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inequality among generations, captured by the gap between the poorest and the richest generations, is 
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utilitarian criterion. A quadratic example is also used to perform comparative static exercices: it turns 
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better-off the less fortunate generations. All those properties are discussed and compared with those of 
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principle. 

Mot clés/Keywords: intergenerational equity, just savings principle. 

Codes JEL/JEL Codes: D63, H43, O21, Q20 

*
AMSE-GREQAM, 2 rue de la Charité, 13002. Marseille. France. Email: Charles.Figuieres@supagro.inra.fr.

†

‡
 Department of Economics, McGill University, Montreal, Canada H3A 2T7. Email: 

ngo.long@mcgill.ca.  INRA-LAMETA, 2 Place Viala, 34060 cedex 1. Montpellier. France. Email: 

tidball@supagro.inra.fr. 



1 Introduction

This article gets back to Rawls’ just savings principle (Rawls, 1971, 1999) and
to its link with the recent mixed Bentham-Rawls (MBR) intertemporal choice
criterion (Long 2006, Alvarez-Cuadrado & Long, 2009, Tol, 2013). In a stan-
dard dynamic model, we elucidate general properties of the control path that
is deemed optimal according to the MBR criterion; those properties turn out
to be, to some extent, consistent with some intuitions about intergenerational
justice expressed via Rawls’ just savings principle.

The general challenge is to think about what we owe to future generations1.
One possible answer, the just savings principle suggested by Rawls and various
scholars working in this field, derives from the social contract approach initiated
by Grotius, Hobbes, Locke, Rousseau and Kant. It can be described as the sav-
ing rule that an impartial “observer” would deem fair. It advocates a two-phase
logic (Gosseries, 2001, Wall, 2003). During a first phase, each generation must
save in order to transfer to the next generation more than what it has inherited
from the previous generations; the purpose of the accumulation phase is to build
up economic conditions so that at least basic freedoms are in place and minimal
stability to just institutions can be ensured. Then follows a cruise phase where
the principle of equality that prevails recalls the egalitarian-maximin logic, but
it is subordinate to the need for an initial take-off from the condition of under-
development2. Qualitatively, the picture is clear; but when it comes to more
operational details, the just savings principle has proven somewhat elusive3. Its
implications are far too vague and require further precisions. Unfortunately,
Rawls did not suggest a precise criterion that would embody his just savings
clause.

The MBR criterion has been suggested as a possibility, where the impartial
observer would be a ‘Dynasty with Concern for the Least Advantaged’ (Long,
2006). And indeed, its application in particular contexts abide by a two-phase
logic when the initial conditions are too low, that is to say below the modified
golden-rule (Long, 2006, Alvarez-Cuadrado & Long, 2009). But, beyond those
contexts, could this dynamic pattern be a robust property of the optimal path
according the MBR criterion? And, since this property also characterizes the
optimal control for the widely used discounted utilitarian criterion, what is the
further argument in favour of the MBR criterion as a superior embodiment of
the just savings principle?

1Since the famous UN Brundtland Report (1987), “Our Common Future”, and its echo in
the political sphere, it is a question that is experiencing a heightened interest; but philosophers
- and also economists - have thought about it for a long time.

2“Eventually, once just institutions are firmly established and all the basic liberties effec-
tively realized, the net accumulation asked for falls to zero. At this point a society meets its
duty of justice by maintaining just institutions and preserving their material base.” (Rawls,
1999).

3Several intertemporal social choice criteria used by economists have the ability to prescribe
this two-phase logic, though they also imply dramatically different saving rates. This is
the case for the “distance-to-bliss” criterion (Ramsey, 1928), the usual discounted utilitarian
criterion (Koopmans, 1960) and the rank-discounted utilitarian criterion (Zuber and Asheim,
2012).
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This article is organized as follows. The next section gives further details
about Rawls’ just savings principle. Section 3 presents a simple - but general -
dynamic economy that encompasses various applications, and it also explains the
MBR criterion. Section 3 establishes and discusses general dynamic properties
of the MBR exploitation path; and it also shows that inequalities, captured
by the difference of utility between the richest and the poorest generations, is
generically lower under the MBR criterion than under the discounted utilitarian
criterion. Section 4 presents a fully worked-out example, in which we prove
analytically three additional results. First, a greater initial stock level implies
a greater consumption for the poorest generations. Second, a greater weight on
the rawlsian part of the MBR criterion makes the poorest generations better-
off. Third, the larger the weight on the rawlsian part of the MBR criterion,
the longer the initial egalitarian phase of the MBR optimal program. Section 5
concludes.

2 The just savings principle

Chapter V of A Theory of Justice (Rawls, 1999, revised edition) contains three
sections of particular interest when it comes to justice between generations.
Section 44 is entirely devoted to this question. Section 45 discusses the link
between the just savings principle and the notion of time preference. Finally,
Section 46 incorporates the concern for just savings in the overall project of
characterizing just institutions. Below are some highlights of this thinking.

The general purpose of the just savings principle is to ensure that each gen-
eration receives its due from its predecessors and does its fair share for those to
come, with the understanding that the savings rate of each is to serve the whole
span of accumulation in order to establish just institutions and realize basic lib-
erties. Differently put, the just savings principle says that when the society has
not accumulated enough wealth to ensure the foundation of a solid infrastructure
for justice and liberty, then earlier generations should save so that society has a
sufficient material base to develop such an infrastructure4. This principle does
not say precisely how much saving is required of each of the earlier generations.
Rawls contends that this question “seems to admit of no definite answers. It
does not follows, however, that certain significant ethical constraints cannot be
formulated” (p. 253). Rawls just hopes that certain extremes will be excluded.
One such extreme is typically given by the optimal saving path derived from
the undiscounted utilitarian criterion that, by construction, generally demands
exorbitant sacrifices to the first generations. Indeed, when investment has a
positive return, a sacrifice by the current generation often appears worthwhile

4From Rawls’ contractuarian perspective, “the just savings principle can be regarded as
an understanding between generations to carry their fair share of the burden of realizing and
preserving a just society.” (p. 257.) And he goes on to say “The [just] savings principle
represents an interpretation, arrived at in the original position, of the previously accepted
natural duty to uphold and to further just institutions. In this case the ethical problem is
that of agreeing on a path over time which treats all generations justly during the whole course
of a society’s history.” (pp. 288-289).
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when it is pitted against the infinite sum of undiscounted advantages it will
produce on subsequent generations5. Interestingly, Rawls also expresses an ob-
jection against the use of his own difference principle. Directly transposed into
the accumulation context, it would ask the wealth of the better-off generations
to be scaled down and transferred to the poorest until eventually everyone ends
up in the same situation. But an intertemporal context imposes specific con-
straints to such operations, for there is no way “for later generations to help the
situation of the least fortunate earlier generation (p. 254).” The impossibility to
organize transfers from descendants to ascendants implies some adjustment to
the difference principle, except in special circumstances, presumably when the
transfers required to abide by this principle naturally flow along the timeline:
“what is just or unjust is how institutions deal with the natural limitations and
the way they are set up to take advantages of historical possibilities (p. 254)”.

In Section 45, Rawls clearly rejects the notion of time preference as a basic
principle, even though he admits that weighting less heavily future generations
may help improve otherwise defecting criteria. This practice may be used when
later generations are richer, but he consider such adjustements as “an indication
that we have started from an incorrect conception”, for “time preference has no
intrinsic ethical appeal” (p. 262).

