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1 Introduction

In this paper we explore the connection between learning and technology choices in an arte-

factual field experiment conducted with farmers in Guyana. In our experiment, we introduce

a multi-period one-armed bandit game, which we turn into an instrument to measure behav-

ior. We use choice patterns in the bandit game to identify different styles of learning among

the farmers. We then correlate estimated learning styles with farmer technology adoption

and stopping choices.

In our framework, subjects play multiple three period games in which they make a series

of choices between a known arm with certain amounts of earning and an unknown arm, which

results in a win or loss of with unknown probabilities. Public revelation of the outcomes

from the unknown arm can be used to update beliefs about the likelihood of success of

the risky outcomes. We construct a number of indices to measure degrees of correctness of

decision-making relative to proper Bayesian updating. We then use choices in the games to

estimate and categorize individuals into learning styles.

We find heterogeneity in decision-making, including overweighting of winning draws, and

a small but significant amount of Bayesian learning. We correlate these learning styles with

survey data on farmers sociodemographics and on input choices on their farms. Our results

suggest that individuals who overweight recent draws are more likely to have adopted new

farm inputs within the previous year. This suggests that focusing on Bayesian learning in

adoption models may lead to inaccurate predictions, and that it is important to consider

potential differences in how individuals learn and the subsequent effects on decision-making.

Theories of learning are important in dynamic contexts, and many economic models of

learning, including Bandit games, involve Bayesian updating. However, it is well-known that

people often fail to update like Bayesians. For example, it has been found that people both

underweight and overweight the likelihood (Grether, 1980). For another example, it has been

found that people see negative serial correlation when it does not exist (the gambler’s fallacy

(Croson and Sundali, 1995), and positive serial correlation when it does not exist (the hot
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hand fallacy (Camerer, 1989). Thus it is not enough to simply test behavior against learning

theories. It is also important to understand which in a set of possible alternative learning

behaviors is being exhibited. The answer to this question has implications for theory as well

as for policy. We introduce an experimental method to identify a learning type.

Theories of learning are often applied to specific contexts. In developing countries, for

example, farmers tend to be slower to adopt new technologies. While many determinates

of this tendency have been studied, including risk preferences (Binswanger, 1980; Knight,

et al., 2003; Liu, 2013) and ambiguity preferences (Ross, et al., 2012; Engle-Warnick et al.,

2011), the role of learning is also prevalent (Foster and Rosenzweig, 2010; Conley and Udry,

2010).1 Farmers can learn through a learning-by-doing mechanism, in which individuals use

information from their own experience to update beliefs about new technologies, or through

social learning, where information from other individuals is used to update beliefs (Foster and

Rosenzweig, 1995). Research that explores either of these frameworks tends to concentrate

on Bayesian updating in the learning process. Our work is in the vein of Barham et al.

(2015), who suggest that farmers in developed countries use learning rules that are very

heterogeneous, with only a small proportion using Bayesian updating.

This paper provides empirical evidence on the real-life consequences of different learning

styles. In it we uniquely turn a bandit game into a behavioral instrument to classify learning

styles, and use the instrument to shed new light on an important and well-studied problem.

Our results, which show that people who over-react to new information are most likely to

try new inputs, suggest a potential new take on the adoption of new technologies.

1The learning-by-doing model of Jovanovic and Nyarko (1996), for example, is an alternative learning
model specifically for technology choice.
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2 The Model

2.1 Bandit Games

In a multi-armed bandit problem a decision-maker chooses between k possible arms or ex-

periments. The choice of arm i results in an observation/reward from experiment i. The

observation may provide useful information for a future choice between the arms. The goal is

to maximize the present value of the discounted stream of rewards. The tradeoff is between

exploration (finding the best arm) and exploitation (choosing the arm thought to have the

best playoff). A simplification of the multi-armed bandit problem is a “one-armed” bandit

problem with two arms in which one arm has a known i.i.d. distribution of returns.

The bandit framework is used extensively in studies of information acquisition and learn-

ing by economic agents. In economics, for example, it has been used to model market pricing

and learning (Rothchild, 1974; Rustichini and Wolinsky, 1995), labor search and matching

(Jovanovic, 1979), corporate finance and asset pricing (Bergemann and Hege, 1998; 2005)

and technology adoption (Copeland, 2007).

Bandit games have been empirically tested in the experimental laboratory. Banks, et al.

(1997) conduct laboratory experiments to analyze and compare decision-making in two sim-

ple bandit problems - a one-armed bandit problem and a two-armed bandit problem. They

find that behavior in the two environments are qualitatively different and in the theoreti-

cally predicted direction. Gans, et al. (2007) investigate how well simple models of discrete

choice match actual performance in bandit experiments. They find that simpler learning

rules match best while the more complicated Bayesian learning perform worst. Boyce, et

al. (2015) use a laboratory experiment to examine whether individual behavior is consis-

tent with the Nash equilibrium predictions of a one-armed bandit game with information

spillover. They find that while there is a bias towards under-experimentation, there is a

significant strategic effect.

