is located somewhere between the line for which
ŝ = 0 and that for IC1. This suggests that for any given demographic ratio a however small,
there exists a high enough interquartile ratio b above which the social planner will always
favour a federal structure over a centralized one. Unfortunately, Figure 5 does not provide us
with any clue about whether or not this intuition is correct because what happens between
the IC1 curve and the yellow curve does not depend only upon the ratios a and b. It depends
upon the four parameters (w1, w2, n1, n2). However, as shown in the following lemma, we can
prove indirectly that this intuition is correct.

Lemma 2 For any demographic ratio a such that the constraint IC1 is binding, there exists
a large enough value for the interquartile ratio b at which the utilitarian social planner prefers
the two-jurisdiction structure.

Are the combinations of the demographic and interquartile ratios above which a federal
structure is favoured by a utilitarian social planner empirically plausible? Put differently, are
the actual (before tax) income distributions observed in - say - developed countries exhibiting
such ratios? Table 1 shows the average before tax yearly income (expressed in the currency
of the country) in 2010 for each of the 10 deciles of the population. These data are taken from
the Luxembourg Income Study data set (see e.g. http://www.lisdatacenter.org/ for detailed
information on this data set).
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Table 1: Distribution of before tax income per decile

Decile Canada (Can $) France (€) Germany (€) Spain (€) Denmark (kr) UK (£) USA ($)
1 9730 9410 11040 5086 14574 9083 8026
2 16513 14494 16688 10149 22172 13934 15509
3 21586 17785 21451 13240 26735 17214 20845
4 26612 20766 26090 16137 31861 20497 26372
5 32181 23481 30594 19513 36918 24505 32594
6 37818 26503 35831 23217 41803 28941 39859
7 43650 30065 41486 27283 46972 34471 48497
8 51872 34497 48025 32652 53246 41341 59514
9 63784 41814 58792 40396 62041 51973 76568

10 108164 71578 95160 61618 96228 92659 137153

Applying these data to the (very crude) approximation of the reality that a two-type
setting represents requires one to make assumption on the dividing line of the population
between "rich" and "poor". It requires also one to treat all incomes on a given side of the
dividing line as equivalent (say at their average value). Table 2 below shows the average
income among the rich and among poor in the OECD countries of Table 1 for a few "dividing
lines" between poor and rich corresponding to as many different assumptions on the demo-
graphic ratios. For example, a demographic ratio of 9 corresponds to the situation where
the poorest decile of the population is poor and anyone that is not in the poorest decile is
rich. At the other extreme a demographic ratio of 1/9 corresponds to the situation where
everybody but those who are in the higher decile are poor.

Table 2: Demographic and interquartile ratios

.

a ratio b Canada b France b Germany b Spain b Denmark b UK b US
1/9 3.20 2.94 2.95 2.95 2.58 3.45 3.77
1/4 2.87 2.56 2.66 2.77 2.31 3.05 3.40
2/3 2.78 2.37 2.58 2.78 2.23 2.90 3.37
1 2.86 2.38 2.64 2.89 2.27 2.93 3.50
3/2 3.02 2.43 2.74 3.06 2.36 3.01 3.71
4 3.67 2.79 3.22 3.84 2.69 3.38 4.69
9 4.59 3.31 3.77 5.33 3.19 3.98 6.33

As can be seen from this table and Figure 5 above, if one assumes a dividing line rich-poor
that generates a demographic ratio in the 3/2-9 range, countries such as Canada, Spain, the
UK and the US exhibit a suffi ciently large interquartile ratio (above than 3) to justify the
choice of a federal structure over a centralized one by a utilitarian social planner. Things
are less clear for dividing lines between rich and poor that generate demographic ratios
smaller than 1, even though Canada, UK and the US exhibit in this case an interquartile
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ratio superior to 3 which could justify the choice of a federal structure. Hence, this table
clearly suggests that the ratio combinations for which a federal solution is preferred to the
centralized one by a utilitarian social planner using a log-log function are not outlandish.

