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1 Introduction

Many economic models employ an infinite horizon with a discount factor in order to exam-
ine agents’ behavior under the shadow of future. Such environments are quite natural for
studying the pricing of assets, since many assets, e.g., equities, are long-lived and have no
definite maturity date. Nevertheless, experimental economists have typically studied assets
in a finite-horizon setting where the fundamental value (FV) of the asset, as measured by
the present value of the dividend flow, decreases over time, as in the canonical experimental
design of Smith et al. (1988).

In this paper, we study the trade of assets in an experimental market with an indefinite
horizon. An asset can be traded in each period that it exists, but there is a certain probability
the asset may cease to exist, for instance, due to bankruptcy. At the end of each trading
period, the asset pays a positive dividend per unit to the asset holder. The asset exists with
certainty and pays a dividend in the first period. Thereafter, with a constant probability δ,
the asset continues to exist in the the next period, the asset holdings of participants carry over
into that next period and trade in the asset occurs in that next period. With probability
1 − δ, the asset ceases to exist; trade in the asset is suspended and the asset has a zero
continuation value. This indefinite-horizon or random-termination design, initially proposed
by Roth and Murnighan (1978), is the most commonly used approach to implementing
infinite horizons with discounting in the laboratory. It can be shown that, if agents are
risk-neutral expected utility maximizers, then a sequence of market trading periods subject
to such random termination is isomorphic to an infinitely repeated horizon with a period
discount factor of δ.1

Unlike definitely-lived assets, the FV of the indefinitely-lived asset is constant (instead of
decreasing) over time.2 The stationarity associated with indefinite horizons may be a more
natural setting for understanding asset pricing decisions. In addition, the indefinite-horizon
design is also useful for studying environments with bankruptcy or default risk where the

1Another method of implementing infinite horizons involves subjects playing a fixed number of periods
with discounting on the instantaneous payoffs, followed by play of a game that captures the continuation
payoff (Cooper and Kuhn, 2011).

2While it is possible to generate constant values for the FV in finite-horizon settings, this is typically
done by having some known constant terminal period payoff value for the asset as in Smith et al. (2000),
possibly also accompanied by a dividend process where the expected dividend payment is 0 as in Noussair
et al. (2001). In the indefinite-horizon design, the value of the asset is constant over time with positive
dividend payments and zero terminal value.
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value of the asset becomes zero with a certain probability.
Besides serving as a more natural setting for understanding asset pricing decisions, ex-

perimental asset markets with an indefinite horizon implemented by random termination are
interesting to study for several additional reasons.

First, indefinitely-lived assets involve two types of risks: payoff uncertainty and trading
horizon uncertainty. Payoff uncertainty refers to uncertainty about an asset’s dividend real-
izations (or the asset’s rate of return) over the period of time the asset is held. Specifically,
the asset can be viewed as a lottery, as described in Table 1. The lottery involves an infi-
nite number of states, t = 1, 2, ...,∞. State t is the event that the game lasts until period
t and the asset yields a payoff of td, which occurs with probability δt−1(1 − δ). Trading
horizon uncertainty refers to how long one can expect to trade the asset. While payoff un-
certainty affects the holding value of the asset, uncertainty about the trading horizon may
affect traders’ strategy, especially for speculators. If the horizon over which the asset has
value was perfectly known, then speculators might time their asset purchases and sales with
this information in mind. By contrast, in an indefinite horizon, timing such speculation is
more difficult. Thus, an indefinite horizon for asset markets might depress prices and the
volume of trade relative to known, finite horizon markets. Both types of risks (payoff and
horizon) can affect the pricing and trade of the asset, and it is of interest to distinguish and
quantitatively measure the effect of these two types of uncertainty associated with random
termination.

Second, given the payoff risk involved, it is not clear whether the FV calculated under
the assumption of risk-neutral expected utility (FV-RN hereafter), the most often used
benchmark for the analysis of finite-horizon experimental asset markets and from which
various mis-pricing measures have been derived, continues to be appropriate in the context
of indefinite-horizon asset markets. Therefore, we propose a procedure to calculate the
market FV that incorporates traders’ risk attitudes and possible deviations from expected
utility theory.

Market Duration 1 2 3 ... t ...
Probability 1− δ δ(1− δ) δ2(1− δ) ... δt−1(1− δ) ...
Payoff from holding an asset d 2d 3d ... td ...

Table 1: The Lottery Faced by an Asset Holder in an Indefinite Horizon

We find that in the indefinite-horizon asset market implemented by random termination
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(our baseline treatment), traded prices are on average more than 40% below FV-RN, and
decrease further as traders gain experience. The result is astounding given that the majority
of studies of experimental asset markets find asset pricing bubbles. To identify the reasons for
the low traded prices (relative to FV-RN) in the indefinite-horizon asset market, we design
two auxiliary treatments to isolate several confounding and interrelated factors that may
affect the trading and pricing of assets: (1) payoff uncertainty about the asset’s dividend
payments, (2) horizon uncertainty about the duration of trade in the asset, and (3) the
assumption that agents are expected utility maximizers.

To study the effect of horizon uncertainty, we design an auxiliary treatment with two
separate stages. Stage one consists of a fixed number of trading periods and subjects do
not observe dividend realizations while they trade. Stage two reveals dividend realizations
and subjects do not trade in this stage. This auxiliary treatment and the baseline treatment
share the same distribution of the number of dividends to be received, characterized by Table
1. Under the assumption of expected utility maximizers, the auxiliary treatment and the
baseline treatment share the same risk-adjusted FV and the difference between these two
treatments can be attributed to horizon uncertainty.

However, if subjects are not expected utility maximizers (for example, if they have re-
cursive preferences), then the timing of dividend realizations (or the temporal resolution of
payoff uncertainties) may affect their valuation of the asset too. To derive a clear inference
about the effect of horizon uncertainty and to investigate the effect of the temporal resolution
of payoff uncertainty, we run a second auxiliary treatment, which combines the uncertain
trading horizon in the baseline treatment, and the two-stage design of the first auxiliary
treatment. Comparing the two auxiliary treatments allows us to identify the effect of hori-
zon uncertainty (while fixing the timing of dividend realizations). Comparing the baseline
and the second auxiliary treatment allows us to identify the effect of the timing of dividend
realizations (or temporal resolution of payoff uncertainty).

The traded prices in the two auxiliary treatments are much closer to FV-RN, and are
not significantly different from each other. Our experimental results therefore suggest that
horizon uncertainty does not have a significant effect on the traded price, while the timing
of dividend realizations does. In the presence of payoff uncertainty, the timing of dividend
realizations affects the temporal resolution of the payoff uncertainty. In the baseline treat-
ment, payoff uncertainty is resolved gradually over time (in the trading stage), while in the
two auxiliary treatments, the uncertainty is resolved at a single point of time (after trading
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ends). The importance of the timing of dividend realizations seems to be consistent with the
implications of recursive preferences (Kreps and Porteus, 1979). In view of this, we incorpo-
rate Epstein and Zin (1989) recursive preferences into the calculation of risk-adjusted FV,
and we find that this specification can account for a significant part of the low traded price
observed in the baseline treatment. In addition, given that in the baseline treatment, the
market ends and the asset becomes worthless with a small probability, probability weighting
could potentially affect the traded price as well. We find the risk-adjusted FV that incor-
porates both of these departures from expected utility theory can rationalize the low prices
observed in our indefinite-horizon asset markets in the baseline treatment. At the same
time, this composite specification can also account for the traded price in the two auxiliary
treatments.

There is a large literature involving experimental asset markets with a known, finite
horizons beginning with Smith et al. (1988). Surveys of this literature are found in Palan
(2009, 2013) and Noussair and Tucker (2013). In this set-up, the asset traded yields dividends
up to some known terminal date, beyond which the asset pays no further dividends (it is
either worth zero or pays some final continuation value). By comparison, there are relatively
fewer experimental studies of asset markets with indefinite horizons. The studies we are aware
of include Camerer and Weigelt (1993), Ball and Holt (1998), Hens and Steude (2009), Kose
(2015), Fenig et al.(2018), Asparouhova et al. (2016), Crockett et al. (2019) and Weber et al.
(2018). Camerer and Weigelt (1993), Ball and Holt (1998), Kose (2015) study environments
where subjects only engage in asset-trading activities. Hens and Steude (2009), Fenig et
al. (2018), Asparouhova et al. (2016), Weber et al. (2018) and Crockett et al. (2019)
consider experimental economies where subjects also participate in other activities such as
consumption, employment, production decisions, or IPOs of new assets. However, none of
these studies provides a rigorous comparison between indefinite-horizon and definite-horizon
asset markets. Neither did they quantitatively evaluate the effects of payoff uncertainty and
horizon uncertainty. Another (methodological) contribution of our study is to construct a
procedure to calculate a new relevant empirical benchmark, the FV that incorporates traders’
risk attitudes and possible deviations from expected utility theory.

Related to our work, some recent papers examine methodologically the effect of random
termination in experiments in the context of repeated Prisoner’s Dilemma game (Frechette
and Yuksel, 2017) and the effects of different payment schemes in indefinite-horizon exper-
imental games (Sherstyuk et al. 2013). In this study, we examine the effect of random
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termination in experimental asset markets. Experimental asset markets have several dis-
tinct features as compared to repeated games. First, heterogeneous risk attitudes, combined
with random termination, can create incentives for trade in such assets in settings where the
dividend process is common knowledge such as in Smith et al. (1988). Second, in most re-
peated games, subjects make discrete choices and risk considerations may or may not result
in a change/switch in choices. In the asset-trading experiment, traded price and quantity
are continuous variables, and risk considerations can be captured incrementally. Third, in
repeated games, subjects typically have no choice but to participate in the game. Differently,
in many asset market experiments, subjects can choose whether to participate in the asset
market or not.3 Specifically, in most asset pricing experiments, subjects can immediately
(i.e., in the very first period) sell off all of their asset holdings and receive a certain monetary
payoff rather than continue to participate in the lottery. Alternatively, subjects can buy all
the assets they want in the first period and hold that asset position for the duration of the
trading horizon. In the first case, subjects who sell off their assets immediately face neither
payoff uncertainty nor horizon uncertainty; they sell their assets for a known amount and
are not engaged in any further trading for the duration of the asset market. In the second
case of the subject employing a buy-and-hold strategy, the subject continues to face payoff
uncertainty, e.g., as to the sum of dividends each of his assets yields over the indefinite hori-
zon, but because this subject ceases to engage in further trading after the first period, s/he
no longer faces any trading horizon uncertainty. There is, of course, a third case where a
subject trades in each period so that his asset position is constantly changing, in which case
the subject faces both payoff and trading horizon uncertainty. As a result, the risk induced
by random termination may play a larger role in influencing individuals’ behavior in asset
market experiments as compared with repeated game settings.

The remainder of the paper is organized as follows. Section 2 presents the experimental
design and procedures. Sections 3 and 4 report on the experimental results across treatments
and provide a comparison of the estimated market FVs under different assumptions. Section
5 concludes.