This paper builds on this literature by using a bandit game as an instrument to measure
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behavior in an artefactual field experiment (Harrison and List, 2004) with farmers in a

developing country. In our framework, we use a three-period one-armed bandit problem to

observe how people learn, and we examine whether those choices can be modeled by simple

learning rules and whether those learning rules have predictive power with regard to actual

choices on their farms.

2.2 The Model

Our model of learning is a “one-armed” bandit game in which a decision-maker (DM) selects

between two alternatives: a known arm (K) that returns a constant amount of earnings, and

an unknown arm (A) that has binary outcomes labelled success and failure with unknown

probability.

2.2.1 Beliefs and Probabilities

Suppose the DM has a 50-50 prior, µ0, that the likelihood of a success for selecting the

unknown arm is either θ or 1−θ. If her beliefs are updated in a Bayesian manner, then after

t draws the posterior, µt, conditional on observing k successes and t− k failures is:

µt = Pr(θ|k successes, t− k failures) =
0.5θk(1− θ)t−k

0.5θk(1− θ)t−k + 0.5(1− θ)kθt−k

2.2.2 Value Functions

Consider the case of a three-period game. Let t = 0, 1, 2 indicate the period, S represent

success and F represent failure of the unknown arm, µt be the belief at the beginning of the

period, pt = µtθ+(1−µt)(1−θ) be the predictive probability of observing x = S in period t,

u(x) be the per period utility function, and x ε {S, F}. For a given path of realizations of the

unknown arm and fixed payoff for the known arm, λ, the value functions can be calculated

as follows:
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V0 = max{3u(λ), Eµ0 [u(x) + V1,x)]}

= max{3u(λ), p0
(
u(S) + V1|x = S

)
+ (1− p0)

(
u(F ) + V1|x = F

)
}

V1 = max{2u(λ), Eµ1 [u(x) + V2,x)]}

= max{2u(λ), p1
(
u(S) + V2|x = S

)
+ (1− p1)

(
u(fF ) + V2|x = F

)
}

V2 = max{u(λ), Eµ2u(x) = p2u(S) + (1− p2)u(F )}

2.2.3 Optimal Strategy

Let s = (s0, s1, s2) be a decision strategy where st ε {K,A} is the action taken at time

t. Note that K represents selection of the known arm and A represents selection of the

unknown arm. An optimal strategy exists which maximises the value function V0. Strategy

s∗ is optimal if:

V0{s∗} > V0{s} ∀s in the strategy space S.

The optimal strategy depends on the likelihood of success θ, the updated beliefs about the

likelihood of success µ, and the earnings of the known arm λ.

3 Experimental Design

The experiment consists of a series of three-period one-armed bandit games as described

above. In each game, participants choose between Option K, a fixed amount of earnings

($λ) for sure, and Option A which consists of outcomes that are either success ($1500) or

failure ($0) with unknown probabilities. In each game the actual likelihood of success of the

unknown arm is either θ or 1− θ.

Fixing the outcomes for success and for failure at 1500 and 0, our challenge was to

jointly select values of θ (the likelihood of success) and λ (the value of the known arm)

for a variety of optimal strategies. The experimental designed consisted of several different
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optimal strategies because of the possibility that the pattern of various strategies could

simply be the result of a rule of thumb, rather than proper updating. Being mindful of the

fact that values of θ closer to one induce faster learning, we spread the strategies the best

we could across different values of θ.

Setting θ equal to four different values, {0.5, 0.7, 0.9, 1}, each representing increasing

speed of learning with a draw from the unknown arm, for each value of θ we then selected

several values of λ using simulations so that we obtained the following four optimal strate-

gies.2

1. Choose the known arm in each period (KEP )

2. Choose the known arm after one failure observation (K1F )

3. Choose the known arm after two failure observations (K2F )

4. Choose the unknown arm in each period (AEP )

Using a range of values for λ, we evaluated V0 for each strategy.3 This resulted in each

strategy being optimal for a specific range of values for the known arm λ conditional on the

value of θ. The design is summarized in Table 1, where the third and the fourth columns

show the range for λ for which a given strategy and value of θ are valid. The fourth column,

labelled “Calibrated λ”, presents the actual value used in the experimental design.4 This

resulted in the following optimal strategies for each θ.

Note that there are a total of ten parameter combinations in Table 1, represented by

each row. Notice that for θ = 0.5, where no updating can occur, we chose both strategies

2Bradt, et al. (1956) show that for one-armed bandit games with finite horizon and Bernoulli trials, if
the known arm is optimal at any stage, then it is optimal to use that arm at all subsequent stages. Given
this result, we focused on strategies for which there is a single switching point from the unknown arm to the
known arm.