4 Conclusion

The conclusion of this paper holds in one sentence that can be stated, after Wallace Oates
(1972)’s quotation recalled above, as follows. Even when the "cost-savings from the central-
ized provision of a public good is maximal, the level of (utilitarian) welfare may be at least
as high (and typically higher) if Pareto-effi cient levels of consumption are provided in each
jurisdiction than if any single, uniform level of consumption is maintained." In the model
considered in this paper, we have indeed considered the most extreme form of “cost-savings
from a centralized provision of a public good" that one can imagine: that of a non-rival
public good with no congestion. We have shown in such a setting that if the public authority
is imperfectly informed about the willingness to pay of its citizens, it may find optimal to
organize the provision of the public good into several distinct jurisdictions rather than in
a single one, even at the high cost of provision that results from the replication in several
jurisdictions of the cost of providing the very same non-rival public good. The reason for
this preference comes from the information that the social planner obtains from having indi-
viduals “choosing" their jurisdiction of residence and, therefore, expressing their preferences
for their favorite tax and public good packages. In a single “uniform level of consumption"
centralized jurisdiction structure, individuals must all pay the same taxes and consume the
same amount of public good because under private information, the public authority is in-
capable of discriminating across types. In a federal structure, the central government may
achieve a better targeting of the packages to the tastes of its citizens. Our analysis shows that
the benefit of this better targeting may outweigh the cost of unnecessarily replicating the
provision of a non-rival public good into several jurisdictions. We have shown more specifi-
cally that the superiority of a federal provision of a public good over a centralized one is all
the more likely as the heterogeneity in the population is large. Using the somewhat specific
case of a two-type population of unequally income individuals, we have shown in particular
that federal provision tends to dominate the centralized one when the income differences
between the rich and the poor is large, and when the ratio of the rich over the poor is also
large. As the fraction of rich people in the population becomes small, the case in favour of a
federal solution vanishes even though, for any fraction of rich in the population however how
small, it is always possible to find a suffi ciently large income discrepancy between the rich
and the poor that would make federal provision preferable to the centralized one. We have
also suggested that the set of heterogeneity parameters above which the federal solution is
preferable to the centralized one is empirically plausible.

While we believe this analysis, and the strong case that it makes in favour of a federal
provision of public good, to be of some interest, we are aware of many of its limitations.
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For one thing, we have limited our attention to individuals who differ only in contributive
capacities (income), and who have the same preferences for the private and the public good.
An alternative would have been to consider the case of individuals with the same income,
but with different tastes for the public good. We conjecture that one would obtain very
similar conclusions to the one obtained here in this case. A more realistic, but analytically
much more challenging, situation would have been that where individuals differ both in their
income and their preferences.

Another obvious limitation is the restriction of a large part of our analysis to a two-type
setting. Yet the diffi culty of the problem of the optimal choice of a jurisdiction structure
under private information was already significant. Imagine for instance a three-type setting.
Then, one would need to consider a large number of possibilities: a centralized solution with
all individuals’types pooled into a unique jurisdiction, a “completely decentralized" setting
where each type forms a jurisdiction on its own, and two “mixed federal" structures: one
where the rich are pooled with the “middle" in one jurisdiction and the poor are left alone
and the other where the rich stay alone and the “middle" and the poor form a jurisdiction.
Thanks to the single crossing property, these are the only jurisdiction structures that would
satisfy the incentive compatibility constraints. But the analysis of all of these cases, with all
the varying possibilities for the incentive constraints to bind or not, would have been very
tedious.

The last, but not the least, limitation of the analysis is its focus on a specific utilitarian
objective for the social planner. Ideally, one would like to generalize the analysis and to
study the (second-best) utility possibility sets associated to federalism and centralism so as
to identify the set of parameter values for which the frontier of one of the two sets Pareto
dominates that of the other. This is a very complicated analysis when incentive constraints
bind (see e.g. Maniquet and Sprumont (2010) for the quasi-linear case), and is therefore
beyond the scope of this paper.