3An exception is the literature on “learning-to-forecast” asset pricing experiments, where subjects are
typically required to participate in every period via the elicitation of their forecast for future asset prices.
See, e.g., Hommes et al. (2005,2008).
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2 Experimental Design and Procedure

Our experimental design consists of three treatments which have the following features in
common. In each treatment, subjects participate in an experimental asset market that
involves trading an asset that has a constant FV-RN that is always equal to 50 EM (ex-
perimental money). Each session of a treatment consists of three consecutive markets and
approximately 10 participants. These participants have no prior experience in any treatment
of our experiment. At the beginning of each of the three markets, one-half of participants are
endowed with 20 shares of the asset and 3,000 EM units, while the other half are endowed
with 60 shares of the asset and 1,000 EM units; at the risk-neutral FV of 50 EM, the values
of these endowments are identical. In each session, the same set of traders participate in all
market activities on a trading interface using a double auction mechanism programmed in
z -Tree (Fischbacher, 2007).4

We designed our experiment taking into consideration the results from previous studies
on experimental asset markets. First, Kirchler et al. (2012) have shown that the trend of
the FV process (i.e., whether it is constant, increasing, or decreasing over time) has a large
impact on the formation of non-rational asset price “bubbles” (which we define as sustained
departures from the FV). Giusti et al. (2014) show that in addition to the trend of the
FV process, the sign of the expected dividend payment (positive, zero, or negative) also
affects traded prices. Our experimental setting, which features a constant FV and a positive
dividend payment in each period, serves as a more natural setting for understanding asset
pricing. Second, Caginalp et al. (1998, 2001), Haruvy and Noussair (2006) and Kirchler et
al. (2012) report that high initial or increasing cash-to-asset (C/A) ratios can drive bubble
formation in experimental asset markets. In our asset market experiments, the supply of
assets is held constant and dividend payments cannot be used to buy shares, so the C/A
ratio is constant as well (more details below) so as to minimize the effects of variations
in the C/A ratio on market outcomes. Finally, Smith et al. (1988) and some follow-up
studies have consistently found that when the same group of traders interact in consecutive
fixed-horizon asset markets, prices converge toward the intrinsic risk-neutral FV by the third
market having the identical market structure. The experience of Smith et al. (1988) accounts
for our design of confronting subjects with three identical and consecutive markets to allow
for subject learning and to examine the possibility of price convergence in indefinite-horizon

4The z -Tree program was modified from the program published by Kirchler et al. (2012).
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markets.

2.1 The Three Treatments

The main purpose of our experiment is to understand how subjects price assets in an indef-
inite horizon setting as implemented by random termination. Toward that goal, we design
three different experimental treatments.

Our baseline treatment, treatment A, implements the three indefinite-horizon asset mar-
kets using a modified version of the block random termination scheme proposed by Frechette
and Yuksel (2017) (as discussed in further details below). We also label this treatment as
“BRT,” standing for block random termination. In this treatment, following the completion
of each trading period, one dividend of d = 5 EM is realized for each share of the asset that
a trader possesses at the end of that period. This dividend payment is placed in a separate
account that the subject cannot use as income for asset purchases in later periods of the mar-
ket. This restriction prevents the dividend payments from increasing the C/A ratio. After
dividends are paid out, a random number is drawn to determine whether or not the market
will continue to the next period. If the market continues, then each trader’s asset position
carries over to that next period; if it does not continue, then each trader’s asset position
is set to 0. This process is repeated three times, so that we have three indefinite-horizon
“markets” for each session of treatment A (or BRT).

Note that the indefinite-horizon asset market involves both payoff uncertainty and un-
certainty about the duration of the trading horizon. There is payoff uncertainty regarding
dividend payments. There is also trading horizon uncertainty regarding how long the asset
can be traded. To study the effect of trading horizon uncertainty and payoff uncertainty,
we design two auxiliary treatments. In the first auxiliary treatment, treatment B, each of
the three asset markets is divided up into two phases. In the first phase, trade in the asset
takes place in a market with a known, fixed duration of T trading periods (as in much of the
experimental asset pricing literature beginning with Smith et al. (1988)). In the following,
we also label treatment B as treatment D-2, with “D” for definite horizon, and “2” for two
phases. During these T trading periods, there are no dividend realizations for asset holdings;
subjects can choose to buy or sell assets as they wish, subject only to budget and (asset)
supply constraints. Following the final trading period T , all asset positions are final and sub-
jects move on to the second phase of the market where they experience a random sequence
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Table 2: Summary of Treatments
Treatment Trading Uncertain Dividends Realized

Horizon FVt? after Trading Phase?
A (BRT) Random Yes No
B (D-2) Definite Yes Yes
C (BRT-2) Random Yes Yes

Notes : Dividend d = 5 and risk-neutral FV=50 in all treatments.

of dividend payments that is identical to that of treatment A. Thus, subjects’ final asset
position at the end of period T and the random sequence of dividends that follows the same
realization as in Treatment A determine each subject’s earnings for the market. Again, this
two-phase process is repeated three times so that we have three markets for each session of
Treatment B. Note that under the assumption of expected utility maximizers, treatment D-2
and the baseline treatment share the same risk-adjusted FV and so any differences between
these two treatments can be attributed to horizon uncertainty.

However, if subjects are not expected utility maximizers (for example, if they have re-
cursive preferences), then the timing of dividend realizations (or the temporal resolution
of payoff uncertainty) may affect their valuation of the asset. To make a cleaner inference
about the effect of trading horizon uncertainty, as well as to investigate the effect of the
temporal resolution of payoff uncertainty, we run a second auxiliary treatment, treatment
C. This treatment combines the uncertain trading horizon of the baseline treatment with
the two-stage design of treatment D-2, while keeping the random sequence for dividend pay-
ments identical to the first two treatments. We label this treatment “BRT-2” to reflect the
random termination of the trading horizon and the two-stage design. Again, for each session
of treatment BRT-2, we have results from three asset markets. Comparing the two auxiliary
treatments, D-2 and BRT-2 allows us to identify the effect of horizon uncertainty while keep-
ing the timing of dividend realizations the same. Comparing the baseline treatment with the
second auxiliary treatment, BRT and BRT-2, allows us to identify the effect of the timing
of dividend payments, or the temporal resolution of payoff uncertainty.

Table 2 summarizes the main features of the three treatments described above. Further
details of each treatment are discussed below.

Treatment A (BRT) employs random termination to generate markets of an indefinite
horizon, similar to Camerer and Weigelt (1993) and treatment T2 in Kose (2015). In each
market, the asset lasts for an indefinite number of periods. In particular, at the end of each

8



period, the market continues with probability δ = 0.9 and ends with probability (1−δ) = 0.1,
which yields an average length of T0 = 1/(1−δ) = 10 periods from the start of the market or
from any period reached. Under the random stopping rule, the realized life span of the asset
can be any number of periods, t = 1, 2, 3, · · ·. The indefinite horizon introduces two types
of uncertainty: 1) uncertainty about the duration of the trading horizon, and 2) uncertainty
about the FV of the asset. If a trader buys a share of the asset in any period and holds it
until the end of the market, it is similar to buying a lottery as in Table 1. The risk-neutral
FV of the asset, denoted by U0, is constant in all periods at

U0 = d
∞∑
τ=t

δτ−t =
d

1− δ
= 50.

One consensus from the experimental asset market literature is that it takes a few periods
for sustained departures from fundamental values, or non-rational "bubbles", to arise (if they
occur at all). In order to obtain data on traders’ behavior in a market with sufficient duration
(number of trading periods), in treatment A we implement an indefinite horizon by using a
modified version of the “block random termination” (BRT) design proposed by Frechette and
Yuksel (2017). At the end of each trading period, a random number is drawn to determine
whether or not the market continues into the next period. In the first 10 periods, however,
subjects get no feedback on the random draws and are asked to consider making trades in
all 10 periods. At the end of period 10, subjects are told whether or not the market has
ended and, if so, in which period this occurred within the block of 10 periods. If the market
did not end within the 10-period block, then subjects will continue to participate in the
market as in regular indefinite-horizon markets with random termination, that is, at the end
of each period the realization of the random draw will be revealed. If the market ends within
the first 10 periods, then all trading activities in the subsequent periods after the market
has actually ended are void. Subjects are paid for periods only up to the end of a market.
The BRT thus allows us to obtain, at a minimum, a 10-period data series to analyze asset
(mis-)pricing; without it, we may have sessions where markets are too short to have any
meaningful discussion of whether assets are correctly priced in an indefinite-horizon setting.5

5In Frechette and Yuksel (2017), subjects play the game in fixed-length blocks and a full-length new
block is played if the game has not ended in the previous block. We modify their design in that beyond the
first block, the market continues with the regular random termination design, so that from period 11 on,
subjects receive live information about whether the current period has ended or not. The main purpose of
this modification is to save on time and guarantee that we run three markets to examine the possibility of
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Treatment B (D-2) has two separate phases: a definite-horizon trading phase and an
indefinite-horizon dividend realization phase. The trading phase lasts for T0 = 10 periods,
during which subjects can trade the asset but no dividends are paid during the trading
phase.6 Asset positions at the end of period T0 are final. Then, the market moves to the
dividend realization phase. Trading is not allowed during the dividend realization phase;
traders only observe how dividends accrue for the shares they possess as of the end of the
trading phase. Each share yields at least one dividend. After each dividend realization, a
random number between 1 and 100 is drawn to determine whether or not there is another
dividend realization. If the random number is greater than 90, the dividend realization phase
ends; this process implements the termination probability of (1− δ) = 0.1. Otherwise, each
share yields another dividend payment, d, followed by another independent random draw.
Using this procedure, with the same continuation probability of δ = 0.9 and d = 5EM as
in treatment A, the asset in this treatment not only has the same FV-RN as in treatment
A, but the number of dividend payments can also be represented by the same lottery as in
treatment A if the trader holds the share to the end of the market.

Treatment C (BRT-2) again has two separate phases: an indefinite-horizon trading
phase and an indefinite-horizon dividend realization phase. Similar to treatment B, no
dividends are realized during the first trading phase and no trading is allowed during the
second dividend realization phase. The only difference between treatment C and treatment
A is in the timing of dividend realizations or the temporal resolution of payoff uncertainty.
In the baseline treatment, payoff uncertainty is resolved gradually over time (in the trading
stage), while in treatment BRT-2, the uncertainty is resolved at a single point of time (after
trading ends). Meanwhile, the only difference between treatment C and treatment B is
the indefinite-horizon trading phase of treatment C vs. the fixed-horizon trading phase of
treatment B. Thus, the existence of treatment C helps us to identify any confounding effect
between the indefinite trading horizon and whether dividends are realized in each trading
period or only after the entire trading phase. Following the design in treatment A, we employ
block random termination in the first trading phase of treatment C as well. Importantly, in
this treatment the realizations of the random variable that determine the trading duration
and the dividend realizations are independently drawn, although under the same continuation

price convergence in indefinite-horizon markets. Repeating 10-period blocks would make each market longer
and it would be difficult to complete three markets in one session.

6We chose to T0 = 10 periods because that is the expected number of trading periods in the indefinite
horizon with a continuation probability of 0.9.
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probability of δ = 0.9. Thus, traders have no way to infer the number of dividends they may
collect later in the dividend realization phase from the indefinite lengths of the three asset
markets they have participated in.