3We use the CRRA utility function u(x) = x1−r

1−r with coefficient r = 0.5.
4For θ = {0.7, 0.9}, to calculate the fixed alternative for K1F and K2F , we use the approximate midpoint

of the ranges. The fixed alternative for KEP was approximated by adding the distance between the midpoint
of the K1F value and the upper bound to that upper bound. For θ = {0.5, 1} we used a (-275, +275) range
around the switch λ of 375. The values are shown in column 4 in Table 1.
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that select the same arm all three times to include in our experimental design. With the

exception of choosing the unknown arm each time, which occurs once, every strategy occurs

at least twice.

4 Experimental Procedures

4.1 Setting and Subject Pool

We held experimental sessions with farmers in communities in two administrative regions in

Guyana. Ten sessions were held in East Berbice-Corentyne (Region 6) and seven sessions

were held in Essequibo Islands-West Demerara (Region 3). All communities are rural villages

where agriculture is one of the main livelihoods. The communities are quite heterogeneous

in the agricultural goods produced and do not specialize in any particular crop, however

cash crops such as fruits and vegetables are most commonly planted.

Recruitment of participants and organization of the locale for the experiment were con-

ducted by our local field staff, which consisted of regionally-based employees of our local

partner, the National Agriculture Research and Extension Institute (NAREI). All sessions

were held in locations central to the surrounding communities. Each community was visited

several days in advance to recruit subjects. Subjects had to be farmers of legal age (18 or

above), reside in one of the adjacent rural communities and have basic literacy and numeracy

skills. If a recruited subject was unable to attend on the day indicated, replacement partic-

ipants were selected from a reserve list. In total, 295 subjects participated in the sessions,

with session size ranging from 11 to 24 participants in Region 3 and 14 to 20 participants in

Region 6.5

5Two participants had to leave the session prior to completing the experiment, two participants left before
completing the exit survey and one participant did not participate in the incentivized part of the session due
to religious reasons.
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4.2 Session Details

We ran our sessions as laboratory experiments in the field, and experimental procedures were

identical in both regions. Advised consent was obtained and instructions were read from a

script by a single experimenter. Each session consisted of nine trials with three decision-

making periods in each trial. Each trial corresponded to a specific value of θ, and in each

period individuals made choice between the fixed earnings $λ and the unknown arm (Option

A). In each trial, the distribution of θ was fixed for all periods. For θ = {0.7, 0.9}, we had

three trials of choices; for θ = {1}, we had two trials of choices; and for θ = {0.5} we had

one trial of choices.

At the beginning of the first period, we established the 50-50 prior that the likelihood of

success was either θ or 1− θ and the subjects were asked to choose between various $λ’s and

Option A. An outcome realization from Option A was then shown. Subjects made another

choice between the $λ’s and Option A in the second period,and then a second outcome

realization from Option A was shown. Subjects made a final choice between the $λ’s and

Option A in the third period, then a third outcome realization from Option A was shown.

The outcome realizations were drawn with replacement.

Before each trial, participants were given the two-page instrument (Figure 1) on which

they recorded their decisions for that trial. On the first page, we presented an illustration

of the unknown arm. There were two bags, each containing ten chips with values of either

GUY$1500 or GUY$0. One bag contained a number of GUY$1500 chips corresponding to

the value of θ for the round, while the other bag contained a number of GUY$1500 chips

corresponding to 1− θ. For instance, the diagram in Figure 1 is an example from a trial in

which θ = 0.7. In the figure, one bag contains seven GUY$1500 chips and three $0 chips

while the other bag contains three GUY$1500 chips and seven GUY$0 chips. To establish

the 50-50 prior, we indicated above each bag that there was a 50% chance that the chips they

will see come from that specific bag, and reinforce this in the instructions. The sequence of

outcomes for each round was randomly chosen prior to the laboratory sessions for ease of
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implementation and was the same in all sessions.6

Subjects made their decisions in the experiment on the second page of the instrument.

Each decision was a choice between the known payoff (λ) and the unknown arm, Option

A. They played several games at once, each game corresponding to a specific value of λ.

The decisions were made sequentially by rows. After the experimenter read instructions

explaining the distribution of the bags in Option A, the participants made the decisions in

the first row. An outcome from Option A was then shown to participants, following which

they made the decisions in the second row of the instrument. Another outcome from Option

A was shown and participants made the decisions in the third row of the instrument. Each

row corresponds to a period in the trial.

A final outcome from Option A was then shown to the participants, who then made

the decision on the first page of the instrument about which bag/distribution they believe

the outcomes shown are from. This was repeated for each trial on a separate instrument.