A Appendix: Proofs

A.1 Proof of Lemma 1

Suppose first that there exists s∗i ∈ [−wi,+∞) satisfying:

z∗i = zM(1/ni, 1, wi + s∗i ),

T ∗i = wi − xM(1/ni, 1, wi + s∗i )

for i = 1, 2 such that:

n1s
∗
1 + n2s

∗
2 = 0.
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Yet suppose that, contrary to the statement of the lemma, (z∗1 , T
∗
1 , z

∗
2 , T

∗
2 ) is not Pareto-effi cient in

B(n1, n2, w1, w2). This means that there exists some allocation (ẑ1, T̂1, ẑ2, T̂2) inB(n1, n2, w1, w2)

such that U(ẑi, wi−T̂i) ≥ U(z∗i , wi−T ∗i ) for i = 1, 2 with at least one strict inequality. By standard

revealed preference arguments, this implies that ẑi/ni + (wi− T̂i) ≥ z∗i /ni + (wi−T ∗i ) = wi + s∗i
for i = 1, 2 with at least one strict inequality. Multiplying both sides of each of these inequalities
by ni and summing yields:

ẑ1 − n1T̂1 + ẑ2 − n2T̂i > n1s
∗
1 + n2s

∗
2

= 0.

But this contradicts the assumption that (ẑ1, T̂1, ẑ2, T̂2) is inB(n1, n2, w1, w2). Conversely, assume
that (z∗1 , T

∗
1 , z

∗
2 , T

∗
2 ) is Pareto-effi cient in the set B(n1, n2, w1, w2). Define then s∗i by:

s∗i =
z∗i
ni
− T ∗i (24)

for i = 1, 2. Since (z∗1 , T
∗
1 , z

∗
2 , T

∗
2 ) is Pareto-effi cient inB(n1, n2, w1, w2), it satisfies n1T ∗1+n2T

∗
2 =

z∗1 + z∗2 so that:

n1s
∗
1 + n2s

∗
2 = z∗1 + z∗2 − n1T ∗1 − n2T ∗2 = 0

as required. Let us now show that z∗i = zM(1/ni, 1, wi + s∗i ) and T
∗
i = wi− xM(1/ni, 1, wi + s∗i )

for i = 1, 2. Thanks to (24), it is clear that, for i = 1, 2, wi + s∗i = z∗i /ni + wi − T ∗i so that the
bundle of public and private good (z∗i , wi − T ∗i ) satisfies the budget constraint defined by setting
the price of public good at 1/ni and the individual income at wi + s∗i (using private good as the
numéraire). Suppose to the contrary that, for individual 1 (say, but the argument works equally
well for individual 2 or for both types of individuals) one has (z∗1 , w1 − T ∗1 ) 6= (zM(1/n1, 1, w1 +
s∗1), x

M(1/n1, 1, w1 + s∗1)). Since Marshallian demands are functions of the public good prices and
income, this means that there exists some bundle (ẑ1, x̂1) satisfying w1 + s∗1 = ẑ1/n1 + x̂1 such

that U(ẑ1, x̂1) > U(z∗1 , w1 − T ∗1 ). Defining T̂1 by T̂1 = w1 − x̂1, this means that:

n1w1 + n1s
∗
1 + n2w2 + n2s

∗
2 = ẑ1 + n1(w1 − T̂1) + z∗2 + n2(w2 − T ∗2 ).

Because n1s∗1 + n2s
∗
2 = 0, this writes:

n1T̂1 + n2T
∗
2 = ẑ1 + z∗2 .

But this means that the allocation (ẑ1, T̂1, z
∗
2 , T

∗
2 ) ∈ B(n1, n2, w1, w2) is Pareto superior to

(z∗1 , T
∗
1 , z

∗
2 , T

∗
2 ), a contradiction.