Each market took between 20-40 minutes to complete, depending on the treatment and
the realized market length. In each trading period, the trading interface (market) is open
for 2 minutes. Since an indefinite horizon can result in large variance in the lengths of asset
markets, in our experiment we employ the same three sequences of random numbers for
dividend payments (and trading market horizons in treatment A only) for all sessions of all
treatments.7 These sequences of random numbers produce 6, 20, and 9 dividends for the three
markets of all three treatments. Therefore, the sequence of dividend realizations is constant
across all treatments. For treatment A (BRT), these three sequence lengths determine the
length of the three markets as well, although each market is open for at least a block of
10 periods. For treatment C (BRT-2), we independently draw another three sequences of
random numbers with the same continuation probability δ = 0.9, which determine that
the actual length of the three markets (for trading only) in treatment C is 11, 5 and 16
periods, respectively; the number of dividend realizations remains 6, 20 and 9 for the three
markets of treatment C. For treatment B (D-2), the trading horizon for each market is fixed
at 10 periods. Table 3 provides a summary of the number of trading periods and dividend
realizations in the three markets of our three treatments.

Table 3: Number of Periods and Dividend Realizations in the 3 Markets (Mkt) of Each
Treatment

No. Trading Periods No. Dividend Payments
Treatment Mkt 1 Mkt 2 Mkt 3 Mkt 1 Mkt 2 Mkt 3
A (BRT) 6 20 9 6 20 9
B (D-2) 10 10 10 6 20 9
C (BRT-2) 11 5 16 6 20 9

2.2 Hypotheses

The number (value) of dividend payments in all three treatments can be represented by the
lottery shown in Table 1. Under the assumption of expected utility theory, by which the

7The first two sequences of random numbers were obtained from a pilot session that consisted of just two
asset markets and the last sequence of random numbers was produced using a random number generator.
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timing of dividend payments does not affect agents’ holding value of the asset, the FV is the
same across different treatments. We therefore formulate the following hypothesis:
Hypothesis 1: Market outcomes, i.e., prices, quantities, are not significantly different be-
tween treatments A, B, and C.

Comparison between treatments A and C identifies the effect of the timing of dividend
payments, and to a certain extent, whether subjects have an expected utility or non-expected
utility specification. The comparison between treatments B and C captures the effect of
uncertain trading durations, which may affect subjects’ ability to engage in speculative
transactions. The associated alternative hypothesis is therefore:

• Alternative hypothesis: Differences between treatments A and C indicate non-expected
utility specifications; differences between treatments B and C indicate that uncertainty
about the trading horizon matters.

Since previous studies on definite-horizon experimental asset markets suggest that traded
prices converges to the FV-RN after subjects repeat the same trading market three times, we
will also compare traded prices in the final market with the FV of the asset under different
assumptions about agents’ preferences. The FV-RN is constant at 50 in all three treatments.
We will also consider FVs that incorporate the risk preferences of traders and we propose
a procedure to estimate the risk-adjusted FV using our experimental data (more details to
follow in section 4). Based on previous experimental findings showing that most agents are
risk averse (Holt and Laury, 2002), we propose the following hypothesis.

Hypothesis 2: The traded price in market 3 in all treatments is significantly lower than
the FV-RN, while not significantly different from the risk-adjusted FV.

2.3 Experimental Procedure

We conducted 5 sessions for each of the three treatments. Table 4 presents information on
these 15 sessions. All sessions except two involved 10 subjects. The sessions in treatment B
took 30 minutes less than the sessions of treatments A and C but all sessions finished within
two and a half hours.

All sessions began with subjects completing a Holt and Laury (2002) risk preference
elicitation task - details are provided in Appendix A. For this individual choice task, subjects
were instructed to make 10 choices between pairs of lotteries and were paid based on their
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choice from one randomly chosen lottery out of the 10 pairs. This procedure enables us
to obtain a measure of each subject’s risk aversion/seeking, which we use later in assessing
how we might adjust the fundamental value of the asset for subjects’ risk preferences. After
subjects completed this individual decision-making task, which took about 10 minutes, the
session then proceeded with the three indefinitely repeated asset markets. The instructions
for the asset markets were only distributed after the Holt-Laury risk elicitation procedure
was completed (payments from this task were made only at the end of the experiment).
After the experimenter read aloud the instructions for the asset market experiment, subjects
were asked to answer a set of quiz questions. After reviewing the answers to these questions
with the experimenter, subjects practiced using the trading interface before the formal asset
market was officially opened.

Subjects’ earnings from all three markets consisted of their end of market cash balance
and all dividends earned over the course of each market. This amount, denominated in ex-
perimental money (EM), was converted into Canadian dollars at a fixed and known exchange
rate of 500 EM = 1 Canadian dollar at the end of the experiment.8 Given that there are
6, 20, and 9 dividend payments in markets one, two, and three, respectively, the average
earnings from the asset markets was $26. The average total payment per subject is about
$35 ($26 from the asset markets, plus $4 from the Holt-Laury risk elicitation task, plus a $5
show-up fee). Participants were paid in cash and in private at the end of the session.

The experiment was conducted at the Bell economics lab at CIRANO in Montreal. All
sessions took less than 2.5 hours, including 45 minutes for instructions and practice on the
trading interface. Subjects were recruited for the experiment using ORSEE (Greiner, 2004).
Most subjects were students from McGill university and Concordia University in Montreal.
All subjects participated in one session only.

3 Experimental Results: Comparison across Treatments

Following our hypotheses, we will analyze the experimental data from two perspectives. In
this section, we compare the market outcomes between the three treatments and infer the
effect of horizon uncertainty and the timing of dividend payments, as well as the relevance
of using an expected utility theory approach to understanding asset pricing behavior. In

8In sessions B1 and C1 only, the exchange rate was 400 EM=$1, which results in a higher payment in
the asset markets as shown later in Table 4. All other sessions had an exchange rate of 500 EM=$1.
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Table 4: Summary of the Sessions
Session Duration No. of Subjects Avg. Payment
A1 2.5 hr 10 $34.98
A2 2.5 hr 10 $35.87
A3 2.5 hr 10 $35.34
A4 2.5 hr 9 $34.17
A5 2.5 hr 10 $34.45
B1 2 hr 10 $42.29
B2 2 hr 10 $35.26
B3 2 hr 10 $36.00
B4 2 hr 10 $35.64
B5 2 hr 10 $34.58
C1 2.5 hr 10 $41.99
C2 2.5 hr 8 $35.83
C3 2.5 hr 10 $35.86
C4 2.5 hr 10 $36.61
C5 2.5 hr 10 $35.12

the next section, we will focus on whether we can explain the traded price in market 3 with
various calculations for the market FV.

Figure 1 shows the average prices of the asset over time in each treatment. The three
vertical bars in this figure indicate the first period of each new market. The average price
in the first market starts at about 50 (the FV-RN) in treatments A and C and at about 60
in treatment B, which does not appear to be a significant difference. However, the average
price in treatment A in the second and third markets steadily declines, falling as low as 20
when the market ends, while the average price in treatments B and C remains at or above
50 in the last two markets. This pattern holds at the session level as well, which is shown in
Figure A1 in Appendix B.9

Table 5 shows the average price and the trading volume in each market of each session. To
evaluate hypothesis 1, we conduct two-tailed Mann-Whitney tests on session-level average
prices and trading volume to assess whether there are any treatment differences in these
market measures. There are 9 tests (3 markets x 3 treatments) each for traded price and
for volume. We present the p-values from the Mann-Whitney tests in Table 6. We have the

9Given that the price pattern in different treatments is quite clear, we choose not to report the bubble
(mis-pricing) measures as in most of experimental papers on asset markets. The statistical tests on bubbles
measures, RAD and RD, developed in Stockl et al (2010), are consistent with the test results on prices.
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Figure 1: Average Prices over Periods in Each Treatment

following findings.

Finding 1 There is no systematic significant difference in the average trading volume across
the three treatments.
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Table 5: Average traded Price and Volume by Session and Market
Session Average Price Average Volume

Mkt1 Mkt2 Mkt3 Mkt1 Mkt2 Mkt3
A1 30.87 18.94 17.89 60.70 45.20 67.30
A2 34.26 24.00 11.52 54.30 64.70 62.60
A3 84.87 40.94 33.34 58.70 58.45 64.30
A4 18.33 15.69 16.54 52.50 72.65 101.00
A5 41.29 20.60 22.08 122.80 146.90 221.60

Treatment A 41.93 20.60 22.08 69.80 77.58 103.36
B1 77.93 52.79 45.02 32.00 22.70 10.80
B2 73.56 70.93 67.67 71.10 85.30 67.90
B3 39.49 48.77 49.50 65.20 64.60 66.40
B4 52.69 50.27 50.21 57.40 48.90 48.50
B5 59.81 48.97 45.28 125.30 90.20 65.80

Treatment B 60.69 54.35 51.54 70.20 62.34 51.88
C1 49.11 45.57 47.74 37.18 40.70 24.63
C2 42.65 46.48 46.77 54.82 52.50 75.50
C3 58.64 60.57 62.07 32.45 43.60 29.56
C4 55.61 48.42 49.54 55.91 54.10 22.94
C5 36.56 39.95 70.61 84.36 88.30 60.44

Treatment C 48.52 48.20 55.35 52.95 55.84 42.61
Notes : Average Price is the mean of the period price over all trading periods in a market.
For treatments A and C, it includes 10 periods if the market ends within the block. The
period price is the volume-weighted average price in the period. Average Volume is the mean
of trading volume (number of assets traded) over all trading periods in a market.

The experimental data suggest that the treatment variables, horizon uncertainty and
timing of dividend payments, have no significant effect on average trading volume. Among
eight out of the nine pairwise tests, we cannot reject the hypothesis that it is equally likely
that the observation is drawn from the two alternative treatments. The p-value is < 0.05

only for market 3 between treatments A and C (where trading volume is higher in treatment
A).

Finding 2 In market 1 the average traded price is not significantly different between any
two treatments. However, in markets 2 and 3, the average market price in market 2 and
3 is significantly lower in treatment A (BRT) than in treatment B (D-2) and treatment
C (BRT-2), which suggests that the timing of dividend realizations significantly affects the
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Table 6: p-values from Mann-Whitney Tests of Treatment Differences
Average Market Price and Trading Volume

Treatments Average Price Trading Volume
Mkt1 Mkt2 Mkt3 Mkt1 Mkt2 Mkt3

A vs. B 0.175 0.009 0.009 0.602 0.754 0.251
A vs. C 0.175 0.016 0.009 0.347 0.175 0.047
B vs. C 0.175 0.076 0.465 0.347 0.602 0.602

No. of Obs. 10 10 10 10 10 10

traded price.

In treatment A, the average traded price in markets 2 and 3 is 20.60 and 22.08, respec-
tively. By contrast, in treatment B, the prices in markets 2 and 3 are 54.35 and 51.54,
respectively and in treatment C, they are 48.20 and 55.35, respectively. The average traded
price in markets 2 and 3 is therefore significantly lower in treatment A than in the other two
treatments. The p-value is < 0.01 for the Mann-Whitney test between A and B, and < 0.02

for the comparison between A and C. There is therefore strong evidence that the timing of
dividend realizations affects the traded price.