The trials were differentiated by the value of θ, and by values of the observations from the

unknown arm. The value of θ and the outcomes from Option A are shown in Table 2. In

total, participants made 72 decisions.7

After all trials were completed, a short exit survey was privately administered to each par-

ticipant by our field staff. The survey collected information on demographics, farming prac-

tices and decisions and climate change perceptions and adaptation. We also measured risk

and ambiguity attitudes using hypothetical (non-incentivized) choice instruments adapted

from Engle-Warnick et al. (2009 and 2011).8 Upon completion of the survey, subjects pro-

ceeded individually and in private to sit with the experimenter to determine their session

earnings. The experiment lasted approximately one hour and the entire session including

6With the exception of one session in which Trial 5 was omitted due to time and light constraints.
7Note that all subjects saw the draw from the unkown arm whether they chose it or not. We did this to

speed the learning process.
8The risk preference instrument requires subjects to choose among several binary pairs of gambles that

vary in their level of risk. The more they choose from the relatively risky gamble, the more risk averse they
are assumed to be. Similarly, the ambiguity instrument involves a series of decisions between several binary
pairs of a risky but costly gamble and and ambiguous but costless gamble. The more often subjects chose
to pay to avoid the ambiguous gamble, the more ambiguity averse they are assumed to be.
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the survey and payment lasted two hours on average.

Subjects were given a show-up fee of GUY$1000 upon arrival to cover their transportation

and opportunity cost for participation. We paid the show-up fee immediately to facilitate

trust in the incentivized part of the experiment. Subjects were also paid for one of the

decisions they made during the experiment. Each decision was numbered from 1 to 72. To

determine which decisions they were paid for, each individual selected a chip from a bag

containing chips numbered 1 to 72. For that decision, if they had chosen the known payoff

λ, they were paid that amount. If they had chosen Option A, they were paid the amount of

the chip from Option A that was revealed following that decision. If the decision was in row

one, they were paid the value of the first chip shown; if the decision was in row two, they

were paid the value of the second chip shown; and if the decision was in row three, they were

paid the value of the third chip shown. Since there was the possibility of earning GUY$0

for the experiment result, we also paid an additional amount of GUY$500 at the end of the

session for completing the survey. Subjects earned an average of GUY$700 (ranged from

GUY$0 to GUY$1500) for the incentivized part of the experiment. Total earnings averaged

GUY$2200.

5 Results

5.1 Exit Survey Descriptive Statistics

Table 3 presents the descriptive statistics of the farmer and household characteristics. The

average participant in the experiment was about 44 years old, most likely to be of East

Indian descent, married and more likely to be male (69%). The highest level of education

received was primary school (46%), followed by secondary school (45%) and the remainder

split between post-secondary schooling (6%) and less than primary (2%). Participants came

from households with an average size of 4 individuals. While two-thirds of participants had

flush toilet facilities only 37 percent used indoor taps as their source of drinking water. As
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an indicator of wealth, we also created an ownership index (ranging from 0 to 1) of five

vehicle assets. The average of this index is 0.27.

Participants had an average of 20.5 years experience in farming and had farms which

measure an average of 9.37 acres. Seventy-four percent of respondents owned their farm land.

To get a measure of access to credit, we asked the farmers how easily they could obtain a

loan or credit to make improvements on their farm on a scale of 1 (never) to 5 (always) from

formal and informal sources. The median response was 3 for both sources, and the means

were similar at 2.71 and 2.63 respectively. This suggests that on average farmers felt they had

somewhat limited access to credit. Three-quarter of respondents received technical assistance

from at least one source, while only 21 percent were member of a farming organisation. As

expected the main crops planted by the farmers in our sample were fruits and vegetables.

Table 4 provides a breakdown of the main crops reported to be cultivated. The five most

common crops were pepper, bora (yardlong beans), okra, rice and boulanger (eggplant),

four of which are cash crops with short growing cycles. Sixty-one percent of participants

also raised livestock and 43 percent did work other that farming.

Figures 2 and 3 present histograms for the hypothetical risk and ambiguity preference

measures elicited in the exit survey. The risk preference measure is the number of times the

subject chose the safer of two gambles in four decisions and the ambiguity preference measure

is the number of times the subject chose to pay to avoid the ambiguous gamble (selecting

a costly known gamble with the same payoffs) in five decisions.9 The risk measure is thus

increasing in risk aversion and, similarly, the ambiguity preference measure is increasing in

ambiguity aversion. For both measures there is heterogeneity in responses. The measures

are also positively and significantly correlated (r = 0.4805) so that relatively more risk averse

subjects also tend to be relatively more ambiguity averse.

9See Engle-Warnick, et al. (2011) for details on how these measures are constructed.
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5.2 Experiment Results

5.2.1 Choices vs. Optimal Strategies

Each bandit game has a strategy which maximises the value of the game (V0). We first

construct an index which captures the degree of correct of decision-making by comparing

each decision in each game to the corresponding decision in the optimal strategy. We compute

a score ranging from 0 to 3 for each game played. For instance, for θ = 1.0 and λ = $650,

the optimal strategy for the game is to choose λ in each period. Thus if the participant

chose Option A in each period the score is 0; if he chose λ in one period only, the score is

1; if he chose λ in two periods,the score is 2; and if he chose λ in all periods the score is 3.