In Section 46, Rawls is ready to deliver the final statements of justice for
institutions, with due qualifications for the issue of savings. He repeats his two
main principles (the equal liberty principle and the difference principle) and
enriches the priority rules for potential dissonances among them. While the first
principle is lexicographically prior to the second for matters of justice within
generations, the savings principle limits the scope of the difference principle for
matters of justice among generations.

3 A dynamic framework and the MBR criterion

Time is continuous and the horizon is infinite. The economy has infinitely many
successive generations. Each generation is made of one representative individual
who lives for just one instant. Let c(t) be the control variable, or consumption
flow, that affects generation t, and the stock variable is x(t). This stock evolves
according to the differential equation:{

dx(t)
dt ≡ ẋ (t) = f(x (t) , c (t)) ,

x (0) = x0 given.
(1)

An admissible path {c (.) , x (.)} is a solution to (1) such that x (t) ≥ 0 and
c(t) ≥ 0,∀t.

When consuming c(t), generation t enjoys a standard of living, U(t) ≡
U (c (t)) , where U(.) is an increasing function6. To any path c (.) let c =

5Under plausible specifications of the economy it may yield optimal savings amounting to
more than 60 percent of gross national product for the first generations.

6Well-being experienced by generation t is only but one interpretation that could be given
to function U(.).
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inft {c (.)} stand for the lowest consumption level, and let U = U (c) be the
corresponding standard of living.

This framework can accommodate two standard interpretations: i) the Ramsey-
Solow optimal growth model, that is obtained as a particular case when x is the
capital stock and the dynamics are ẋ = f(x, c) = F (x) − c − δx, where F (.)
is a production function such that F (x) ≥ 0, F ′ (x) ≥ 0, F ′′ (x) < 0, and δ > 0
is the rate of depreciation, ii) the basic renewable resource model, when x is a
natural resource that evolves according to the equation ẋ = f(x, c) = G (x)− c,
where G (.) is a concave function that reaches a maximum at some xM , called
the maximum sustainable yield.

To any admissible path, the MBR criterion associates the following value:

Wmbr (c (.)) ≡ θU + (1− θ)
∞∫

t=0

e−rt U (c (t)) dt , 0 < θ < 1 . (2)

Wmbr is a weighted average of the maximin criterion and the usual dis-
counted utilitarian criterion. It can be seen as a procedural compromise between
the concern for the worse-off (the larger θ, the stronger this concern) and the
concern for all generations with a discount for the position on the temporal axis.

Some properties of the MBR criterion are exposed and discussed at length
in Alvarez-Cuadrado & Long (2009). From a deontologic point of view, let us
recall briefly that Wmbr meets the following requirements: completeness, strong
Pareto, non-dictatorship of the future and non-dictatorship of the present7.
These properties are important, but we do not dwell on them here; they are
widely discussed elsewhere (Alvarez-Cuadrado & Long, 2009), and in any case
it is a consequentialist point of view that interests us in this article. To be more
precise, the object of interest in the present paper is not the expression (2) itself;
rather we shall focus on the properties of the solution to the MBR problem, i.e.
the trajectory {c (.) , x (.)} that maximizes (2) subject to (1).

4 Properties of optimal trajectories under the
MBR criterion

The economic framework presented above features a minimal structure. Yet,
even this basic structure already implies the following property on the endoge-
nous path induced by the MBR criterion.

Theorem 1 (Monotonicity) Let the pair
{
cmbr(.), xmbr(.)

}
be a solution to

the MBR problem. Assume that cmbr(.) is not constant and xmbr(.) is unique.
Then xmbr(.) is monotonic for t ∈ [0,+∞[.

7An intertemporal social function is complete if it can rank any pairs of admissible paths.
It satisfies Strong Pareto if it is increasing in any Ut ≡ U (c (t)) . It displays dictatorship of
the present when its ranking is not sensitive to the utility of generations located after some
date T . It displays dictatorship of the future when its ranking is affected only by the utility
of generations that are infinitely distant (see Chichilnisky, 1996).
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Proof. Appendix A.
Note that Theorem 1 does not rest on demanding assumptions on the fun-

damentals of the economy given by functions f(., .) and U(.). Regarding f(., .),
neither differentiability, nor continuity, nor Lipschitzian assumptions are really
necessary. Those kinds of assumptions help to guarantee the existence a solu-
tion to the differential equation (1), but they are sufficient and not necessary.
We don’t need either any concavity assumptions on U (.) or any transversality
conditions. Such conditions are helpful to guarantee that candidate paths are
indeed optimal, but they are only sufficient, hence too strong. Theorem 1 sheds
light more directly on the existence of a possible structure on endogenous vari-
ables whereby the optimal stock x cannot be cyclical, or increasing and then
decreasing and vice versa. Actually, this theorem is a generalisation of Hartl’s
result (1987) about the monotonicity of the state trajectories in autonomous
control problems8.

Nevertheless, sufficient conditions can be identified to ensure the MBR prob-
lem is strictly concave and therefore its solution is unique. For the sake of com-
pleteness, they are given in Theorem 2 below.

Theorem 2 (Sufficient conditions for optimality) Let
(
cmbr(.), xmbr(.), cmbr

)
be a candidate optimal solution, with the associated time path of shadow prices(
ψmbr(.), λmbr(.)

)
. Assume that the following transversality conditions are sat-

isfied:

lim
t→∞

ψmbr(t)xmbr(t) = 0 , (3)

and
lim
t→∞

ψmbr(t) ≥ 0 . (4)

Consider any alternative admissible path
(
c#(.), x#(.), c#

)
. For any (c, x, c), we

define the following Lagrangian using the shadow prices of the candidate optimal
path:

L(c, x, c, ψmbr, λmbr, t) ≡ e−rt [rθU(c) + (1− θ)U(c)]

+ψmbrf(x, c) + λmbr (c− c) .

Let V mbr and V # be the payoffs obtained by implementing the paths
(
cmbr(.), xmbr(.), cmbr

)
and

(
c#(.), x#(.), c#

)
respectively, i.e.

V mbr =

∫ ∞
0

e−rt
[
rθU(cmbr) + (1− θ)U(cmbr(t))

]
dt ,

8Hartl (1987) deals with the discounted utilitarian criterion that, strictly speaking, is a
particular case of expression (2) only when θ = 0, a value that is ruled out in principle.
However this value is forbidden simply to ensure that MBR escapes the dictatorship of the
present. But nothing in the proof of Theorem 1 is compromised when θ = 0. The proof just
becomes simpler.
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V # =

∫ ∞
0

e−rt
[
rθU(c#) + (1− θ)U(c#(t))

]
dt .

Assume that L is concave in (c, x, c). Then V mbr ≥ V #. In the case where L
is strictly concave in (c, x, c), then the optimal solution is unique.
Proof. Appendix B.

Two comments about this theorem are worthwhile9. Firstly, at a formal
level the candidate path, which is alluded to in the above theorem, is akin to the
competitive outcome when instantaneous “total utility” is rθU(c)+(1−θ)U(c(t))
and an additional price λ(t) on consumption appears in cases where consumption
otherwise would have fallen below c. Secondly, one may wish to know about the
concavity conditions to be imposed on the fundamentals U and f instead of
those imposed on the Lagrangian L. Note that when - as usually assumed -
∂f/∂c < 0 then first order conditions implies ψ > 0. Therefore the concavity of
U and f implies the concavity of L.