A.2 Proof of Proposition 1

Assume that (z∗1 , T
∗
1 , z

∗
2 , T

∗
2 ) is effi cient in B(n1, n2, w1, w2) with respect to a scheme of subsidies

s1 and s2 as per Lemma 1 satisfying s1 < 0 < s2, and is such that:

U(z∗2 , w2 − T ∗2 ) ≤ U(z∗1 , w2 − T ∗1 ). (25)
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Because the per capita subsidies s1 and s2 that support this Pareto-effi cient federal provision of
public good as per Lemma 1 are progressive, s1 = z∗1/n1 − T ∗1 < 0 so that T ∗1 > 0 (since z∗1 > 0).
Consider then merging jurisdictions 1 and 2 and providing everyone with z∗1 unit of public good
while asking a tax payment of T ∗1 . If it was feasible, such a centralized provision of the public good
would weakly Pareto dominate the federal provision associated with (z∗1 , T

∗
1 , z

∗
2 , T

∗
2 ) because type 1

individual would be indifferent and, thanks to inequality (25), type 2 individuals would be weakly
better off. Let us show that the centralized provision (z∗1 , T

∗
1 ) is indeed feasible. This amounts to

showing that:

(n1 + n2)T
∗
1 ≥ z∗1 .

Since (z∗1 , T
∗
1 , z

∗
2 , T

∗
2 ) is feasible and effi cient in B(n1, n2, w1, w2), one has:

n1T
∗
1 + n2T

∗
2 = z∗1 + z∗2
⇐⇒

n1T
∗
1 + n2T

∗
2 − z∗2 = z∗1

which implies, given that n2T ∗2 − z∗2 = −n2s2 < 0, that n1T ∗1 > z∗1 and, therefore, that (n1 +
n2)T

∗
1 > z∗1 (since T

∗
1 > 0). Because this inequality is strict, it is actually possible to increase

public good provision for all without increasing taxes, that is, it is possible to increase the utility
level of all.

A.3 Proof of Proposition 2

The proof proceeds as follows. First, we show that:

VR(1/n1, 1, w1 − s∗) >
∂U(z̃2, w2 − T̃2)

∂x
,

where (z̃2, T̃2) denotes the solution of program (11) when the subsidy s is constrained to take the
value s∗. We then show that, at the solution of program (11), we must have

VR(1/n1, 1, w1 − ŝ) <
∂U(ẑ2, w2 − T̂2)

∂x
.

Finally, we show that, in order to obtain this latter inequality, it must be the case that ŝ ≤ s∗. It
is then easy to show that ẑ2 ≤ zM2 (1/n2, 1, w2 + n1s

∗/n2).

We know that the solution of program (12), s∗, is such that:

VR(1/n1, 1, w1 − s∗) = VR(1/n2, 1, w2 + n1s
∗/n2),

(s∗ equalizes the marginal utility of income across individuals). Suppose that we fix s∗ and that we
solve program (11) by choosing z2 and T2 given s∗. The allocation of the rich individual does not
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change since the subsidy s∗ does not change. The allocation of the poor individual is now implicitly
characterized by the two constraints of program (11) that will be binding at the solution of the
program (the proof of this is left to the reader):

n1s
∗ + n2T̃2 = z̃2

V (1/n1, 1, w1 − s∗) = U(z̃2, w1 − T̃2).

In general, there are two allocations that simultaneously satisfy these two equations. However, only
one also satisfies the (unwritten) incentive constraint for the poor individual. At this allocation,
we have that:

z̃2 < zM2 (1/n2, 1, w2 + n1s
∗/n2)

and that:

T̃2 < TM2 =
zM2 (1/n2, 1, w2 + n1s

∗/n2)− n1s∗
n2

.

Moreover, we know that:

VR(1/n2, 1, w2 + n1s
∗/n2) =

∂U(z∗2 , w2 − T ∗2 )

∂x
.

Let us now show that:

∂U(z∗2 , w2 − T ∗2 )

∂x
>
∂U(z̃2, w2 − T̃2)

∂x
,

that is, let us show that the marginal utility of income of the poor individual decreases when we
move from the allocation (z∗2 , T

∗
2 ) to the allocation (z̃2, T̃2). We first note that we have

n1s
∗ + n2T

∗
2 = z∗2

n1s
∗ + n2T̃2 = z̃2,

that is, both allocations are on the same “budget line" for the poor individual. Let Ux(n1s∗ +
n2T2, w2 − T2) be the partial derivative of U with respect to its second argument. Notice that,
since Uxz ≥ 0 by super-modularity, one has:

∂Ux(n1s
∗ + n2T2, w2 − T2)

∂T2
= n2Uxz − Uxx > 0. (26)

Notice also that, as we move from (z∗2 , T
∗
2 ) to (z̃2, T̃2) along the budget line, T2 decreases. Combined

with inequality (26), this implies that Ux decreases as well along the budget line. Hence, one has:

VR(1/n1, 1, w1 − s∗) >
∂U(z̃2, w2 − T̃2)

∂x
.
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We now show that, at the solution of program (11), we have:

VR(1/n1, 1, w1 − ŝ) <
∂U(ẑ2, w2 − T̂2)

∂x
.