With three periods and two possible options, there are eight potential sequence of choices

that participants can make. One of these sequences corresponds to the optimal strategy and

a score of 3, three of them would result in a score of 2, three would result in a score of 2,

and one would result in a score of 0.

Figures 4, 5 and 6 show the distribution of the score (with the scores of 2 and 3 normalized

by dividing by their number of occurances). From the figures, we see heterogeneity both

within and between games. Most games with λ = GUY $375 have scores closest to uniformly

distributed, while in most games with LOW and HIGH λ, there is a mode at 3 correct

decisions suggesting that there is increased difficulty in deciphering the MEDIUM λ games.

To explore this further we construct a weighted game-level index of correct decision-

making using the following formula:

Ig =
3 ∗ (No.of3s) + 2 ∗

(
No.of2s

3

)
+ 1 ∗

(
No.of1s

3

)
+ 0 ∗ (No.of0s)

No.ofParticipants
(1)

Table 5 shows the index for each game in the experiment by θ and λ. The mean game index

is 0.965 which is significantly higher than 0.75 which is the index that would correspond to

random game playing (uniform distribution of scores). As suggested by the table, there is

heterogeneity between games, with the index ranging from 0.705 in Trial 7 (λ=HIGH, θ=0.9)
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to 1.306 (λ=LOW, θ=0.5) in Trial 9. Trials 2 and 6, which correspond to observations of

0, 0, 1500, have the lowest indices for the LOW λ; while rounds 4 and 7, which correspond

to observations of 1500, 1500, 1500 have the lowest indices for the HIGH λ. This suggests

that when the outside option is low, successive failures tend to lead to incorrect decision-

making, while when the outside option is high successive successes tend to lead to incorrect

decision-making. Thus both the value of the outside option and the luck of the draw appear

to matter for correct decision-making.

Similar to the game index computed above, we construct an individual-level index of

correctness as follows:

Ii =
3 ∗ (No.of3s) + 2 ∗

(
No.of2s

3

)
+ 1 ∗

(
No.of1s

3

)
+ 0 ∗ (No.of0s)

No.ofGames
(2)

Figure 7 shows the distribution of this index. Again there is heterogeneity of behavior, with

a mean of 0.964, which is significantly higher than the 0.75 of random game play.

5.2.2 Choices vs. Optimal Conditional on History

An alternative way to consider the qualiity of learning in the game is to consider each decision

as autonomous and compare this with the optimal decision given the history of outcomes.

Assuming a CRRA utility function with parameter r = 1/2 and Bayesian updating of pos-

terior beliefs, we compute the optimal decision for each choice by comparing the expected

utility of Option A with the expected utility of the fixed earnings λ. We then calculate the

an index that captures the percentage of times the participants chose option A when they

should have chosen option A and an index that captures the percentage of time participants

chose the fixed earnings when they should have chosen the fixed earnings. These two indices

together will capture the level at which participants are Bayesian in their updating. The
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indices are computed as follows:

IndexA|A is Optimal =
No. of T imes Chose A|A is Optimal

No. of T imes A is Optimal
(3)

Indexλ|λ is optimal =
No. of T imes Choseλ|λ is Optimal

No. of T imesλ is Optimal
(4)

Table 6 shows the means of these indices and the difference between the two. Both values are

substantially and significantly less than 1, indicating that individuals are far from Bayesian

in their their updating. The mean index of choosing Option A correctly is significantly

greater that that of choosing λ correctly, suggesting that on average individuals made more

correct decisions when they should ‘experiment’ versus when they should play ‘safe’.

5.2.3 Learning Types

We next analyze learning at the individual level by fitting individual decisions to different

learning styles (Gans, et al., 2007; Barham et al., 2014). While we have a small number

(three) of observatons in each trial we have a total of 72 decisions for each participant.

We focus on the following five learning rules: Bayesian, first-1 (emphasis on the first

draw), last-1 (emphasis on the previous draw), random, and status-quo (same decision each

time). We utilise a logit framework to analyze the probability of choosing Option A in period

t of game g defined by

Pr(Choose Option A) =
eβxgt

1 + eβxgt
, (5)

where xgt is the expected utility difference from choosing Option A in period t of game g

and

xgt = U(Win)pgt + U(Lose)(1− pgt)− U(λg),

where pgt = µgtθg + (1−µgt)(1− θg) is the predictive probability of winning. In addition µgt

is the posterior belief at time t.
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Learning rules are defined by the way in which µgt is updated relative to the 50-50 prior.

Table 7 illustrates the posterior for each learning rule and each possible sequence of draws

for θ = 0.7.