Added to the general necessary conditions already given in Alvarez-Cuadrado
& Long (2009) (see also Appendix B of the present paper), the above theorem
about sufficient conditions completes the ”user kit” of the MBR criterion.

Next, let us assume in this dynamic framework that x is a productive asset,
in the following sense:

Assumption 1 For any pair of points in time (ta, tb), where ta < tb, and any
non-negative initial stock level a, let c∗(.) be an admissible control path in the
time interval [ta, tb] , i.e.{

ẋ (t) = f(x (t) , c∗ (t)) ,∀t ∈ [ta, tb] ,
x (ta) = a, x(t) ≥ 0,∀t ∈ [ta, tb] ,

and let b be the resulting stock size at time tb,

b ≡ x(ta) +

∫ tb

ta

f(x (t) , c∗ (t))dt .

Then, for any ε > 0, there exists an admissible path cε(.) in the time interval
[ta, tb] with the corresponding initial stock x (ta) = a+ ε such that

cε(t) ≥ c∗(t) for all t ∈ [ta, tb] ,

and {
ẋ (t) = f(x (t) , cε (t)) ,∀t ∈ [ta, tb] ,

x (ta) = a+ ε, x(tb) = b, x(t) ≥ 0,∀t ∈ [ta, tb] .

The length of the statement of this assumption should not give the reader
a false impression of excessive limitation of the study domain. Essentially, As-
sumption 1 states that with a larger initial stock, at least as much consumption
as before becomes feasible over an interval, even if at the end of this interval the
final stock is unchanged. Under this assumption, we can give some information
about the occurence of the poorest generations over the time line.

9We thank an anonymous referee for those observations.
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Theorem 3 (Location of the poorest generations) Let the pair
{
cmbr(.), xmbr(.)

}
be a solution to the MBR problem. Assume that cmbr(.) is not constant and
xmbr(.) is unique. If the stock x is a productive asset (Assumption 1) the fol-
lowing properties hold:

1. when xmbr(.) is non-constant and weakly-increasing over time, then the
poorest generations cannot be at the end of the sequence,

2. when xmbr(.) is non-constant, and weakly-decreasing over time, then the
poorest generations cannot be at the beginning of the sequence.

Proof. Appendix C.
In the perspective of appraising the ability of the MBR path to capture the

two-phase logic of the just savings principle, it is the first item in the above
theorem, where the stock of the resource is weakly-increasing, that is relevant.
A pattern where the stock increases over time opens the possibility for future
generations to enjoy higher levels of consumption. But, a priori, a trajectory
where the lowest levels of consumption are in the far future cannot be excluded
either, for it is admissible. However, Theorem 3 establishes that this possibility
does not characterize a solution to the MBR problem.

The next results are helpful for comparing the MBR path with the discounted
utilitarian (DU) path.

Corollary 1 Let
{
cmbr(.), xmbr(.)

}
be the unique solution starting from some

x0. Suppose xmbr(.) is non-constant and weakly increasing. Then there exists a
finite time T such that after time T the solution (xmbr(.), cmbr(.)) is the solution
of the discounted utilitarian program

max
c

∫ ∞
T

u(c)e−rtdt

s.t. ẋ = f(x, c), x(T ) = xmbrT , with x ≥ 0 and c ≥ 0. In particular cmbr(t) >
cmbr for all t ≥ T .

Proof. This result follows from Claim 1 of Theorem 3. The complete proof is
in Appendix D.

The above result is a generalization of Proposition 3, item (ii), established in
Alvarez-Cuadrado & Long (2009) for a specific renewable resource model. It is
the information provided by Theorem 3 that makes this generalization possible.

Theorem 4 Under the assumptions of Corollary 1, if f(x, c) is concave in (x, c)
and u(c) is concave then after time T the time path cmbr(.) is weakly increasing
provided that fc < 0 and fxc ≥ 0.

Proof. Appendix E.
The above theorem is not only indicative of the behavior of the optimal

consumption after some date T . It will also prove useful to establish that, when
x0 is below the modified golden rule stock, the upper level of consumption under
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the MBR criterion is achieved at infinity, i.e. supt
{
cmbr (.)

}
= limt→∞ cmbr (t) ,

and to compare the MBR path with the discounted utilitarian path.
In view of this, consider now the following definition.

Definition 1 Let

I (c (.)) = sup
t
{c (.)} − inf

t
{c (.)} = c− c

be the range of consumptions distribution in trajectory c (.).

One may expect that inequality, as measured by I (c (.)), is lower under the
MBR criterion than under the discounted utilitarian criterion. This conjecture
has to be ascertained. Let cdu(t) denote the optimal consumption path under
the discounted utilitarian criterion. Clearly cmbr ≥ cdu, by construction. But
what about cmbr and cdu?

Theorem 5 (Inequality) Let the assumptions underlying Corollary 1 and The-
orem 4 jointly hold. Let cdu(.) be the solution to the discounted utilitarian pro-
gram. Suppose xmbr (.) is weakly increasing. Then

I
(
cmbr (.)

)
≤ I

(
cdu (.)

)
,

i.e. inequality among generations, as captured by I (c (.)), is lower under the
MBR criterion than under the discounted utilitarian criterion.

Proof. Appendix F.
Admittedly, I (c (.)) is coarse indicator of inequality. But it is relevant here,

when comparing cmbr (.) and cdu (.), because, when xmbr (.) is weakly increasing,
both trajectories share the same upper-level of consumption c, as can be deduced
from Corollary 1. Therefore, inequalities between generations that take place in
the intervals c − cmbr and c − cdu could be very different, but at least the
poorest are less far from the richest under the MBR scenario. The MBR path
outperforms the DU path in the perspective of capturing the rawlsian idea that
inequalities can be justified when they benefit the most disadvantaged people.

Two important remarks are in order.
Firstly, one may wonder under what conditions a solution

{
cmbr(.), xmbr(.)

}
to the MBR problem exists with xmbr(.) being unique as required for most
results of this paper, in particular Theorem 1. Ideally, one would like to know
the necessary and sufficient conditions for the existence of a unique solution
in order to determine precisely the scope of validity of our results. But such
an undertaking would be illusory. For any given minimum consumption c, the
problem is a standard optimal control problem. Necessary conditions for the
existence (and unicity) of an optimal control are notoriously elusive. Eventually,
one has to decipher the necessary conditions for a differential equation to have
a (unique) solution, a question about which little is known without imposing
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more structure. Sufficient conditions are easier to explore10, but are of course
more restrictive than one would like, in particular those required for unicity
where strict concavity requirements are usually called upon (see our Theorem
2). However, it is clear that the situations we describe in this paper do exist.
A first example is the numerical exercise performed by Alvarez-Cuadrado &
Long (2009, Section 5) where U (c) = ln c and f(x, c) = rx (1− x/K)− c, with
r,K > 0 two positive parameters. We also give another example in Appendix G
where U (c) = c. Here strict concavity of the Langragian L definitely does not
hold. Still a solution exists and it is unique.

Secondly, a solution to the MBR problem is generally not time consistent:
simply put, if an optimal trajectory

{
cmbr(.), xmbr(.)