We do this by writing down the the first-order conditions of program (11):

T2 : −n2Ux(ẑ2, w2 − T̂2) + µ · n2 + λ · Ux(ẑ2, w1 − T̂2) = 0

z2 : n2Uz(ẑ2, w2 − T̂2)− µ− λ · Uz(ẑ2, w1 − T̂2) = 0

s : −n1VR(1/n1, 1, w1 − ŝ) + n1 · µ− λ · VR(1/n1, 1, w1 − ŝ) = 0

where µ and λ are the multipliers of the two constraints. Substituting for the value of µ drawn
from the first condition into the third one yields (after some straightforward manipulations):

n1(Ux(ẑ2, w2−T̂2)−VR(1/n1, 1, w1−ŝ))−λ
(
n1
n2
Ux(ẑ2, w1 − T̂2) + VR(1/n1, 1, w1 − ŝ)

)
= 0.

This can only hold if the first term is positive. Hence,

VR(1/n1, 1, w1 − ŝ) <
∂U(ẑ2, w2 − T̂2)

∂x
.

Since the above inequality is reversed at s∗, the final step of the proof requires showing that s
must decrease for this inequality to be satisfied. Consider first the effect of s on VR(1/n1, 1, w1−s).
A standard comparative statics exercise shows that, if U is concave, then V is concave in income.
This implies that VRs(1/n1, 1, w1− s) > 0. Hence, if s decreases, the marginal utility of income of
the rich individual decreases. Consider now the effect of s on Ux(z2, w2 − T2) where (z2, T2) are
the solution of program (11) for a given s. We know that (z2, T2) is at the intersection of the two
constraints of program (11). Inserting the budget constraint into the incentive constraint yields

V (1/n1, 1, w1 − s)− U(n1s+ n2T2, w1 − T2) = 0. (27)

This implicitly defines T2 as a function of s. We want to evaluate the effect of s on Ux(n1s +
n2T2, w2 − T2) when T2 is characterized by the condition (27). We have:

dUx(n1s+ n2T2, w2 − T2)
ds

= Uxz

[
n1 + n2

dT2
ds

]
− Uxx

dT2
ds

, (28)

where:

dT2
ds

= −−VR − n1U
1
z

−n2U1z + U1x
< 0

is calculated along condition (27) and U1 = U(n1s+n2T2, w1−T2) (as opposed to U = U(n1s+
n2T2, w2 − T2)). It is easy to show that the denominator of dT2/ds is negative because of the
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single-crossing property and the fact that constraint (27) is binding. If it was positive, then the
solution would not be optimal since it would be possible to increase the utility of the poor individual
without decreasing that of the rich individual while satisfying all constraints. This implies that
dT2/ds < 0.

We now evaluate the sign of the coeffi cient of Uxz in (28).[
n1 + n2

dT2
ds

]
=
−n1n2U1z + n1U

1
x + n2VR + n2n1U

1
z

−n2U1z + U1x
=
n1U

1
x + n2VR

−n2U1z + U1x
< 0.

These sign calculations imply that dUx/ds < 0 in equation (28). Hence, if s decreases, the marginal
utility of income of the poor individual increases. We have shown that, at s∗, the marginal utility of
the rich individual is higher than that of the poor. We have also shown that it must be lower at the
optimal separating allocation. To lower the marginal utility of the rich and increase that of the poor
(to reach the optimal separating allocation), we have to decrease s (starting from s∗). Hence, it must
be the case that ŝ ≤ s∗. It is easy to show that ẑ2 ≤ zM2 (1/n2, 1, w2 +n1s

∗/n2). Since the public
good is normal, one must have zM2 (1/n2, 1, w2 + n1ŝ/n2) ≤ zM2 (1/n2, 1, w2 + n1s

∗/n2). Hence,
handling the incentive constraints of the rich individuals imposes a distortion on the consumption
of public good of the poor such that ẑ2 ≤ zM2 (1/n2, 1, w2 + n1ŝ/n2).