Bayesian (BY)

Under Bayesian learning, individuals update their posterior beliefs (µt) using Bayes rule

using all available observations from Option A at period t as follows:

µgt = Pr(θg|k wins, t− k losses)

=
0.5(θg)

k(1− θg)t−k

0.5(θg)k(1− θg)t−k + 0.5(1− θg)k(θg)t−k

For Bayesian learners, the optimal choice for each decision would provide the best fit for

their decisions.

First-1 (F1)

Under first-1 learning, individuals only take into consideration the observation in the first

period to update their prior and ignores all subsequent observations. Thus individuals who

exhibit this type of learning overweight initial information which persists into all their sub-

sequent decisions. Updating is as follows:

µg|Win = Pr(θg|Draw1 is win)

=
0.5(θg)

1(1− θg)0

0.5(θg)1(1− θg)0 + 0.5(1− θg)1(θg)0

= θg,∀t > 0

µg|Loss = Pr(θg|Draw1 is loss)

=
0.5(θg)

0(1− θg)1

0.5(θg)0(1− θg)1 + 0.5(1− θg)0(θg)1

= 1− θg,∀t > 0
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Last-1 (L1)

Under last-1 learning, individuals only take into consideration the observation in previous

period to update their prior and ignores all prior observations. Thus individuals who exhibit

this type of learning overweight the most recent information. Updating is as follows:

µg,t|Win = Pr(θg|Drawt−1 is win)

=
0.5(θg)

1(1− θg)0

0.5(θg)1(1− θg)0 + 0.5(1− θg)1(θg)0
,

= θg

µg,t|Loss = Pr(θg|Drawt−1 is loss)

=
0.5(θg)

0(1− θg)1−0

0.5(θg)0(1− θg)1−0 + 0.5(1− θg)0(θg)1−0
.

= 1− θg

Random (RD)

In the random decision-making model there is no updating of the prior. Therefore µgt =

0.5 ∀θ, g, t.

Status Quo (SQ)

In the status quo decision-making model, subjects make the same decision each time.

For each individual decision, we calculate xgt under each learning rule, assuming a CRRA

utility function with risk parameter computed from hypothetical risk decisions in the exit

survey. For each individual, we run separate maximum likelihood estimation for each learning

rule and evaluate the Bayesian Information Criterion, a goodness-of-fit measure, to evaluate

which learning rule is the best fit for each individual: BIC = −2LL + k ∗ ln(n) where k is

the number of parameters and n is the number of observations. We assign each individual

to the learning rule model with the lowest BIC.
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Table 8 shows the number of participants categorised into each learning rule. A small

percentage (3.74%) of individuals fall into the status quo category. For 43.2% of participants,

random decision-making best explains their choices. First-1 learning is second most likely,

best explaining the decisions of 26.19% of individuals. Last-1 learning explains the decisions

of about 21.43% of participants each. Only 5.44% percent of participants are classified as

Bayesian learners. These findings are consistent with Gans, et al. (2007) and Barham et al.

(2014), who both find a great deal of heterogeneity in learning rules and very little Bayesian

learning.

We next explore what demographic characteristics may significantly predict learning

styles using multinomial logit estimation. The results are shown in Table 9. Compared

to random decision-making (the omitted category), individuals who are better educated

(secondary or higher) are more likely to be Bayesian learners. Additionally individuals who

own their farms and belong to a farm group are more likely to be classified as Last-1 learners.

None of the other characteristics significantly predict learning categories.

5.2.4 Technology Adoption and Learning Rules

To analyze the effect of the different learning rules (SQ, BY, F1, L1 and RD) on adoption

of of new farm inputs, we estimate the following regressions:

Ti = α0 +
LR=5∑
LR=1

αLRLR + X
′

iγ + ηi (6)

where Ti is whether the farmer adopted a new farm input (crop, fertilizer, agrochemical,

irrigation) in the last year, LR is learning rule: status-quo (1), bayesian (2), last-1 (3), first-

1 (4) and random (5), X
′

i is a vector of respondent characteristics (demographics, farming

characteristics, risk and ambiguity proxies) and ηi is a stochastic error term. In the estima-

tion, the omitted learning rule category is random decision-making. As all our dependent
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variables are Yes/No, we estimate the equation using a logit specification.

The results are shown in Table 10. We find that some learning styles are significantly

related to adoption of new farm inputs. Relative to random decision-makers, indviduals who

are are classified as Status Quo are less likely to have adopted any new farm input in the

last year, however the result is only significant for crop adoption and more broadly any farm

new input. This makes sense as these individuals are those who kept the same choice for all

their decisions in the experiment, regardless of the draws from Option A, the value of λ or

the value of θ suggesting that they are more like to stick with their choices for longer periods

of time.