Finding 3 The average market price in market 3 is not significantly different between treat-
ment B (D-2) and treatment C (BRT-2), which suggests that the trading horizon uncertainty
does not significantly affect the traded price.

Comparing treatments B and C, the average price is marginally lower in market 2 of
treatment C (p < 0.1), but this difference disappears when subjects gained further experience
in market 3 (p > 0.4). Between the two risks involved in the indefinite-horizon asset market,
it seems that payoff uncertainty plays a more important role than horizon uncertainty for
the traded price of the asset.

Based on these statistical results, we reject Hypothesis 1, as market outcomes in treat-
ment A, particularly prices, are significantly different from the other two treatments. The
insignificant difference in traded price between treatments B and C indicates that the un-
certain trading horizon itself does not significantly affect the market price. The difference
between the traded price in treatment A and the other two treatments indicates that the
timing of the dividend realization has a significant impact on the traded price. Since the
timing of dividend realizations should not affect the holding value of the asset under the
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assumption of expected utility maximization, our experimental results provide evidence that
non-expected utility theories may be relevant to understanding the behavior of subjects. In
the next section, we explain what deviations from expected utility theory might account for
the observed differences in the traded price of the asset between treatment A and treatments
B and C.

4 Experimental Results: traded Prices and Market FVs

Previous studies on experimental asset markets have consistently found that when the same
group of traders interact in consecutive fixed-horizon asset markets, prices converge toward
the intrinsic FV-RN by the third market having the identical market structure. In our
treatment, the same subjects repeat the same market game for three times, so the market
price in the third market might be reasonably expected to approximate the market FV of
the asset.10 The calculation of the FV depends on the assumption about the utility function,
and on whether risk preferences are incorporated.

First, it is obvious that the risk neutral FV under expected utility theory (which we label
as FV-RN), the most often used benchmark for the analysis of finite-horizon experimental
asset markets and from which various mis-pricing measures have been derived, cannot capture
the low traded price in treatment A. The average traded price in market 3 is 22.08, which is
just 44% of the FV-RN. The result is confirmed by the two-tailed, Wilcoxon signed rank test
that compares this traded price with the FV-RN: the p-value is 0.043 (hypothesis 2 therefore
cannot be rejected). The traded price in market 3 of the other two treatments is close to the
FV-RN. In the following subsections, we will explore whether considering the risk attitude
and possible deviations from the expected utility theory can help to rationalize the observed
traded price in all three treatments.

A first natural alternative to FV-RN is the risk-adjusted FV under the assumption of
expected utility (EU) maximization (which we label as FV-EU). Given that all three treat-
ments involve the same uncertainty in terms of the number of dividend payments and the
timing of dividend realizations does not affect the holding value under expected utility, the
result that treatment A has a much lower traded price than the other two treatments suggests

10As shown in tables 5 and 6, the traded price changes little from market 2 to market 3, so it seems that
convergence is achieved in market 2 and strengthened in market 3. We focus on the comparison between the
traded price in market 3 and the FV to save on unnecessary repetition.
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the FV-EU cannot explain the traded price in treatment A. Nonetheless, it is still useful to
compare the FV-EU, the FV adjusted for risk attitudes, with the FV-RN, the FV under the
assumption of risk neutrality, and examine, quantitatively, the size of the gap between the
risk-adjusted FV-EU and the actual traded prices. The estimation procedure for the FV-EU
can be easily adjusted to derive FVs under non-expected utility assumptions.

4.1 Risk-adjusted FV under Expected Utility

We first describe the procedure to estimate the FV-EU using the experimental data, and
then evaluate whether the estimated FV-EU can capture the traded price in each treatment.

The derivation of the FV-EU follows a three-step procedure. In Step 1, we estimate each
individual’s risk parameter by using individual data from the Holt-Laury risk preference
elicitation task. In Step 2, we estimate the certainty equivalence or “holding value” of the
asset for each individual under the assumption of expected utility. We will later do the same
for a non-expected utility, recursive preference specification as well. In Step 3, combining each
individual’s asset profile assigned in the experiment and the estimated certainty equivalence
or holding value found in Step 2, we construct aggregate demand and supply curves for each
session and calculate the market equilibrium price, which we refer to as the market FV of
the asset.

Step 1: Estimation of the Risk Parameter In step 1, we assume that subjects’ utility
functions take the form u(x, α) = xα/α, where α is a risk preference parameter, with α = 1,
α < 1 and α > 1 corresponding to risk neutrality, risk aversion and risk loving behavior,
respectively. Using this functional form, we calculate the value of α such that an individual
with risk parameter α is indifferent between Option A, the safe choice, and Option B, the
risky choice, for each of the 10 tasks in the Holt-Laury procedure. The 10 tasks can be
found in the Appendix A (experimental instructions). For example, in task i, the payoff
from Option A is x̄A = $4.0 with probability pi = i/10 and xA = $3.2 with probability
1 − pi, while Option B offers x̄B = $7.5 with probability pi and xB = $0.2 with probability
1 − pi.11 An agent who is indifferent between the two options in task i has preferences

11The payoffs we used in the lottery are twice of the payoffs used in the treatment of low stakes in Holt
and Laury (2002). Given the CRRA assumption, the two sets of payoffs should lead to the same estimation
of α given the same switch point.
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Table 7: Calculation of CRRA Parameter from Holt-Laury Task
w/o Prob. Weighting (γ = 1) with Prob. Weighting (γ = 0.71)

Task i nA pi αi α̂(nA) πi αi α̂PW (nA)

0 ≥ 2.7128 2.7128 ≥ 2.1566 2.1566

1 1 0.1 2.7128 2.3298 0.17 2.1566 1.9151

2 2 0.2 1.9468 1.7167 0.25 1.6736 1.5272

3 3 0.3 1.4866 1.3146 0.33 1.3807 1.2688

4 4 0.4 1.1426 0.9981 0.40 1.1569 1.0601

5 5 0.5 0.8536 0.7211 0.46 0.9633 0.8716

6 6 0.6 0.5885 0.4562 0.53 0.7798 0.6851

7 7 0.7 0.3288 0.1766 0.60 0.5903 0.4812

8 8 0.8 0.0294 −0.1695 0.68 0.3721 0.2198

9 9 0.9 −0.3684 −0.3684 0.79 0.0674 0.0674

10 10 1 −∞ −0.3684 1 −∞ 0.0674

u(x, αi), with αi solving EuA(x, αi) = EuB(x, αi) or

pix̄
αi
A + (1− pi)xαiA = pix̄

αi
B + (1− pi)xαiB .

Table 7 below presents the estimated αi given each pi.

In the Holt-Laury data elicited from the experiment, however, we only observe in which
task i subjects choose to switch from the safe choice Option A to the risky choice Option
B, but not directly the task in which subjects are indifferent between the two options. For
instance, if a subject chooses Option A for the first four tasks (nA = 4) and switches to
B since task 5, it implies that the subject is indifferent between Option A and Option B

when pi takes a value between 0.4 and 0.5. Therefore, it indicates that for this subject α̂ lies
between α4 and α5, i.e., in the interval (0.8536, 1.1426). Specifically, in this case we assign
α̂(nA) = α̂(4) = 0.9981 as the midpoint of α4 and α5. Our robustness checks show that
the estimation of the market FV does not change significantly when α̂ takes on values other
than the midpoint of the interval (e.g., either endpoint).

If a subject always chooses B, then the interval of α̂ is open and we use the lower bound
of 2.7128. If the subject chooses option A nine or ten times, then the interval for α̂ is again
open, so we use the upper bound of −0.3684. According to Table 7, risk neutral agents
would switch from option A to option B after the fourth task, and risk averse (loving) agents
would switch later (earlier).
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Figure 2: Distribution of the Number of Safe Choices (Lottery A) in Holt-Laury Task

Out of the 147 participants, 13, or 9% (who chose 4 safe choices), can be classified as
risk-neutral, 117 or 80% (who chose more than 4 safe choices) are classified as risk-averse
and 17 or 11% (who chose 0-3 safe choices) are classified as risk loving. Figure 2 shows a
histogram of the number of safe choices across all sessions. The results are consistent with
previous findings in the literature. 12

Step 2: Estimation of Holding Value

After finding the risk parameter, α̂(nA), we can estimate each subject’s holding value of
the asset, equal to the the certainty equivalence for the lottery presented in Table 1 under
expected utility. The probability of receiving t dividends is (1− δ)δt−1, so we can define the
risk-adjusted certainty equivalence, Û1, as the solution to the following equation,

(Û1)
α̂

α̂
=
∞∑
t=1

(1− δ)δt−1 (td)α̂

α̂
,

12Also consistent with previous findings in the literature, around 27% of subjects had multiple switch
points in the Holt-Laury task. For those cases, we count the number of times that each individual chose
option A and we use that as an approximation for nA, as if the subject had chosen Option A for the first
nA tasks and Option B for the remaining tasks.
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or

Û1 =

{ ∞∑
t=1

(1− δ)δt−1(td)α̂
} 1
α̂

.

The latter is the certain amount that a subject would accept now in exchange for forgoing
the expected utility from the lottery under CRRA preferences and the subject’s estimated
value for α̂. Note that if α̂ = 1, i.e., the risk neutral case, then Û1 = U0.

Figure 3 (top panel A) shows the holding value, Û1 as a function of the risk parameter,
α (left panel), and the number of safe choices in the Holt-Laury task (right panel).
Step 3: Estimation of the Market FV

After acquiring each individual’s holding value (certainty equivalence) we can construct
each individual’s demand and supply for the asset. Let s andm be an individual’s endowment
of asset shares and cash (EM) respectively. The individual’s demand for the asset is therefore
given by:

qd =

 m/p if p < Ui

0 otherwise
,

and the individual’s supply of the asset is given by:

qs =

 s if p > Ui

0 otherwise
.

Finally, we construct the aggregate demand, Qd(p), and supply, Qs(p), as the sum of
individual demands and supplies. The market FV, V , solves Qd(V ) = Qs(V ). In Table 8,
we report the estimated market FV-EU.