}
is reconsidered at a fu-

ture time, there is no guarantee that the decisions for the remaining time will
still be optimal. Intertemporal choice criterions do not necessarily lead to time-
consistent optimal plans. In the axiomatic literature, a condition of stationarity
is sometimes imposed on intertemporal social ranking, in order to ensure time-
consistency. It is well-known that combining stationarity with a condition of
independence, and other technical conditions, leads to the discounted utilitarian
criterion (Koopmans, 1960), hence a dictatorship of the present (DP). Con-
versely, well-known criterions, e.g. RDU (Zuber and Asheim, 2012), MBR and
Chichilnisky’s that rule out DP - a minimum procedural requirement of equity
among generations - are also time inconsistent. However, the restricted use of
Chichilnisky’s criterion (Figuières and Tidball, 2012) can provide a time con-
sistent solution under specific economic environments. And Ramsey’s criterion
discards DP but it is time consistent, though it does not always return a num-
ber unless under special assumptions. It would be welcome to have a general
picture of compatibilities and incompatibilities between intergenerational equity
conditions and time consistency. Recently, Asheim and Mitra (2016) have pro-
posed such an analysis. Time consistency was the central concern in a more
specific context (see Asheim,1988), where technology includes both man-made
capital and a non-renewable resource, and it was found that “time-inconsistency
reappears in this technology” (p. 469). A solution to this intergenerational con-
flict would be to search for subgame perfect equilibrium where each generation
chooses a strategy that is a best response to the strategies of later generations,
as in Asheim (1988), where each generation’s payoff is “the infinimum over the
altruistic utility of all remaining generations” (p. 470). It would be interesting
to formulate a game where each generation’s payoff is the highest value of its
MBR criterion. This is however beyond the scope of our paper, and is left for
future research.

10Sufficient conditions for the existence of an optimal control in an inifinite horizon problem
can be found for instance in Seierstad & Sydsæter (1987, Ch. 3, Theorem 15). For the
existence of a solution to a differential equation, sufficient conditions are those of the well
known Cauchy-Lipschitz Theorem.
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5 A fully worked-out example and further re-
sults

This section studies an example with specific functional forms for the utility
function and the dynamic equation. This will allows us to illustrate our general
results and also to grasp a few additional insights.

The fundamentals are specified as follows:

ẋ(t) = f0 (x(t), c(t)) = ax(t)− c(t), x (0) = x0 given,

for the stock equation, and:

U0 (c) = mc− n

2
c2 , m, n > 0,

for the standard of living. So there is a “bliss” level of consumption, cb = m/n
and an upper bound on the value of the per period utility, U b = U

(
cb
)
.

The characterization of the discounted utilitarian solution is a direct appli-
cation of Pontryagin’s Maximum Principle. Details are left to the reader11. It
can be shown that for x(0) < m/(na), the optimal path is unique, and the state
variable converges to the bliss stock steady state xb = m/(na)12. The optimal
consumption:

cdu(t) = cb − (2a− ρ)(xb − x0)e(ρ−a)t ,

increases towards the bliss level. In this accumulation context where future
generations are also richer, the DU path is also the RDU consumption path;
thus, more in tune with Rawls just savings principle, discounting here can be
interpreted as an expression of inequality aversion rather than an intrinsic time
preference. Notice that consumption, at any time, increases when the initial
stock gets larger. The stock also increases and converges asymptotically to the
bliss level xb. This can be read13 as a two-phase logic, an investment phase that
increases the stock and a cruise phase that maintains it at the bliss level. This
implies that the earlier poorer generations makes the sacrifice associated with
accumulation, while the later richer generations are not required to do so.

Let us turn to the MBR program. Appendix H shows that the optimal
consumption is continuous and not decreasing in t

cmbr(t) =


c if t ≤ T

cb − λ(t)
n(1−θ) if t ≥ T.

where λ(t) is the shadow price of the stock, a function that decreases toward
0 over time. As far as the stock is concerned, here also we have an investment

11They are available upon request.
12If x(0) > m/na, it will be optimal to consume at a constant level c# = m/n, and have

strictly positive harvest surplus such that x(t) will converge to the bliss stock steady state.
13Strictly speaking, the stock never ceases to increase at any finite time. But in the long

run, increases becomes arbitrarily close to zero.
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phase followed by a cruise phase, despite the initial phase of stagnation for
consumption.

Therefore, both cdu(t) and cmbr(t) converge to the bliss level of consump-
tion, though the transitions are different. In contrast to the DU/RDU criterion,
the MBR criterion leads to a weakly increasing path, because the role of the
Rawlsian part is to protect the earlier poorer generations against excessive ac-
cumulation. In particular, there is an initial egalitarian phase. And, regarding
this initial egalitarian phase, one can add:

Proposition 6 Let the fundamental be f0 and U0. Assume the initial stock is
below the bliss level, x0 < xb.

1. A greater initial condition x0 < xb results in a greater consumption c for
the poorest generations:

dc

dx0
> 0 .

2. When the weight θ on the rawlsian part of MBR increases, the poor gen-
erations are better-off:

dc

dθ
> 0 .

3. When the weight θ on the rawlsian part of MBR increases, the length T
of the initial egalitarian phase increases:

dT

dθ
> 0 .

A possible interpretation of these results is as follows: starting from a low
value of θ, close to zero, the DU, RDU and the MBR paths are (nearly) the
same. As θ increases, an initial egalitarian phase appears in the MBR program
(and the higher θ the longer this phase). Intertemporal reallocations occur so
that the accumulation effort is less demanding for the first poor generations.

6 Conclusion

This paper provides general theorems in respect of the control that maximizes
the MBR intertemporal choice function. The main results are as follows: i) the
state variable is shown to be monotonic under rather weak conditions, ii) we
establish sufficient concavity conditions for a candidate trajectory to be optimal
and unique, iii) we prove that inequality among generations, captured by the
gap between the poorest and the richest generations, is lower when optimization
is performed under the MBR criterion rather than under the discounted util-
itarian criterion, iv) and, within a quadratic example, we provide an analytic
solution to the MBR program in the case of scarcity of the resource (x0 < xb).
This allows us to perform a sensitivity analysis with respect to some parameters
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of interest, the initial condition and the weight attributed to the less advantaged
generations.

Those results are helpful to give a possible content to Rawls’ (1971) just
savings principle. The vagueness of this principle, in its implications, allows
multiple interpretations. Several intertemporal social choice criteria, familiar
to economists, could be contenders as incarnations of this principle. How are
we to choose among them? According to Rawls, our final conception of justice
should establish what he calls a “reflective equilibrium”—an acceptable balance
between, on the one hand, deontological principles of justice and, on the other
hand the consequences of applying those general principles to specific cases.

Following this methodology, we could then scrutinize various social welfare
criteria and check, from a consequentialist point of view, their compliance to
at least two aspects of the just saving principle: i) the necessity of a take-off
phase if the initial conditions are two low, ii) a version of his difference principle,
adjusted for the intertemporal context.