A.4 Proof of Proposition 3

Assume that

b =
−
√

1− a− 2a

−2a+ a
√

1− a
.

Call the solution to program (16) SW sb2.

SW sb2 = n1U(ẑ1, w1 − T̂1) + n2U(ẑ2, w2 − T̂2),

where ẑ1 = n1w1/2, T̂1 = w1/2, ẑ2 = z2(0), T̂2 = T2(0). Replacing w1 by bw2 and n1 by an2,
one can show that:

SW sb2

n2
= −a log[4an2] + 2a log

[
−
(
2a+

√
1− a

)
√

1− a− 2
n2w2

]
+ log

[
−1 +

√
1− a− a

2a
(√

1− a− 2
) w2]+

log

[
−(−3+3

√
1−a+a)(2a+

√
1−a)

2a(
√
1−a−2)

2 n2w2

]
and that:

SW sb1

n2
= a log


(√
−a3 − 2

(√
1− a− 1

)
a2 +

(
2
√

1− a− 1
)
a+ 1 + a

√
1− a+ a+

√
1− a

)
w2

2a
(
2−
√

1− a
)

+
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log

[(√
−a3−2(

√
1−a−1)a2+(2

√
1−a−1)a+1−a

√
1−a+a−

√
1−a

)
w2

2a(2−
√
1−a)

]
+

(a+ 1) log

[
−(a+1)

(√
−a3−2(

√
1−a−1)a2+(2

√
1−a−1)a+1+a

√
1−a−3a−

√
1−a

)
n2w2

2a(2−
√
1−a)

]
.

Thanks to Mathematica, we compute the difference SW sb2/n2 − SW sb1/n2. We can show
that the resulting expression is independent of w2 and n2. We then set without loss of generality
w2 = n2 = 1. This implies that the difference in welfare only depends on the ratio a. We can
plot it over the interval a ∈ ]0, 1]. The graph demonstrates that the expression is negative over
this domain of a. Consequently, the one-jurisdiction structure yields higher social welfare than the
two-jurisdiction structure does.

A.5 Proof of Lemma 2

One needs to compute the difference SW sb2 − SW sb1. The diffi culty lies in characterizing the
optimal level of subsidy ŝ in the allocation sb2 where the IC1 constraint binds. Instead of doing
so, we compute this difference using the subsidy sfb2i . Since this subsidy is suboptimal when IC1
binds, this computation underestimates the difference SW sb2 − SW sb1. Using Mathematica, we
get:

SW sb2
f /n2 − SW sb1/n2 = 2a log

[
an2w2(ab+1)

a+1

]
− a log[4an2]+

log

[
n2w2

(√
a3(−b2)+a2(4b2−6b+1)+a(4b2−2b−1)+b2+a−b+2

)(√
a3(−b2)+a2(4b2−6b+1)+a(4b2−2b−1)+b2−2ab+a−b

)
(a+1)

(
−
√
(a(b+2)+2b+1)2−8b(a+1)2+ab−2a+2b−3

)
]
−

(a+ 1) log
[
1
4
n2w2

(
−
√

(a(b+ 2) + 2b+ 1)2 − 8b(a+ 1)2 + ab+ 2a+ 2b+ 1
)]
−

a log

[
w2
(√

(a(b+2)+2b+1)2−8b(a+1)2+3ab−2a+2b−1
)

4(a+1)

]
where SW sb2

f refers to the second-best social welfare with the suboptimal subsidy sfb2i . We can
show that the sign of this expression only depends on the ratios a and b, that is, it is independent
of n2 and w2. We then fix the ratio a and take the limit of SW sb2

f −SW sb1 when b goes to infinity.
We can show that this difference converges to infinity. This implies that, for any demographic ratio
a, there exists a high enough interquartile ratio b such that the two-jurisdiction structure is socially
preferable
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