Our main result is the following. Last-1 learners, those who overweight information from

the most recent draws, were significantly more likely to have adopted a new crop in the

last year. These results suggest that depending on individual learning styles, choices of

technology can be very different. Bayesian learning is positively correlated with new crop

adoption and negatively correlated with fertilizer and agrochemical adoption, but none of

these results are significant.10

6 Conclusions

In this paper we explored the connection between learning and technology choices in an

artefactual field experiment conducted with farmers in Guyana. Participants made choices

in one-armed bandit games between a known arm with fixed return and an unknown arm with

uncertain return. To measure correctness of decision-making in the game, we constructed

a number of indices, relative to proper Bayesian updating. We then used choices in the

game to estimate learning styles which we correlate with farmer technology choices on their

farms. We found heterogeneity in decision-making, including overweighting of initial and

recent winning draws, and small amount of Bayesian learning.

10We also explored the effect of the different learning rules on stopping decisions of the farmers, whether
they had ever stopped using a particular farm input, using similar estimation as above. The results (not
shown) do not indcate any correlation between learning rules and stopping decisions.
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Our main result suggesst that individuals who overweight recent draws are more likely

to have adopted new farm inputs within the previous year. This behavior, similar to the

well-known phenomonen of overweighting the likelihood, suggests that it is important to

consider potential differences in how individuals learn when modeling technology adoption

decisions. In this case, people could be making the right decision for the wrong reason.
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Figure 1: Instrument
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Figure 2: Number of Safe Choices
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Figure 3: Number of Times Chose to Pay to Avoid Ambiguity
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Figure 4: Game Level Index: θ = 0.7
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Figure 5: Game Level Index: θ = 0.9
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Figure 6: Game Level Index: θ = 1 and θ = 0.5
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Figure 7: Individual Level Index
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Table 1: Calibration of λ

θ Strategy Range for λ Calibrated λ

1 KEP >375 650
1 K1F <375 100

0.9 KEP ≥669 1000
0.9 K1F ≥78 & <669 375
0.9 K2F ≥19 & <78 50
0.7 KEP ≥446 600
0.7 K1F ≥296 & <446 375
0.7 K2F ≥197 & <296 250
0.5 KEP >375 650
0.5 AEP <375 100
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Table 2: Realizations of Outcomes, by Round

Round θ Realisation from Option A
1 0.7 1500, 0 1500
2 0.7 0, 0, 1500
3 0.7 0, 1500, 1500
4 1.0 1500, 1500, 1500
5 1.0 0, 0, 0
6 0.9 0, 0, 1500
7 0.9 1500, 1500, 1500
8 0.9 0, 1500, 1500
9 0.5 1500, 0, 1500

30



Table 3: Summary Statistics

Variable Obs Mean Std. Dev

Participant Characteristics
Age 290 43.84 14.35
Gender (Female=1) 290 0.31 0.47
Ethnicity

East Indian 290 0.83 0.38
African 290 0.11 0.31
Other 290 0.06 0.24

Marital Status
Married 290 0.80 0.40
Single 290 0.17 0.37
Widowed 290 0.03 0.18

Highest Education Level
None/Nursery Schoool 290 0.02 0.14
Primary 290 0.45 0.50
Secondary 290 0.46 0.50
Post Secondary 290 0.06 0.24

Household Size 289 4.07 1.84
Flush Toilet (Yes = 1) 290 0.67 0.47
Drinking Water from Indoor Tap (Yes = 1) 289 0.37 0.48
Asset Index (0-1 Scale) 290 0.27 0.17

Farming Characteristics
Number of Crops 281 3.58 1.72
Years Farming 288 20.46 13.78
Farm Size (Acres) 285 9.37 13.9
Land Ownership (Yes = 1) 287 0.74 0.44
Receives Technical Assistance (Yes = 1) 289 0.75 0.44
Member of Farm Group (Yes = 1) 290 0.21 0.41
Raises Livestock (Yes = 1) 290 0.61 0.49
Work Other than Farming (Yes = 1) 290 0.43 0.50
Access to Credit (1-5 Scale)

Formal Sources 288 2.71 1.57
Informal Sources 288 2.63 1.36

Behavioral Measures
Number of Safe Choices 290 1.81 1.21
Number of Times Chose to Pay to Avoid Ambiguity 290 2.46 1.58
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Table 4: Top 10 crops cultivated

Crop Name Frequency Percent

Pepper 108 11.10
Bora (Yardlong Beans) 96 9.87
Okra 86 8.84
Rice 66 6.78
Boulanger (Eggplant) 61 6.27
Squash 52 5.34
Corilla (Bitter Melon) 51 5.24
Plantain 49 5.04
Tomato 46 4.73
Cassava 40 4.11

32



Table 5: Game Index, by θ and λ

λ

Trial Theta LOW MEDIUM HIGH

1 0.7 1.212 0.715 1.053
2 0.7 0.710 0.744 0.958
3 0.7 1.130 0.687 0.992
4 1.0 1.338 - 0.594
5 1.0 1.031 - 0.816
6 0.9 0.816 0.713 1.243
7 0.9 1.218 0.822 0.705
8 0.9 1.146 0.702 1.170
9 0.5 1.306 - 1.034
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Table 6: Decision Level Indices