Given that most (80%) of our subjects are risk averse, the risk-adjusted FV under ex-
pected utility is always lower than the FV-RN of 50, being in a relatively small range between
35.2 and 44.9. For treatment A, the FV-EU averages 42.5 across the five sessions. Under the
assumption of expected utility maximization, incorporating risk attitudes brings the FV-EU
closer to the market traded price. However, there is still a large gap: recall that the average
traded price in market 3 of treatment A is 22.08. For treatments B and C, the FV-EU is
significantly below the average traded price. A Wilcoxon signed rank test that compares the
traded price with the the FV-EU has a p-value of 0.043 for all three treatments. The risk ad-
justed FV-EU therefore is unable to capture the traded price in our experiment (hypothesis
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B: With probability weighting (γ=0.71) 

 

 
Figure 3: Holding Value under Different Utility Specifications
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Table 8: Estimated Fundamental Value by Session
w/o Prob. Weighting with Prob. Weighting

(γ = 1) (γ = 0.71)
Session FV-RN FV-EU FV-RU FV-RN FV-EU FV-RU
A1 50 44.8 36.7 57.3 50 21
A2 50 44.8 36.7 57.3 53.1 21
A3 50 40.0 24.3 57.3 47.2 17.1
A4 50 42.7 36.7 57.3 47.3 24.8
A5 50 40.1 30.0 57.3 47.3 21

Treatment A 50 42.5 32.9 57.3 49.0 21.0
B1 50 44.8 44.8 57.3 50 50
B2 50 35.2 35.2 57.3 41.1 41.1
B3 50 44.8 44.8 57.3 53.1 53.1
B4 50 40.1 40.1 57.3 47.3 47.3
B5 50 44.8 44.8 57.3 50 50

Treatment B 50 41.9 41.9 57.3 48.3 48.3
C1 50 44.8 44.8 57.3 50 50
C2 50 44.8 44.8 57.3 53.1 53.1
C3 50 44.9 44.9 57.3 53.1 53.1
C4 50 40.1 40.1 57.3 47.3 47.3
C5 50 40.1 40.1 57.3 47.3 47.3

Treatment C 50 42.9 42.9 57.3 50.2 50.2

2 is therefore rejected under expected utility).

4.2 Recursive Preferences

The experimental results suggest that the timing of dividend realizations significantly af-
fects the traded price. The timing of dividends affects the temporal resolution of payoff
uncertainty: in treatment A, payoff uncertainty is resolved gradually over time as subjects
trade the asset, while in treatments B and C, payoff uncertainty is resolved altogether after
the trading stage ends. In view of the importance of the temporal resolution of payoff un-
certainty, a key feature of the recursive preferences specification(Kreps and Porteus, 1978),
we derive the FV under this specification (label it as FV-RU) and investigate whether this
specification for preferences along with adjustment for risk attitudes can account for the
observed traded prices in all three treatments of our experiment.
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First note that for treatments B and C, subjects do not observe dividend realizations
in the trading stage, so the FV under expected utility is the same as under the non-EU,
recursive preference specification for these two treatments. The two utility specifications
will lead to different FV calculations only for treatment A, where the uncertainty regarding
the dividend payment is only resolved gradually, over time, while subjects trade for units of
the asset.

We adopt the Epstein and Zin (1989) specification for recursive preferences, using a
CES time aggregator to combine the current payoff and the certainty equivalence of future
payoffs.13 For the risk aggregator, we follow what we did in the previous subsection, using
the CRRA utility function to aggregate the risk associated with future payoffs. The holding
value of the asset in treatment A under recursive preferences can be expressed by

Ut = {dρ + (EŨα
t+1)

ρ/α}1/ρ.

where the first term on the right hand side, which involves the current dividend payment d,
represents current consumption, and the second term represents the risk adjusted certainty
equivalence value of future consumption.

The derivation of the FV-RU in treatment A follows the same 3-step procedure as de-
scribed earlier for estimation of the FV-EU. Notice that in step 1, the different assumption of
expected utility or a non-EU recursive utility specifications will not affect the estimation of
the risk parameter, α̂, since the Holt-Laury task consists of static gambles. The assumption
regarding the utility specification directly affects the calculation of individuals’ holding value
(certainty equivalence) only in Step 2, and therefore, indirectly affects the FV of the asset

13The Epstein-Zin recursive preferences are commonly used in the finance literature to rationalize the
equity premium and risk-free rate puzzles (see, e.g., Campbell (2018)). Epstein-Zin preferences do not
restrict the elasticity of inter-temporal substitution to be the reciprocal of the coefficient of relative risk
aversion. Instead, this recursive preference specification has a different parameter for each, which allows
agents to treat consumption in the current period and the certainty equivalence of all future values in a
nonlinear way that violates the independence axiom of expected utility theory. Brown and Kim (2014)
report experimental results from a choice menu elicitation (such as the Holt-Laury risk elicitation as well
as time and uncertainty resolution preferences) which reveal that most human subjects have an estimated
coefficient of relative risk aversion that differs from their estimated inter-temporal elasticity of substitution,
consistent with an Epstein-Zin preference specification. We show that this non-expected utility approach
can help to account for differences that we observe in market traded prices when we change the timing of
dividend realizations under random termination.
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in Step 3.

Using the estimated risk parameter, the holding value of the asset in treatment A under
recursive preferences can be expressed as

Ut = {dρ + (EŨ α̂
t+1)

ρ/α̂}1/ρ

= {dρ + [δU α̂
t+1]

ρ/α̂}1/ρ

= [dρ + δρ/α̂Uρ
t+1]

1/ρ,

where (EŨ α̂
t+1)

1/α̂ is the certainty equivalence of the asset’s continuation value (or future
payoffs), Ũt+1 = U α̂

t+1 > 0 with probability δ and Ũt+1 = 0 with probability 1− δ. Imposing
Ut = Ut+1, we can calculate the recursive holding value as

Û2 =
d

(1− δρ/α̂)1/ρ
.

Note that if α̂ = 1 and ρ = 1, i.e., the risk neutral case under expected utility, then Û2 = U0.
Given that each trading period lasts for only 2.5 minutes, it is reasonable to assume in

our experiment that ρ = 1, i.e., subjects treat each period’s payoff as perfect substitutes,
and there is no actual discounting from period to period. The recursive holding value is
therefore

Û2 =
d

1− δ 1
α̂ .

(1)

In Figure 3 (Upper panel A), the estimated holding value under recursive preferences, Û2,
is graphed together with U0 (FV-RN) and Û1 (FV-EU) against the risk parameter, α (left
panel), and for comparison purposes, against the number of safe choices in the Holt-Laury
task (right panel). Note that for risk averse agents, for whom α < 1, the holding value
estimated under the recursive utility specification is lower than that under the expected
utility specification, and further lower than the value under the risk neutral expected utility
specification, i.e., Û2 < Û1 < U0 = 50. When α > 1, this ordering reverses, with Û2 > Û1 >

U0 = 50. Finally, for risk neutral agents, the three holding values coincide with each other
at 50.

After estimating the holding value, we can construct the individual and aggregate supply
and demand curves to calculate the FV-RU following the same procedures as in the esti-
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Table 9: p-values from Wilcoxon Signed Rank Tests: Average Market Price and FV
Treatment Average Price in Market 2 Average Price in Market 3

FV-RN FV-EU FV-RU FV-RN FV-EU FV-RU
w/o Prob. Weighting

A 0.043 0.079 0.225 0.043 0.043 0.138
B 0.500 0.043 0.043 0.686 0.043 0.043
C 0.500 0.079 0.079 0.686 0.043 0.043

with Prob. Weighting (γ = 0.71)
A 0.043 0.043 0.893 0.043 0.043 0.686
B 0.500 0.500 0.500 0.225 0.686 0.686
C 0.080 0.686 0.686 0.686 0.500 0.500

No. of Obs. 5 5 5 5 5 5

mation of FV-EU. The estimated FV-RU is shown in Table 8. The p-values from Wilcoxon
signed rank tests comparing the market 3 traded prices with the estimated FV-RU values
are shown in Table 9. As mentioned above, in treatments B and C, payoff uncertainty is
resolved at a single point in time, just after trading ends, so the holding value and therefore
the market FV are the same under both expected and recursive utility specifications. In
other words, in treatments B and C, even if subjects have a recursive utility specification,
it degenerates to a special case, i.e., the expected utility function. For treatment A, the two
specifications lead to very different FV values. The FV-RU is always lower than FV-EU,
with the former being in a range between 24.3 and 36.8, with a treatment average of 32.9.
Compared with the FV-EU, which averages 42.5, the FV-RU is significantly closer to the
average traded price at 22.08. A signed rank test suggests that average traded prices in mar-
ket 3 of treatment A are not significantly different from the estimated FV-RU (p = 0.138)
at the 10% significance level. For treatments B and C, the results are the same as for the
analysis using FV-EU (given that FV-EU is the same as FV-RU). Thus under recursive
utility, hypothesis 2 is partially rejected (it is rejected for treatments B and C, but not for
treatment A)

4.3 Probability Weighting

As shown in the previous subsection, risk adjusted FV under recursive utility greatly im-
proves over FV-EU in terms of capturing the low traded price in the indefinite-horizon asset
market (treatment A). However, there is still a small gap between the estimated market
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FV and the actual market price: FV-RU is higher than the market price (by about 50%)
in treatment A, and lower than the market price (by about 20%) in treatments B and C.
We therefore continue to search for additional/alternative explanations for the traded price,
especially for the low traded price in treatment A. For this purpose, we consider the possi-
bility from cumulative prospect theory (Tversky and Kahneman, 1992) that subjects employ
probability weighting in evaluating the lotteries that characterize the asset.14 In treatment
A, the market ends and the asset becomes worthless with a small probability 0.1. It may
be that subjects overweight this small probability, thereby lowering their valuation of the
asset. In the following, we will examine bow probability weighting affects the calculation of
the three alternative FVs considered so far: FV-RN, FV-EU and FV-RU, and evaluate its
contribution in capturing the traded price.

Probability weighting works as follows. Suppose agents face a risky prospect with n

(ordered) outcomes x1 < x2 < xi < ... < xn, each with probability p1, p2, ..., pi, ..., pn.
Probability weighting transforms each of the original probabilities, pi, through two functions

πi(·) and w(·), with commonly used functional forms πi = w

(
n∑
j=i

pj

)
− w

(
n∑

j=i+1
pj

)
and

w(q) = qγ

[qγ+(1−q)γ ]1/γ . The effect is that small probabilities are over-weighted while large
probabilities are under-weighted relative to their true values.

We set γ = 0.71 following Wu and Gonzalez (1996).15

To derive the FV with probability weighting, we follow the same 3-step procedure. The
only difference is that we will use the transformed probabilities, πi in place of the original
probabilities pi in both the Holt-Laury tasks and in the lotteries characterizing the asset
being traded.

In step 1, the estimation of the risk parameter uses the transformed probabilities πi
in place of the original probabilities pi. We update Table 7 to include the transformed
probabilities and the estimated risk parameter with probability weighting, α̂PW . Probability
weighting increases small probabilities (for pi < 0.4) and decreases large probabilities (for
pi > 0.4). In both estimations with and without probability weighting, risk neutral agents

14Probability weighting, together with loss aversion and reference dependence, are fundamental principles
of prospect theory, and alternative to expected utility theory. Given that it is not clear what the appropriate
reference point is in the context of the market game that we study, we focus only on the probability weighting
aspect of Prospect Theory.

15Other values of γ suggested in the literature are 0.56 in Camerer and Ho (1994) and 0.61 in Tversky and
Kahneman (1992). We use the highest value of γ among the three, 0.71, as it involves the least distortion of
the objective probabilities.
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would switch from option A to option B after the fourth task. As a result, probability
weighting makes estimated CRRA parameter as a function of the number of safe choices pivot
at the risk neutral value for nA, i.e., 4, and become flatter. The estimated α̂PW is smaller
than α̂ for risk-seeking individuals and α̂PW is larger than α̂ for risk-averse individuals. The
distribution of α̂PW is therefore more condensed in the direction of the risk-neutral case
(α = 1).