It is well know that the maximin criterion, sometimes erroneously attributed
to Rawls, violates condition i). And Rawls also rejected the undiscounted utili-
tarian criterion. This criterion can be consistent with point i) but, by construc-
tion, it generally demands exorbitant sacrifices to the first generations, therefore
it does not comply with point ii). From this perspective, it might be tempt-
ing argued that the practice of discounting future advantages, prescribed under
Koopmans’ logic (1960), is not so unfair after all. This is so because productive
investment features an in-built bias in favour of the future that can be redressed
by granting more importance to earlier generations. This is a standard argument,
sometimes supported, sometimes challenged by economists who are working on
climate change (see for instance the synthesis given by Dasgupta, 2008, or the
critical assessment of Roemer, 2011, in particular Section 3 of his paper, or
Section 5.1 in Asheim, 2010). Although it appears unfair from a deontological
perspective (a dictatorship of the present in the words of Chichilnisky, 1996),
when the optimal solution turns out to be among the subset of non-decreasing
paths, the DU/RDU expresses an aversion for inequalities, rather than a pref-
erence for the present, and might be a not so bad candidate to embody the
just savings principle. Our comparison of the optimal trajectories under the
DU/RDU and the MBR criterion (Theorem 5 and the example of Section 5)
simply shows that a special attention for the poor can be further added.
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A Proof of Theorem 1

The proof is by contradiction. Assume that xmbr(.) is not monotonic. Then,
there exists a date τ ∈ [0,+∞[ and a strictly positive number θ such that:

xmbr(τ) = xmbr(τ + θ),

with xmbr(.) not constant on the interval [τ, τ + θ] .
Now define a new admissible path {c̃ (.) , x̃ (.)} with control and stable vari-

ables constructed as follows:{
c̃ (t) = cmbr(t), x̃ (t) = xmbr(t), ∀t ∈ [0, τ ] ,

c̃ (t) = cmbr(t+ θ), x̃ (t) = xmbr(t+ θ), ∀t ∈ ]τ,+∞[ .
(5)

By construction the pair {c̃ (.) , x̃ (.)} is admissible. And c̃ (.) can also be made
different from cmbr(.) over the interval ]τ,+∞[ . Indeed, if on the contrary c̃ (t) =
cmbr(t + θ) = cmbr(t), ∀t ∈ ]τ,+∞[, then by definition cmbr(t) is periodic -
and not constant by assumption - on ]τ,+∞[. In such a case one can simply
choose two alternative numbers τ ′, θ′ such that [τ ′, τ ′ + θ′] @ [τ, τ + θ] and
construct the above alternative path {c̃ (.) , x̃ (.)} using date τ ′ and θ′ instead of
τ and θ. Clearly {c̃ (.) , x̃ (.)} is different from

{
cmbr(.), xmbr(.)

}
on the interval

]τ ′,+∞[ . To simplify, let us just consider that {c̃ (.) , x̃ (.)} is different from{
cmbr(.), xmbr(.)

}
on the interval ]τ,+∞[ .
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Also, by construction,

cmbr = inf
t

{
cmbr (.)

}
≤ c̃ = inf

t
{c̃ (.)} ,

or equivalently, using obvious notations

Umbr ≤ Ũ .

By definition cmbr(.) is the unique optimal solution, and necessarily:

Wmbr
(
cmbr(.)

)
> Wmbr (c̃ (.)) ,

or,

θUmbr + (1− θ)
∞∫

t=0

e−rtU
(
cmbr(t)

)
dt > θŨ + (1− θ)

∞∫
t=0

e−rtU (c̃ (t)) dt.

Hence,

∞∫
t=0

e−rtU
(
cmbr(t)

)
dt >

∞∫
t=0

e−rtU (c̃ (t)) dt ,

∞∫
t=τ

e−rtU
(
cmbr(t)

)
dt >

∞∫
t=τ

e−rtU (c̃ (t)) dt ,

∞∫
t=τ

e−rtU
(
cmbr(t)

)
dt >

∞∫
t=τ

e−rtU
(
cmbr(t+ θ)

)
dt, (6)

where the second line obtains because the two controls coincide until date τ ,
and the last line makes use of (5). Notice that:

∞∫
t=τ

e−rtU
(
cmbr(t+ θ)

)
dt = erθ

∞∫
t=τ+θ

e−rtU
(
cmbr(t)

)
dt.

With this expression, inequality (6) can be written:

∞∫
t=τ

e−rtU
(
cmbr(t)

)
dt > erθ

∞∫
t=τ+θ

e−rtU
(
cmbr(t)

)
dt,

consequently:

τ+θ∫
t=τ

e−rtU
(
cmbr(t)

)
dt >

(
erθ − 1

) ∞∫
t=τ+θ

e−rtU
(
cmbr(t)

)
dt. (7)
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Next define a new admissible path {c (.) , x (.)} with control and stable vari-
able now constructed as follows:{

c (t) = cmbr(t), x (t) = xmbr(t), ∀t ∈ [0, τ + θ] ,
c (t) = cmbr(t− θ), x (t) = xmbr(t− θ), ∀t ∈ ]τ + θ,+∞[ .

(8)

Again, by construction the pair {c (.) , x (.)} is admissible and different from{
cmbr(.), xmbr(.)

}
. Also by construction,

cmbr = inf
t

{
cmbr (.)

}
= c = inf

t
{c (.)} ,

or
Umbr = U . (9)

We now compare the value of Wmbr(.) for {c (.) , x (.)} and
{
cmbr(.), xmbr(.)

}
.

Using definition (8), equality (9) and inequality (7):

Wmbr(c (.))−Wmbr(cmbr(.)) =

∞∫
t=0

e−rtU (c (t)) dt−
∞∫

t=0

e−rtU
(
cmbr(t)

)
dt

=

∞∫
t=τ+θ

e−rtU
(
cmbr(t− θ)

)
dt−

∞∫
t=τ+θ

e−rtU
(
cmbr(t)

)
dt

= e−rθ
∞∫

t=τ

e−rtU
(
cmbr(t)

)
dt−

∞∫
t=τ+θ

e−rtU
(
cmbr(t)

)
dt

= e−rθ

 τ+θ∫
t=τ

e−rtU
(
cmbr(t)

)
dt−

(
erθ − 1

) ∞∫
t=τ+θ

e−rtU
(
cmbr(t)

)
dt

 > 0,

a contradiction.
A quicker way to understand and heuristically prove this theorem is as fol-

lows14. The first part of the proof establishes that the average DU payoff on
[τ, τ + θ] is higher than the average DU payoff on [0,∞). (Because otherwise,
one could have done as well by skipping [τ, τ+θ] which contradicts uniqueness.)
But then one can improve the path by repeating the behavior on [τ, τ + θ],
leading to a contradiction that is established in the second part of the proof.

B Necessary conditions, sufficient conditions and
uniqueness

B.1 Necessary conditions

First, recall the following identity

1 =

∫ ∞
0

re−rtdt .

14We thank an anonymous referee for this intuition.
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Thus, a solution to the MBR problem is a triple
(
cmbr(.), xmbr(.), cmbr

)
that

maximizes ∫ ∞
0

e−rt [rθU(c) + (1− θ)U(c(t))] dt ,

subject to
ẋ = f(x (t) , c (t)) ,

c(t)− c ≥ 0 .

Following the approach of Hestenes15, we treat c as a “control parameter”, i.e.
a variable that,once chosen, remains constant over the time horizon [0,∞[. We
define the Lagragian:

L = e−rt [rθU(c) + (1− θ)U(c(t))] + ψ(t)f(x (t) , c (t)) + λ(t) (c(t)− c)

The necessary conditions are:
∂L

∂c
= 0 ,

ψ̇ = −∂L
∂x

,

ẋ =
∂L

∂ψ
,

λ(t) ≥ 0, c(t)− c ≥ 0, λ(t) (c(t)− c) = 0 ,

∂

∂c

∫ ∞
0

e−rt [rθU(c) + (1− θ)U(c(t))] dt+
∂

∂c

∫ ∞
0

λ(t) (c(t)− c) dt = 0 . (10)

The latter condition reduces to

θU ′(c)−
∫ ∞
0

λ(t)dt = 0

Adn the transversality conditions are:

lim
t→∞

ψ(t) ≥ 0, (11)

lim
t→∞

ψ(t)x (t) = 0 . (12)

B.2 Sufficient conditions and uniqueness

Our proof is similar to that of Takayama (1986).
For simplicity, we use the following notations

Lmbr = L(cmbr, xmbr, cmbr, ψmbr, λmbr, t) ,

and

L# = L(c#, x#, c#, ψmbr, λmbr, t) , (note: ψmbr, λmbr are not typos here),

15See, for example, Takayama, A. (1986), Mathematical Economics, second edition, Cam-
bridge University Press, Cambridge and New York
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where the ”mbr” over the multipliers indicates that we use the same path(
ψmbr(.), λmbr(.)