Index Index Difference Wilcoxon
Option A when Should λ when Should t-test Sum Rank

0.5914 0.5357 0.0557 2.570
(0.0123) (0.0124) (0.0217)** [0.0105]**
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Table 7: Posterior Distributions: Example θ = 0.7

Posterior (µt)
Period Draws Bayesian First-1 Last-1

0 0.5 0.5 0.5
1 0 0.3 0.3 0.3
2 0 0.16 0.3 0.3

0 0.5 0.5 0.5
1 0 0.3 0.3 0.3
2 1 0.5 0.3 0.7

0 0.5 0.5 0.5
1 1 0.7 0.7 0.7
2 0 0.5 0.7 0.3

0 0.5 0.5 0.5
1 1 0.7 0.7 0.7
2 1 0.84 0.7 0.7
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Table 8: Learning Rules - Bayesian Information Criterion

Rule Number Percent

Bayesian 16 5.44
First-1 77 26.19
Last-1 63 21.43
Random 127 43.2
‘Status Quo’ 11 4.42

N=294
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Table 9: Determinants of Learning Rules&

Status Quo Bayesian Previous Draw First Draw

Behavioral Measures
Number of Safe Choices 0.65 0.88 0.92 1.02
Number of Times Chose to Pay to Avoid Ambiguity 1.05 0.818 1.07 1.17

Demographics
Age 1.03 0.98 1.01 1.02
Sex (Female=1) 0.20 1.10 0.79 1.25
Secondary Education or Higher 0.73 4.17** 1.55 0.98
Asset Index 5.43 9.80 0.63 1.85

Farming Characteristics
Land Ownership (Own=1) 1 0.90 0.88 2.48** 0.87
Farm Size (Acres) 0.94 0.99 0.99 1.01
No. of Years Farming 1.01 1.01 0.97* 0.99
Receives Technical Assistance 0.58 1.04 0.90 1.11
Belongs to Farm Group 1.10 1.43 2.32** 1.28

Wald χ2 test 59.76*
Pseudo R-squared 0.0572

N=285. Multinomial logit relative risk ratios.
&Omitted learning rule is random decision-making.
* significant at 10%; ** significant at 5%; *** significant at 1%
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Table 10: New Technology Usage and Learning Rules

(1) (2) (3) (4)
Variables New New New Any New

Crop Fertilizer Agrochemical Technology

Learning Rules&

Status Quo -0.0406 -0.1315 -0.0226 -0.1954
(0.050) (0.059)** (0.112) (0.105)*

Bayesian 0.0191 -0.0850 -0.0332 -0.0485
(0.149) (0.077) (0.063) (0.229)

Previous Draw 0.1172 0.0144 -0.0091 -0.0018
(0.050)** (0.071) (0.043) (0.058)

First Draw 0.0823 -0.0256 -0.0433 -0.1051
(0.053) (0.055) (0.055) (0.076)

Behavioral Measures
Number of Safe Choices -0.0024 -0.0121 0.0088 0.0321

(0.019) (0.028) (0.016) (0.031)
Number of Times Chose to Pay to Avoid Ambiguity -0.0179 -0.0027 -0.0370 -0.0199

(0.017) (0.016) (0.019)** (0.022)
Demographics
Age -0.0020 -0.0080 -0.0023 -0.0069

(0.002) (0.003)*** (0.003) (0.004)*
Sex (Female=1) -0.1016 -0.1525 -0.1100 -0.2132

(0.052)* (0.064)** (0.059)* (0.076)***
Secondary Education or More -0.0410 0.0033 -0.0171 0.0086

(0.031) (0.048) (0.050) (0.048)
Asset Index 0.1754 0.3052 0.2807 0.3732

(0.101)* (0.108)*** (0.148)* (0.198)*
Farming Characteristics
Land Ownership (Own=1) -0.0668 -0.0303 -0.0224 -0.0193

(0.042) (0.048) (0.067) (0.076)
Farm Size (Acres) 0.0028 0.0021 0.0036 0.0072

(0.002)* (0.001) (0.002)** (0.004)**
Years Farming 0.0042 0.0093 -0.0006 0.0082

(0.002)** (0.004)** (0.003) (0.004)**
Receives Technical Assistance 0.0333 -0.0186 -0.0530 -0.0583

(0.044) (0.055) (0.051) (0.068)
Belongs to Farm Group 0.0609 0.1160 0.0631 0.1711

(0.064) (0.061)* (0.080) (0.086)**

Observations 285 280 280 285
Wald χ2 test 36.06*** 39.28*** 21.80 33.07***
Pseudo R-squared 0.1742 0.1486 0.0847 0.1260
&Omitted learning rule is random decision-making
Logit marginal effects with robust standard errors in parentheses
* significant at 10%; ** significant at 5%; *** significant at 1%
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