In step 2, for the estimation of the holding value under expected utility, we use the risk
parameter estimated in step 1, α̂PW , and the transformed probabilities for the lotteries char-
acterizing the asset. In the case of expected utility, the (weighted) probability of receiving t
dividends becomes the following equation (refer to Appendix C for more details):

π(td) = w(δt−1)− w(δt).

As a result, the extreme outcomes (i.e., receiving t dividends when t ≥ 22 or when t ≤ 2)
are overweighted and other outcomes are underweighted, given the functional form of w(),
our choice of δ = 0.9 and the value γ = 0.71. Correspondingly,

ÛPW
1 =

{ ∞∑
t=1

[w(δt−1)− w(δt)](td)α̂
PW

} 1

α̂PW

. (2)

In the case of recursive utility, the estimation is similar except that Ũt+1 = U α̂PW

t+1 > 0

with probability π2 = w(0.9) − w(0) = w(0.9) < δ = 0.9 and Ũt+1 = 0 with probability
π1 = w (1)−w (0.9) = 1−w(0.9) > 1− δ = 0.1, so the bad outcome is overweighted and the
good outcome is underweighted. Correspondingly,

Û2 =
d

1− π
1

α̂PW

2

. (3)

Figure 3 (lower panel B) shows estimated holding values with probability weighting.
Probability weighting affects the estimated holding value as follows. With expected utility,
the estimated holding value decreases slightly for very risk averse agents (α < 0.43) and
increases for other α values. For an average subject (with α = 0.6), it increases slightly from
42.6 to 44.6. For risk neutral agents, it increases slightly from 50 to 57.3. With recursive
utility, probability weighting uniformly reduces the holding value (as agents overreact to
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the small probability event of termination). For risk-neutral agents, probability weighting
substantially reduces the holding value under recursive utility from 50 to 23.6. For an average
risk averse subject (with α = 0.8), it decreases substantially from 40.52 to 19.43.16

Step 3 remains the same as before (using the holding value derived from step 2). The
effect of probability weighting on the market FV estimates is consistent with its effect on the
holding value of the average subject. Under expected utility, it increases the treatment aver-
age FV-EU moderately, from 42.5 to 49.0 for treatment A, from 41.9 to 48.3 for treatment B,
and from 42.9 to 50.2 for treatment C, bringing the FV-EU closer to the average traded prices
(51.5 in treatment B and 55.3 in treatment C). Under recursive utility, probability weighting
reduces the treatment average FV-RU from 32.9 to 21.0, which is very close to the average
traded price of 22.1. Recall that FV-EU and FV-RU are the same for treatments B and
C. In terms of the Wilcoxon signed rank test, with probability weighting, the average price
in treatment A is not significantly different from FV-RU, while it is significantly different
from FV-RN and FV-EU. For the other two treatments, the traded price is not significantly
different from all three FVs. These results suggest that the market FV under recursive utility
with probability weighting can account for the traded price in all three treatments, so that
we would not reject hypothesis 2.

We have discussed how to estimate different forms of FV and evaluate their ability to
account for the traded price in market 3. It is useful to summarize this discussion in the
following findings.

Finding 4 Market Price and FV: Treatment A (BRT).

1. For treatment A, the traded price in market 3 is significantly lower than the risk-
neutral FV or the risk-adjusted FV under expected utility, regardless of whether or not
probability weighting is considered.

2. The average traded prices are not statistically significantly different (at 10% significant
level) from the risk-adjusted FV under recursive utility, regardless of whether or not
probability weighting is considered. Probability weighting brings the FV-RU closer (from
32.9 to 21.0) to the average traded price (20.3).

Finding 5 Market Price and FV: Treatments B (D-2) and C(BRT-2).

16Note that probability weighting changes the estimate of α. The average α is about 0.6 without probability
weighting, and 0.8 with probability weighting.
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1. Without probability weighting, the traded prices in market 3 of treatments B and C
are significantly higher than the risk-adjusted FV predictions, and are not significantly
different from the risk-neutral FV prediction.

2. With probability weighting, the traded prices in market 3 of treatment B and C are not
significantly different from FV-RN, FV-EU or FV-EU.

What accounts for the ability of the risk-adjusted FV under recursive preferences to
explain the very low prices observed in markets 2 and 3 of treatment A but not the prices
in the later markets of treatments B and C? Clearly, the difference must lie in the timing
with which dividend payments are received, as this is the main difference between treatment
A and treatments B and C. If agents have recursive preferences and are risk averse (i.e.,
if α < 1), then they prefer earlier to later resolution of the uncertainty regarding future
dividend realizations. If dividend realizations are coincident with trade in the asset as they
are in treatment A, a preference for earlier uncertainty resolution will manifest itself in a
lower certainty equivalence value for the asset which implies that the asset should trade
at prices lower than the FV value under expected utility. By contrast, in treatments B
and C, all dividend realizations occur after the trading phase is complete, so preferences to
resolve uncertainty earlier cannot actively affect the pricing of the asset. Note that we are not
suggesting that subjects’ preferences differ across our three treatments; rather, we think that
in general, a recursive specification may always be operative. However, due to the difference
in the timing of dividend payments, the preference for earlier uncertainty resolution only
reduces the fundamental price (relative to the FV under expected utility) in treatment A.

In addition to consider the non-EU recursive utility specification, combining this specifi-
cation with probability weighting provides the best explanation for our experimental data.
The effect of probability weighting under the recursive utility specification has an opposite
direction in treatment A and treatments B and C: it lowers the FV-RU in treatment A
and (slightly) increases the FV-RU (which is same as FV-EU) in treatments B and C. In
the former, in every period agents only consider two possible outcomes and overweight the
probability of the bad outcome, while in the latter, agents overweight both extremely good
outcomes and extremely bad outcomes, resulting in a slightly higher FV-RU (FV-EU).

Note that to better account for trade prices, especially the traded prices in treatment A,
we make three modifications to the benchmark FV under expected utility and assuming risk
neutrality (FV-RN): risk preferences, recursive utility and probability weighting. The first
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two are more crucial. Irrespective of whether we assume expected or recursive utility and
whether we apply probability weighting or not, the risk neutral FV cannot account for the
low traded price in treatment A. The risk-adjusted FV under expected utility, FV-EU, is
substantially higher than the traded price in treatment A, regardless of whether probability
weighting is used or not. The FV under recursive utility (FV-RU) without probability
weighting can account for a significant amount of the low traded price in treatment A; adding
probability weighting further improves the ability of FV-RU to capture the low traded price
in treatment A (and enables FV-RU to simultaneously match the traded price in the other
two treatments).

4.4 Individual Trading Behavior

Our analysis so far focuses on whether the FV can account for the aggregate (average) market
traded price. In addition to rationalizing the aggregate results, we examine the trading
behavior of individual subjects in the final market, or market 3. In particular, we ask how
well do the different FV specifications – risk neutral (RN) or risk adjusted, with expected or
recursive preferences, and without or with probability weighting – explain individual trading
decisions. We characterize an individual as employing a fundamental trading strategy if the
buying price is ≤ (1 + ε)FV, or the selling price is ≥ (1 − ε)FV, where we set ε = .10,
and FV the market FV estimated using our procedures. This 10% band around the market
FV allows for a certain level of experimentations close to the FV. We then calculate the
percentage of fundamental trading with reference to each of the FV that we have estimated
for each subject.

Table 10 presents the percentage of fundamental trading averaged across all subjects in
each treatment with reference to the FV-RN, FV-EU and FV-RU, with and without proba-
bility weighting, respectively. We see that for treatment A, the FV under the recursive utility
specification captures the highest percentage of fundamental trading, no matter whether or
not probability weighting is considered. Probability weighting increases the percentage of
fundamental trading for FV-RU from 52.9% to 58.3%, slightly increases the percentage of
fundamental trading for FV-EU from 47.5% to 50.2%, and marginally reduces the percentage
of fundamental trading for FV-RN (from 47.4% to 47.2%). For treatments B and C, FV-EU
and FV-RU are the same. Without probability weighting, the percentage of fundamental
trading explained by FV-RN, is higher and the opposite is true with probability weighting.
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Table 10: Average Percentage of Fundamental Trading
Treatment A Treatment B Treatment C

w/o Prob. Weighting
FV-RN 47.4 77.5 83.0
FV-EU 47.5 63.4 68.4
FV-RU 52.9 63.4 68.4

with Prob. Weighting (γ = 0.71)
FV-RN 47.2 58.8 63.7
FV-EU 50.2 67.6 75.5
FV-RU 58.3 67.6 75.5
No. of Obs. 49 47 46

Probability weighting improves the “fit” of FV-RU and FV-EU (from 63.4% to 67.6%), while
it reduces the “fit” of FV-RN (from 77.5% to 58.8% for treatment B, and from 83.0% to
63.7% for treatment C). Figures 4 and 5 report on the percentage of fundamental trading
for the 49 subjects in treatment A under no probability weighting (γ = 1, upper panels) and
under probability weighting (γ = .71, lower panels). The horizontal axis is the percentage
of fundamental trading, which runs from 0 to 100 percent with 50 equal-sized bins. Figure 4
graphs the probability density of fundamental trading while Figure 5 shows the cumulative
density. The two figures convey similar results, which together with the results of Table 10
can be summarized as follows.

Finding 6 Individual trading strategies.

1. In treatment A, (with or without probability weighting) the percentage of fundamental
trading is highest under the assumption of a recursive utility specification, followed
by the risk-adjusted expected utility specification, and then by the risk neutral utility
specification.

2. In treatments B and C, without probability weighting, a higher percentage of fundamen-
tal trading is associated with FV-RN than with FV-EU (and FV-RU). With probability
weighting the reverse is true.
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Figure 4: Histogram of the Percentage of Fundamental Trading in Treatment A—Probability
Density
Notes : We characterize an individual as employing a fundamental trading strategy if the
buying price is ≤ (1 + 10%)FV, or the selling price is ≥ (1-10%)FV.
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Figure 5: Histogram of the Percentage of Fundamental Trading in Treatment A—Cumulative 
Density
Notes : We characterize an individual as employing a fundamental trading strategy if the 
buying price is ≤ (1 + 10%)FV, or the selling price is ≥ (1-10%)FV.
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5 Conclusion

Most asset pricing models employ infinite horizons, as the duration of assets, such as equities, 
is typically unknown. By contrast, many experimental asset pricing models employ finite 
horizons, making it difficult to test the predictions of infinite horizon m odels. While infinite 
horizons cannot be studied in the laboratory, indefinite horizon environments, where the asset 
continues to yield a flow of payoffs with a known constant probability, can be implemented in 
the laboratory. If agents are risk neutral expected utility maximizers, the probability that the 
asset continues to yield payoffs plays the role of the discount factor and the price predictions 
under the infinite horizon economy extend to the indefinitely repeated environment.