)
for both Lmbr and L#.

Since λmbr
[
cmbr − cmbr

]
= 0,

V mbr =

∫ ∞
0

[
Lmbr − ψmbrẋmbr

]
dt

Now, since λmbr ≥ 0 and since, by feasibility, c#−c# ≥ 0, we have λmbr
(
c# − c#

)
≥

0, hence

V # =

∫ ∞
0

[
L# − ψmbrẋ# − λmbr

(
c# − c#

)]
dt ≤

∫ ∞
0

[
L# − ψmbrẋ#

]
dt

Then

V mbr − V # ≥ −
∫ ∞
0

[
ψmbrẋmbr − ψmbrẋ#

]
dt

+

∫ ∞
0

[
Lmbr − L#

]
dt

Now, under the assumption that L is concave

Lmbr − L# ≥
(
xmbr − x#

) ∂Lmbr
∂x

+ (cmbr − c#)
∂Lmbr

∂c
+
(
cmbr − c#

) ∂Lmbr
∂c

with strict inequality if L is strictly concave.

Now from the necessary conditions ∂Lmbr

∂c = 0 , ∂Lmbr

∂x = −ψ̇mbr.Then

Lmbr − L# ≥ −ψ̇mbr(xmbr − x#) +
(
cmbr − c#

) ∂Lmbr
∂c

Therefore

V mbr − V # ≥ −
∫ ∞
0

[
ψ̇mbr(xmbr − x#) + ψmbrẋmbr − ψmbrẋ#

]
dt+

+
(
cmbr − c#

) ∫ ∞
0

[
∂Lmbr

∂c

]
dt

Since
∫∞
0

[
∂Lmbr

∂c

]
dt = 0 by condition (10), we obtain

V mbr−V # ≥ − lim
t→∞

[
ψmbr(t)xmbr(t)− ψmbr(0)xmbr(0)

]
+ lim
t→∞

[
ψmbr(t)x#(t)− ψmbr(0)x#(0)

]
Using the fixed initial condition, xmbr0 = x#0 = x0, the above inequality becomes

V mbr − V # ≥ lim
t→∞

ψmbr(t)
[
x#(t)− xmbr(t)

]
which is positive as can be deduced from the transversality conditions (11) and
(12) and because x#(t) ≥ 0. With a strictly concave L, we obtain uniqueness.
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C Proof of Theorem 3

Claim 1. Recall that, if cmbr(.) and xmbr(.) are a solution to the MBR problem
where cmbr(.) is not constant and xmbr(.) is unique, then xmbr(.) is monotonic
(by Theorem 1).

In order to prove Claim 1, assume on the contrary that xmbr(.) is non-
constant and weakly increasing over time but the poorest generation(s) is/are
at the end of the sequence. Let t > 0 be the earliest date at which the lowest
level of consumption is achieved. That is,

t ≡ inf
t

{
t : cmbr(t′) = cmbr,∀t′ ≥ t

}
Thus, after t, the consumption path is constant.

Then, there exists a number d > 0 such that cmbr
(
t− d

)
> cmbr

(
t
)

= cmbr

and cmbr
(
t− d′

)
> cmbr for all d′ ∈ (0, d).

At time t−d, the stock is xmbr(t−d) ≤ xmbr(t). Since the stock xmbr(t−d)
can sustain a stream of consumption with an initial phase of length d with
c > cmbr

(
t
)

followed by a phase of constant consumption cmbr, it follows from
Assumption 1 that starting from time t with stock level xmbr(t) ≥ xmbr(t−d), it
is possible to sustain a stream of consumption c∗∗ with an initial phase

[
t, t+ d

]
such that c∗∗(t) > cmbr(t) and for all t ∈

[
t, t+ d

]
, and c∗∗(t) = cmbr for all

t > t+ d.
To summarize, the following alternative sequence c∗∗ (.) is admissible:{

c∗∗ (t) = cmbr(t), x∗∗ (t) = xmbr(t), ∀t ∈
[
0, t
[
,

c∗∗ (t) ≥ cmbr(t− d), ∀t ∈
[
t,+∞

[
,with equality for all t ∈

[
t+ d,+∞

[
(13)

and, by construction, consumptions under the two possibilities are identical
except over the interval

[
t, t+ d

]
where one has c∗∗ (t) > cmbr(t).

Comparing the value of the MBR criterion under the optimal path and the
alternative path, one has:

Wmbr(cmbr(.))−Wmbr(c∗∗(.)) =
∞∫
t=0

e−rtU
(
cmbr(t)

)
dt−

∞∫
t=0

e−rtU (c∗∗(t)) dt ,

≤
t+d∫
t=t

e−rt
[
U
(
cmbr(t)

)
− U (c∗(t− d))

]︸ ︷︷ ︸ dt
<0

< 0 ,

a contradiction.
Claim 2. The proof follows a logic similar to that of Claim 1. Assume on

the contrary that xmbr(.) is non-constant and weakly decreasing over time, but
the poorest generation(s) is/are at the beginning of the sequence. Suppose there
exists an initial interval

[
0, t
]
, with cmbr(t) = cmbr, and there exists δ > 0 such

that cmbr (t) > cmbr
(
t
)
,∀t ∈

(
t, t+ δ

)
, and cmbr(t) ≥ cmbr(t) for all t ≥ t+ δ.

Since xmbr(0) ≥ xmbr(t), it follows from Assumption 1 that we can construct
a time path c∗∗(t) such that c∗∗(t) = cmbr(t + t), for all t ≥ 0. Comparing the
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value of the MBR criterion under the optimal path and the alternative path,
one has:

Wmbr(cmbr(.))−Wmbr(c∗∗(.)) =

∞∫
t=0

e−rt{U
(
cmbr(t)

)
− U}dt−

∞∫
t=0

e−rt{U (c∗∗(t))− U}dt < 0

=

∞∫
t=t

e−rt{U
(
cmbr(t)

)
− U}dt−

∞∫
τ=0

e−rτ{U
(
cmbr(τ + t)

)
− U}dτ

=

∞∫
t=t

e−rt{U
(
cmbr(t)

)
− U}dt−

∞∫
t=t

e−r(t−t){U
(
cmbr(t)

)
− U}dt < 0

a contradiction.

D Proof of Corollary 1

Recall the necessary conditions of optimality for the MBR problem given in
appendix B. They are:

i)
∂L

∂c
= 0 ,

⇔ e−rt(1− θ)U ′(c(t)) + ψ(t)f2(x (t) , c (t)) + λ(t) = 0

ii) ψ̇ = −∂L
∂x

,

⇔ ψ̇ = −ψ(t)f1(x (t) , c (t))

iii) ẋ =
∂L

∂ψ
,

⇔ ẋ = f(x (t) , c (t))

iv) λ(t) ≥ 0, c(t)− c ≥ 0, λ(t) (c(t)− c) = 0

v)
∂

∂c

∫ ∞
0

e−rt [rθU(c) + (1− θ)U(c(t))] dt+
∂

∂c

∫ ∞
0

λ(t) (c(t)− c) dt = 0

(14)
The latter condition reduces to

θU ′(c)−
∫ ∞
0

λ(t)dt = 0

Now, consider that c(t) > c, ∀t ≥ T, (and the stock achieved at date T is
x (T ) = xmbrT ). From condition iv) one can deduce λ(t) = 0,∀t ≥ T, and the
necessary conditions boils down to:

e−rt(1− θ)U ′(c(t)) + ψ(t)f2(x (t) , c (t)) = 0

ψ̇ = −ψ(t)f1(x (t) , c (t))

ẋ = f(x (t) , c (t))

θU ′(c) =

∫ T

0

λ(t)dt
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Define the new variable σ (t) = ψ(t)/(1 − θ). Then the three first conditions
above can be rewritten as:

e−rtU ′(c(t)) + σ (t) f2(x (t) , c (t)) = 0 ,

σ̇ = −σ (t) f1(x (t) , c (t)) ,

ẋ = f(x (t) , c (t)) ,

∀t ≥ T. The proof is completed once one observes that these expressions are
the necessary conditions associated to the discounted utilitarian program that
starts at date T with initial condition x (T ) = xmbrT , and where the Hamiltonian
is:

H = e−rtU(c(t)) + σ (t) f(x (t) , c (t)).

E Proof of Theorem 4

From date T the program is utilitarian, and the value function V (x) is concave
because f(x.c) is concave in (x, c) and U(c) is concave.16 Also, because V (x) is
concave, then it is continuous and differentiable almost everywhere (see Nico-
lescu & Person, 2006), that is the set of points x where the left hand and the
right hand derivatives of V (x), which we can denote by V ′L(x) and V ′R(x), are
different is at most countable.

Take any two points of time, t1 and t2, such that t2 > t1. Then x(t2) ≥ x(t1)
(by assumption). First we analyze the case where V (.) is differentiable. And
after we consider the case where the right hand and left hand derivative of V (.)
do not cöıncide.

Because x(t2) ≥ x(t1), then V ′(x2) ≤ V ′(x1) (by concavity of V (.)). We
now show that c(t2) ≥ c(t1). For simplicity of notation, we write xi and ci for
x(ti) and c(ti), for i = 1, 2.

The HJB equation is

rV (x) = max
c

[U(c) + V ′(x)f(x, c)] .

Then, the first order condition for the right-hand-side is:

U ′(c) + V ′(x)fc(x, c) = 0 . (15)

Therefore:
U ′(c2) = −fc(x2, c2)V ′(x2) ,

and

U ′(c1) = −fc(x1, c1)V ′(x1)

= −fc(x2, c2)V ′(x1) + V ′(x1) [fc(x2, c2)− fc(x1, c1)]

= −fc(x2, c2)V ′(x1) + V ′(x1) {[fc(x2, c2)− fc(x1, c2)] + [fc(x1, c2)− fc(x1, c1)]}
16See Long (1979) for a proof of the concavity of V (x).
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Then
[U ′(c1)− U ′(c2)] + V ′(x1) [fc(x1, c1)− fc(x1, c2)] =

−fc(x2, c2) [V ′(x1)− V ′(x2)] + V ′(x1) [fc(x2, c2)− fc(x1, c2)] (16)

The right-hand side is positive or zero, because fc(x2, c2)− fc(x1, c2) ≥ 0 (this
follows from fxc ≥ 0). Therefore the left hand side must be positive or zero.
This implies that c2 ≥ c1. (Suppose c2 < c1; then the left hand side would be
negative, since the functions U ′ and fc are decreasing in c; therefore we would
have a contradiction).

In order to complete the proof, let us see what happens if V is not differen-
tiable at x1 or at x2? Then in equation (15), V ′(x) may correspond to the left
hand or the right hand derivative, V ′L(x) and V ′R(x). The proof is still valid,
because if x2 ≥ x1 then the concavity of V implies

min {V ′L(x1), V ′R(x1)} ≥ max {V ′L(x2), V ′R(x2)}

Then the RHS of (16) is still positive or zero, regardlless of which derivatives
we used. Any two paths of c (.) that differ from each other at isolated points in
time are essentially identical, and the resulting path of the state variable is not
affected.

F Proof of Theorem 5

First observe that
lim
t→∞

cdu (t) = cdu ,

because, under the assumptions of Theorem 4, consumption is weakly increasing
over time. And, as usual, the value of the steady state does not depend on the
initial condition.

Observe also that, by virtue of Corollary 1:

lim
t→∞

cmbr (t) = cdu.

We can also establish that

lim
t→∞

cmbr (t) = cmbr .

Indeed assume on the contrary that the more advantaged generations occur in
finite time at some date T ′. Necessarily this date occurs before the date T at
which the MBR trajectory has increasing consumptions (Theorem 4). Then
cmbr (T ′) > limt→∞ cmbr (t) and there exists a number d such that:

cmbr (t) ≥ lim
t→∞

cmbr (t) ∀t ∈ [T ′, T ′ + d[ .
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Then consider the alternative consumption trajectory: ĉ (t) = cmbr(t), ∀t ∈ [0, T [ ,
ĉ (t) = cmbr(T ′ + t), ∀t ∈ [T, T + d[ ,
ĉ (t) = cmbr(t), ∀t ∈ [T + d,+∞[ .

This trajectory is admissible and has the same consumptions as the one that
maximizes the MBR criterion, except over a finite interval where generations
enjoy a higher consumption than under the MBR solution, a contradiction.
Therefore we have established limt→∞ cmbr (t) = cmbr . To summarize:

cmbr = cdu .

Since by definition it is also true that cmbr ≥ cdu, necessarily:

I
(
cmbr (.)

)
= cmbr − cmbr ≤ I

(
cdu (.)

)
= cdu − cdu .

QED.

G A simple MBR problem without strict con-
cavity of the Lagrangian

Here we present a simple example without strict concavity of the Lagrangian.
Yet the MBR solution exists and is unique.

A MBR problem can be solved in two steps. In the first step, for any given
minimum consumption c, the problem is a standard optimal control problem,
for which one can find a solution configured by c. The second step is to plug
this solution in the MBR criterion, call V (c) the resulting value function, and
proceed with the maximization of V (c) with respect to c. In the second step
one has to cope with a static maximization problem.

Assume the dynamics are:

ẋ (t) = G(x (t))− c (t) , x(0) = x0, (17)

where 0 ≤ c < c (t) < c. We also assume that maxxG (x) < c. And let the
instantaneous utility function be:

U(c) = c .

In the first step, the problem is to

maxc(.)

∫ ∞
0

e−ρt c (t) dt, (18)

subject to (17).
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Denote x∗u the solution to the Euler equation G′(x) = ρ. From the Turnpike
Theorem (see for instance Clark, 1990, Ch. 2, page 53) one can deduce that, if
c < G(x∗u) < c, the solution c∗(t) to (18) is:

c∗(t) =


c if x(t) > x∗u

c if x(t) < x∗u

G(x∗u) if x(t) = x∗u

(19)

Note that some further restrictions on c must be imposed for the above
program to be a solution. Indeed, c∗(t) can only take the three values given
above and, if at a prevailing value of x < x∗u, c is too large in the sense c > G(x),
then ẋ < 0 which means that, to remain in the admissible domain of x - made of
non negative real numbers - at some point in time T , the control should switch
to c∗(T ) = 0, a value that does not fall within the set of admissible values
0 ≤ c < c (t) < c. In order to avoid this, we impose that c < G(x0).