In this paper, we study the empirical relevance of the indefinite h orizon model f or un-
derstanding the predictions of infinite h orizon a sset p ricing m odels. I n o ur b aseline treat-
ment A, which implements a random termination design, we find that experienced subjects 
consistently price the asset below the level predicted by infinite h orizon models u nder the 
assumption of risk neutral expected utility maximization. We consider whether this outcome 
is due to subjects’ risk preferences by eliciting subjects’ tolerance for risk, and we further 
consider two additional treatments, by which we can examine whether the timing of div-
idend payments or uncertainty about the trading horizon matters for the prices observed. 
We find that uncertainty about the t rading horizon cannot explain the pricing b ehavior in 
our baseline treatment, but that the timing with which dividend payments are received does 
matter; if the sequence of dividends is received after (separately from) the trading phase, the 
asset is priced close to the risk neutral expected utility prediction. Since the dividend se-
quence is the same across all three treatments, but pricing is quite different, risk preferences 
under expected utility cannot explain the different pricing outcomes that we observe (the 
timing of dividend realizations does not matter with expected utility). Rather, we suggest 
that the difference can be explained by replacing the expected utility assumption with a 
non-expected utility, recursive preference specification, which differentiates between current 
dividend realizations and the future certainty equivalence value of the asset.

For moderately risk averse subjects (as we have in our experiment and which are typically 
found in asset pricing experiments), this recursive specification f or u tility c an a ccount for 
a significant f raction o f t he l ow t raded p rice t hat we observe i n our baseline t reatment A, 
where uncertainty about dividend realizations coexists with uncertainty about the trading 
horizon. With recursive preferences, risk-averse agents prefer earlier to later resolution of

36



the uncertainty regarding future dividend realizations. If dividend realizations are coincident
with trade in the asset as they are in the baseline treatment, this preference for earlier
uncertainty resolution will manifest itself in a lower holding value for the asset which implies
that the asset should trade at prices lower than the FV value under expected utility. By
contrast, if dividend realizations cannot occur until the trading phase is complete as in
treatments B and C, then preferences to resolve uncertainty earlier cannot actively affect the
pricing of the asset.

Combining a recursive utility specification risk adjustment and probability weighting
(according to which subjects overreact to the small probability of market termination) can
fully rationalize the low traded prices observed in our baseline treatment. The risk-adjusted
FV with recursive utility and probability weighting is also consistent with the traded price
observed in the other two treatments.

An important take-away from our study for experimental economists is that the mis-
pricing behavior found in experimental asset markets may be quite different under random
termination, as compared with the more typically studied finite horizon case, which follows
the lead of Smith et al. (1988). Rather than finding over-pricing relative to the risk neu-
tral FV (“bubbles”) among inexperienced subjects as in the literature initiated by Smith et
al. (1988), we find substantial under-pricing relative to the risk neutral benchmark under
expected utility in our baseline random termination treatment with experienced subjects.
Further, we can rationalize this departure from fundamentals using elicited risk attitudes.
An important take-away for finance researchers is that we have provided some empirical
support for the widely used Epstein-Zin recursive preference specification and probability
weighting in the context of asset markets where subjects both trade and receive dividends
from their asset holdings.

References

[1] Asparouhova, E., P. Bossaerts, N. Roy, and W. Zame (2016), "Lucas in the Laboratory,"
Journal of Finance 71(6), pp. 2727-2779.

[2] Ball, S.B. and C.A. Holt (1998), "Classroom Games: Speculation and Bubbles in an
Asset Market," Journal of Economic Perspectives, Volume 12(1), pp. 207-218.

37



[3] Brown, A. and H. Kim. (2014). "Do Individuals Have Preferences Used in Macro-Finance
Models? An Experimental Investigation," Management Science 60, 939-958.

[4] Campbell, J.Y. (2018), "Financial Decisions and Markets: A Course in Asset Pricing,"
Princeton: Princeton University Press.

[5] Camerer, C. F., and T. H. Ho (1994). Violations of the betweenness axiom and nonlin-
earity in probability. Journal of Risk and Unvertainty 8, pp. 167-196.

[6] Camerer, C.F. and K. Weigelt (1993), "Convergence in Experimental Double Auctions
for Stochastically Lived Assets," in: The Double Auction Market: Institutions, Theories,
and Evidence, Proceedings Volume in the Santa Fe Institute Studies in the Sciences of
Complexity (14). Addison-Wesley, Reading, MA, pp. 355-396.

[7] Crockett, S., J. Duffy and Y. Izhakian (2019), "An Experimental Test of the Lucas
Asset Pricing Model," Review of Economic Studies, 627− 667.

[8] Epstein, L.G.; and S.E. Zin (1989). "Substitution, Risk Aversion, and the Temporal
Behavior of Consumption and Asset Returns: A Theoretical Framework," Econometrica
57(4), pp.937− 969.

[9] Fenig, G., M. Mileva, and L. Peterson (2018), "Deflating asset price bubbles with lever-
age constraints and monetary policy," Journal of Economic Behavior and Organization
155, 1-27.

[10] Fischbacher, U. (2007), "z-Tree: Zurich toolbox for ready-made economic experiments,"
Experimental Economics 10(2), 171-178.

[11] Frechette G. and S. Yuksel (2017) "Infinitely Repeated Games in the Laboratory: Four
Perspectives on Discounting and Random Termination," Experimental Economics 20,
279-308.

[12] Greiner, B. (2004), "An Online Recruitment System for Economic Experiments."
Forschung und wissenschaftliches Rechnen GWDG Bericht 63, edited by K. Kremer
and V. Macho, pp. 79-93.

38



[13] Giusti, G., J. H. Jiang and Y. Xu (2016), "Interest on Cash, Fundamental Value Process,
and Bubble Formation on Experimental Asset Markets," Journal of Behavioral and
Experimental Finance 11(C), 44-51

[14] Hens, T. and S.C. Steude (2009), "The Leverage Effect Without Leverage," Finance
Research Letters 6, pp. 83-94.

[15] Holt, C.A., and S.K. Laury (2002), "Risk Aversion and Incentive Effects," American
Economic Review 92(5): 1644-1655.

[16] Hommes, C.H., J. Sonnemans J. Tuinstra and H. van de Velden (2005), "Coordination of
Expectations in Asset Pricing Experiments," Review of Financial Studies 18, 955−900.

[17] Hommes, C.H., J. Sonnemans J. Tuinstra and H. van de Velden (2008), "Expectations
and Bubbles in Asset Pricing Experiments," Journal of Economic Behavior and Orga-
nization 67, 116− 133.

[18] Kirchler, M., J. Huber and T. Stockl (2012), "Thar she bursts–Reducing confusion
reduces bubbles," American Economic Review 102, 865-83.

[19] Kose, T. (2015) "Price Convergence and Fundamentals in Asset Markets with
Bankruptcy Risk: An Experiment," Internationa Journal of Behavioural Accounting
and Finance, 5(3/4): 242-278.

[20] Kreps, D., and E. Porteus (1978), "Temporal Resolution of Uncertainty and Dynamic
Choice Theory," Econometrica 46(1): 185-200.

[21] Noussair, C.N., S. Robin, and B. Ruffieux (2001), "Price Bubbles in Laboratory Asset
Markets with Constant Fundamental Values," Experimental Economics 4, 87-105.

[22] Noussair, C.N. and S. Tucker (2013), "Experimental Research on Asset Pricing," Journal
of Economic Surveys 27: 554–569. doi:10.1111/joes.12019

[23] Palan, S. (2009), "Bubbles and Crashes in Experimental Asset Markets," Springer Sci-
ence & Business Media.

[24] Palan, S. (2013), "A Review of Bubbles and Crashes in Experimental Asset Markets,"
Journal of Economic Surveys 27: 570-588.

39



[25] Roth, A.E., and Murnighan, J.K. (1978), "Equilibrium Behavior and Repeated Play of
the Prisoners’ Dilemma," Journal of Mathematical Psychology 17, 189-198.

[26] Sherstyuk, K., N. Tarui, and T. Saijo (2013), "Payment Schemes in Infinite-Horizon
Experimental Games," Experimental Economics 16, 125-153.

[27] Smith, V.L., G.L. Suchanek, and A.W. Williams (1988), "Bubbles, Crashes, and En-
dogenous Expectations in Experimental Spot Asset Markets." Econometrica 56, 1119-
1151.

[28] Stockl, T., J. Huber, and M. Kirchler (2010). "Bubble measures in experimental asset
markets." Experimental Economics 13: 284–298.

[29] Weber, M., J. Duffy and A. Schram (2018), "An Experimental Study of Bond Market
Pricing," Journal of Finance, 73: 1857-1892.

[30] Wu, G., and R. Gonzalez (1996). "Curvature of the probability weighting function,"
Management Science 42, 1676-1690.

40



1 
 

Internet Appendix A: Figure A1—Prices over Periods in Each Session, Grouped by Treatment 
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Internet Appendix B: Experimental Instructions  
Welcome 

Welcome to this experiment on economic-decision making. You will receive $5 for showing up in the 
session. Your additional earnings will depend on your own decisions, other participants’ decisions and 
some random events as explained below. Please read the instructions carefully as they explain how you 
earn money from the decisions that you make. Please do not talk with other participants and silence 
your mobile device during the experiment. 
 

Part I Instructions (Same for all three treatments) 
Your screen shows ten decision Tasks listed below. Each Task is a paired choice between “Option A” 
and “Option B.” Each Option is a lottery of two possible realizations with different probabilities. For 
Option A, the two realizations are $4 and $3.2. For Option B, the two realizations are $7.7 and $0.2. 
For each Task, choose which lottery option, A or B, you would like to play. As you move down the 
table, the chances of the higher payoff for each option increase. In fact, for Task 10 in the bottom row, 
each option pays the higher payoff for sure, so your choice here is between $4 and $7.7.  
 

 
 
Although you make 10 decisions, only one of them will be used in the end to determine your earnings. 
However, you will not know in advance which decision will be used. Each decision has an equal chance 
of being used in the end.  
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After you have made all of your choices, the computer will draw two numbers randomly between 1 and 
10. The first draw is used to select one of the ten decisions to be used. For example, if the first draw 
is 4, then Task 4 is selected to determine your earnings. The second draw determines what your payoff 
is for the option you chose, A or B, for the particular decision selected. Continue to suppose that Task 
4 is selected, and you chose Option A for Task 4. Your earnings will be $4 if the second draw is between 
1 and 4 and $3.2 if the second draw is between 5 and 10. Alternatively, if you chose Option B for Task 
4, then your earnings will be $7.7 if the second draw is between 1 and 4 and $0.2 if the second draw is 
between 5 and 10. 
To summarize, you will make ten choices: for each decision row you will have to choose between 
Option A and Option B. You may choose A for some decision rows and B for other rows, and you may 
change your decisions and make them in any order. When you are finished, the computer will draw two 
random numbers. The first random number determines which of the ten tasks will be used. The second 
number determines your money earnings for the option you chose for that task. 
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Part II Instructions (Treatment BRT) 
General Information 
This part of the experiment consists of several asset markets, in which 10 participants (including 
yourself) trade stocks of a fictitious company. 
 