Now let us move to the second step. For a given and constant c, let us
call xc(t) the solution to ẋ = G(x) − c. Depending on the value of the initial
condition, two cases must be distinguished:

1. When x0 < x∗u, and since c < G(x0), the value V (c) associated to the
MBR criterion is:

V (c) = (1− θ)

(∫ T c

0

e−ρt c dt+

∫ ∞
T c

e−ρt G(x∗u) dt

)
+ θ c. (20)

where T c is such that xc(T c) = x∗u . Keep in mind that (20) gives the
value of the program when c = c and ẋc > 0 for t ∈ [0, T c].
Let us consider a numerical specification with ρ = 0.01, G(x) = x(1− x).
Under this specification x∗u = 0.495, G(x∗u) = 0.249975. Let us pick x0 =
0.1 < x∗u. For this initial stock, the condition c < G(x0) becomes c ≤ 0.09.
Therefore, the problem is just to pick c ∈ [0, 0.09] in order to maximize
(20). According to (19) the optimal plan is first c∗(t) = c until date T c,
where the decision switches to c∗(t) = G(x∗u). And xc(t) is increasing up to
x∗u = 0.495. This solution can be plugged into (20) in order to give V (c).
The next question is: what is the optimal value of c? The answer depends
on θ. Numerically, we can observe that if θ = 0.5, V (c) is decreasing and
concave, with a maximum at c = 0 (see Figure 1). But if θ = 0.8, then
V (c) is just concave with a maximum at c = 0.056 (see Figure 2).

2. When x0 > x∗u, the optimal control starts as c∗(t) = c, and necessarily
ẋ < 0 since by assumption c > maxxG (x). Therefore the stock decreases
down to x∗u. Arrived at that point, the optimal control switches to c∗(t) =
G(x∗u). And the value of the MBR criterion is:

V (G(x∗u)) = (1− θ)

(∫ T c

0

e−ρt c dt+

∫ ∞
T c

e−ρt G(x∗u) dt

)
+ θ G(x∗u) ,
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Figure 1: Value function for θ = 0.5
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Figure 2: Value function for θ = 0.8
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where T c is defined by xc(T c) = x∗u. Notice that the poorest generations
consume c∗(t) = G(x∗u), an exogenous value about which there is no op-
timal choice to be made in the second step, whatever the value taken by
parameter θ.

H Characterization of the MBR optimal pro-
gram in a quadratic example

The problem is

max
s(.),c(.),u

θu+ (1− θ)
∫ ∞
0

(mc− n/2c2)e−ρtdt, 0 < ρ < a .

subject to the constraints:

ẋ = ax− c ,
x (0) = x0 < xb =

m

na
,

x(t) ≥ 0 for all t.

The Hamiltonian is:

H = (1− θ)(mc− n

2
c2) + λ (ax− c) + w3(mc− n

2
c2 − u) ,

Necessary conditions for optimality are:

∂

∂c
H = (1− θ + w3)(m− nc)− λ = 0 ⇔ c =

m

n
− λ

(1− θ + w3)n
, (21)

.

λ = ρλ− ∂

∂x
H = (ρ− a)λ ⇔ λ(t) = λ0e

(ρ−a)t, (22)

ẋ = ax−
(
m

n
− λ

(1− θ + w3)n

)
− s . (23)

w3 ≥ 0, w3(mc− n

2
c2 − u) = 0, θ =

∫ ∞
t=0

e−ρtw3(t)dt . (24)

Note that w3 = 0 for all t is not possible because (24) is not verified.
For the case x(0) < m/(na), we are going to prove that there exists T > 0

such that c(t) = c ∈ [0, T ], with c < cB = m/n verifying first order conditions.
Using equation (21), we define:

w3(t) =


λ(t)
m−cn − (1− θ) if t ≤ T

0 if t ≥ T.
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with T such that w3(T ) = 0:

λ(T )

m− cn
= (1− θ) ⇐⇒ T =

1

a− ρ
ln

(
λ0

(1− θ)(m− cn)

)
. (25)

Note that since ρ < a asking for T > 0 implies that ln
(

(1−θ)(m−cn)
λ0

)
> 0 and

that c < m/n ⇐⇒ λ0 > 0.
We now need the following partial result:

Lemma 1 Solution to the differential equation (23) is

x(t) =


c
a + eat(x0 − c

a ) if t ≤ T

xb − λ(t)
(2a−ρ)n(1−θ) if t ≥ T.

Proof. Available upon request.
We must find λ0 and c. We have two equations for this purpose. The first

one comes from the above expression that gives the value of x at time T :

c

a
+ eaT (x0 −

c

a
) = xb − λ(T )

(2a− ρ)n(1− θ)
.

After substitution of T as indicated in (25) and rearrangements, it becomes(
c− m

n

)( ρ− a
a(ρ− 2a)

)
+ y

a
a−ρ

(
x0 −

c

a

)
= 0. (26)

where y = λ0

(m−cn)(1−θ) .

The second equation is θ =
∫∞
t=0

e−ρtw3(t)dt, that after some arrangement
becomes

y

a
− (ρ− a)

aρ
y

ρ
ρ−a − θ

1− θ
− 1

ρ
= 0. (27)

We can easily prove that associated to (27) there is a unique solution y# ≥ 1
that does not depend on λ0 and c. Given y# equations (26) and (27) become a
non linear system of two equations for two variables λ0 and c :

λ0 = y#(m− cn)(1− θ), (28)

c

[
a− ρ

a(2a− ρ)
− 1

a

(
y#
) a
a−ρ

]
=
m

na

(
ρ− a
ρ− 2a

)
− x0

(
y#
) a
a−ρ . (29)

Note that the second equation can be solved independently to give c. This result
can then be plugged into the first equation in order find λ0.

Equation (26) shows clearly that c < m/n = cb when c < ax0 < cb. Since
λ0 > 0 optimal consumption is continuous and not decreasing in t

c(t) =


c if t ≤ T

cb − λ(t)
n(1−θ) if t ≥ T.
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Dependence of c on x0. Since y# > 1, we have
(
y#
)a/(a−ρ)

> (ρ−a)/(ρ−2a).
Hence in the r.h.s. of (29) the factor of c is negative. Thus (for x0 < xb), a greater
x0 results in a greater c:

dc

dx0
> 0.

Dependence of c on θ. To compute dc
dθ we must first compute dy#

dθ . Deriving
(27) with respect to θ we have that

dy#

dθ
=

a

(1− θ)2
(

1− (y#)
a
ρ−a
) .

As y# > 1 and a > ρ, we have dy#

dθ > 0. Using equation (29) we can find

dc

dθ
= −

(
y#
) ρ
a−ρ a2 dy

#

dθ A(x0na−m)

n(Aa− (y#)
ρ
a−ρ )2(a− ρ)y#

> 0 ,

where A = a−ρ
a(2a−ρ) .

Dependence of T on θ. Substituting λ0 in (25) by its expression in (28), one
finds:

T =
1

a− ρ
ln y# ,

which is an increasing function of θ since dy#/dθ > 0.

30



 


	2016s-49_CouvertureCS
	2016s-49-page_titre
	2016s-49-article
	2016s-VersoCS