Market Description  
At the beginning of each market, half of the participants are endowed with 20 shares and 3,000 units 
of cash measured in experimental money (EM), and the other half participants are endowed with 60 
shares and 1,000 EM of cash. 
Each market consists of an indefinite number of rounds, which will be explained later. Each round lasts 
for 2 minutes, during which you can sell and/or buy shares. At the end of each round, for each share 
you own, you receive a dividend of 5 EM. Dividends are collected in a separate account: they will count 
toward your earnings, but cannot be used to buy shares. If the market continues, then your shares and 
cash, as well as the dividend account balance, will be carried over to the next trading round. 
 
Length of A market 
Each market consists of an indefinite number of rounds. The length of the market is determined by the 
following rules. At the end of each round, the computer will draw a random number between 1 and 100 
to determine whether the market will continue or not. Specifically, if the computer draws a random 
number between 1 and 90 (inclusively), the market will continue; otherwise, if the random number is 
between 91 and 100 (inclusively), then the market ends. Therefore, after each round, the market will 
continue with a chance of 90%, and end with a chance of 10%. 
However, in the first 10 rounds, called a block, you will trade without being informed of the realization 
of the random draws, even if a random number greater than 90 has been drawn. At the end of round 10, 
you will be shown the realization of the random draws for all 10 rounds in the block and learn whether 
or not the market has actually ended within the block. If the market has ended within the block of the 
first 10 rounds, the final round of the market will be the first round in which the realization of the 
random draw exceeds 90, and your decisions after the final round will be ignored. If the market has not 
ended within the block, the market continues to round 11. From round 11 on, you will be informed of 
the realization of the random draw at the end of each round. The final round of the market is reached 
once the random draw exceeds 90. 
 
Trading Interface 
In each trading round, you will trade using an interface similar to figure 1 (you will have the opportunity 
to practice with the interface for 3 minutes before the formal experiment starts). 
Trade is organized as a double auction: all traders can submit offers to buy and offers to sell, and accept 
others’ offers.  
Each offer has two parts, the price and quantity. The price quote can be any integer from 1 to a 
maximum of 500 EM. The quantity is the number of shares you intend to trade at this price. You must 
have enough cash to support your offer to buy and enough shares to support your offer to sell. 
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Otherwise, you will receive a reminder and your offer will not go through. All offers are listed in the 
order book. Your own offers are in blue, and other people’s offers are in black. The offers are ordered 
according to prices, with the best offer at the top. For your convenience, the best offer posted by others 
is highlighted. The following rules will apply when you post or accept offers to buy and offers to sell. 

• When you post an offer to buy, the price has to be lower than the lowest offer to sell in the order 
book. (Otherwise, you can simply accept the lowest offer to sell.) 

• When you post an offer to sell, the price has to be higher than the highest offer to buy in the 
order book. (Otherwise, you can simply accept the highest offer to buy.) 

• When you accept an offer by others, the offer has to be the best offer available. That is, when 
you accept an offer to buy, it has to be the highest offer to buy. When you accept an offer to 
sell, it has to be the lowest offer to sell. 

• You cannot accept your own offers.  
Trade is realized whenever an offer is accepted. If you would like to accept the highlighted offer, enter 
a number in the field “quantity” located at the bottom of the screen, then click on the “Sell” or “Buy” 
button. 
Your share and cash inventories will be updated to reflect your trading activities. If you buy shares, 
your shares increase by the quantity traded, and your cash is diminished by the amount = price*quantity. 
The reverse happens if you sell shares. 
 
Number of Markets 
After a market ends, depending on the time remaining, the experimenter will inform you whether or 
not a new market will start. If yes, you repeat the same procedure: your endowment of shares and cash 
will be reset, and the market will last for an indefinite number of rounds as described above. If there is 
no new market open, you will be informed of your total earnings in this part of the experiment. 
 
Calculate Your Earnings 
Your earnings for a market is calculated as 

Market earnings= cash at the end of the final round 
                                 + balance in the dividend account at the end of the final round 
Your total earnings in this part of the experiment are the summation of earnings from all markets, which 
are converted into Canadian dollars at a rate of 500 EM = $1. 
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Review of Important Information 

• In any trading round, the current market may continue with probability 0.9 and ends with probability 
0.1. Therefore, on average the length of a market is 10 rounds. 

• If you decide to hold on to a share without ever selling it, on average, you will receive 10x5=50 
EM in terms of dividend payment. 

• Your earnings in a market will be determined by your cash holdings and dividends in the final 
round of the market; the final round could be within the block or outside of the block. 

• Within the block of the first 10 periods of a market, you will not be informed of whether the market 
has ended or not. 

• Each round in a market lasts for 2 minutes (120 seconds). 
 
Quiz 
After you have read the instructions, please answer the following quiz questions. The experimenter will 
check whether your answers are correct. If you answer any question incorrectly, the experimenter will 
discuss with you why your answer is wrong and explain what the correct answer is. The purpose of this 
quiz is to ensure that you fully understand the instructions prior to the start of the experiment.  
1. Suppose in a market, after the block of 10 rounds finishes, the random draws are revealed as: 

round 1 2 3 4 5 6 7 8 9 10 

Random draw 52 3 86 74 21 8 93 5 24 12 

The final round of the market is ______ 
2. Suppose in a market, the random draw sequence is 

round 1 2 3 4 5 6 7 8 9 10 11 12 

Random draw 41 9 88 41 31 29 33 5 24 2 14 96 

The final round of the market is ______ 
3. Suppose a market has lasted for 15 rounds already. The chance that a market continues to new round 

is 
A. 90% 
B. Lower than 90% 
C. Higher than 9% 
D. None of the above  

4. Suppose at the end of the final round of the market, you have 22 shares, 4,500 EM in cash, and 
2,000 EM in the dividend account, your earnings in this market is ________ EM 

5. If you hold on to a share from the beginning to the end of the market, on average, you earn ____ 
EM of dividends. 
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Part II Instructions (D-2) 
 
General Information 
This part of the experiment consists of several asset markets, in which 10 participants (including 
yourself) trade stocks of a fictitious company. 
 
Market Description  
At the beginning of each market, half of the participants are endowed with 20 shares and 3,000 units 
of cash measured in experimental money (EM), and the other half participants are endowed with 60 
shares and 1,000 EM of cash.  
Each market consists of two stages: a trading stage and a dividend realization stage. 
The trading stage of each market consists of 10 trading rounds. Each round lasts for 2 minutes, during 
which you can sell and/or buy shares using an interface described later. At the end of each trading round 
and before the trading stage ends, your shares and cash will be carried over to the next trading round. 
After the trading stage finishes, the dividend realization stage starts, where you collect dividends for 
the shares you own at the end of the trading stage. All shares receive an indefinite number of 5-EM 
dividend payments; the number of payments is determined as follows. You receive one dividend 
payment for sure. After each dividend payment, the computer will draw a random number between 1 
and 100: if the number is greater than 90, then there will be no further dividend payments; otherwise, 
there will be a new dividend payment followed by another random draw. The number of dividend 
payments can potentially run from 1 to infinity. On average, you will receive 10 dividend payments, or 
50 EM, for each share you own at the end of the trading stage. In the dividend payment stage, you no 
longer make decisions: the computer will decide how many dividends you receive, and you simply 
watch dividends accrue. 
 
Trading Interface 
In each trading round, you will trade using an interface similar to figure 1 (you will have the opportunity 
to practice with the interface for 3 minutes before the formal experiment starts). 
Trade is organized as a double auction: all traders can submit offers to buy and offers to sell, and accept 
others’ offers.  
Each offer has two parts, the price and quantity. The price quote can be any integer from 1 to a 
maximum of 500 EM. The quantity is the number of shares you intend to trade at this price. You must 
have enough cash to support your offer to buy and enough shares to support your offer to sell. 
Otherwise, you will receive a reminder and your offer will not go through. All offers are listed in the 
order book. Your own offers are in blue, and other people’s offers are in black. The offers are ordered 
according to prices, with the best offer at the top. For your convenience, the best offer posted by others 
is highlighted. The following rules will apply when you post or accept offers to buy and offers to sell. 

• When you post an offer to buy, the price has to be lower than the lowest offer to sell in the order 
book. (Otherwise, you can simply accept the lowest offer to sell.) 
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• When you post an offer to sell, the price has to be higher than the highest offer to buy in the 
order book. (Otherwise, you can simply accept the highest offer to buy.) 

• When you accept an offer by others, the offer has to be the best offer available. That is, when 
you accept an offer to buy, it has to be the highest offer to buy. When you accept an offer to 
sell, it has to be the lowest offer to sell. 

• You cannot accept your own offers.  
Trade is realized whenever an offer is accepted. If you would like to accept the highlighted offer, enter 
a number in the field “quantity” located at the bottom of the screen, then click on the “Sell” or “Buy” 
button. 
Your share and cash inventories will be updated to reflect your trading activities. If you buy shares, 
your shares increase by the quantity traded, and your cash is diminished by the amount = price*quantity. 
The reverse happens if you sell shares. 
 
Number of Markets 
After a market ends, depending on the time remaining, the experimenter will inform you whether or 
not a new market will start. If yes, you repeat the same procedure: your endowment of shares and cash 
will be reset, and the market will consist of a trading stage and a dividend realization stage as described 
above. If there is no new market open, you will be informed of your total earnings in this part of the 
experiment. 
 
Calculate Your Earnings 
Your earnings (in EM) in each market are the sum of two parts: 
(1) cash at the end of the trading stage 
(2) the number of shares at the end of the trading stage *the number of dividend payments * 5 

 
Your total earnings in this part of the experiment are the summation of earnings from all markets, which 
will be converted into Canadian dollars at a rate of 500 EM = $1. 
 
Review of Important Information 

• There will be several markets, each consisting of a trading stage and a dividend realization stage. 
You start with the same endowment of cash and shares in each new market. 

• The trading stage consists of 10 trading rounds. Each trading round lasts for 2 minutes. 
• In each market, during the trading stage, your share and cash holdings at the end of a trading round 

will be carried over to the next trading round.  
• In the dividend realization stage, you collect dividends for the shares you own at the end of the 

trading stage for an indefinite number of times. After each dividend payment, there will be more 
dividends with a chance of 90%, and no further dividends with a chance of 10%. On average, you 
will receive 10 dividend payments, or 50 EM, for each share you own at the end of the trading 
stage. 

• Your earnings in a market will be determined by your cash holdings at the end of the trading stage 
plus the total dividends received during the dividend realization stage. 
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Quiz 
After you have read the instructions, please answer the following quiz questions. The experimenter will 
check whether your answers are correct. If you answer any question incorrectly, the experimenter will 
discuss with you why your answer is wrong and explain what the correct answer is. The purpose of this 
quiz is to ensure that you fully understand the instructions prior to the start of the experiment.  
6. For each share you hold at the end of the trading stage, you receive 

a. nothing. 
b. on average 10 dividend payments. 
c. exactly 10 dividend payments. 
d. exactly 50 EM of dividend payments. 

7. In each new market, you 
a. start with the same endowment of shares and cash. 
b. inherit cash and shares from the previous market. 

8. Suppose we are in the trading stage, trading round 5 of market 1, you 
a. start with the same endowment of shares and cash as in round 1. 
b. inherit cash and shares from the previous trading round. 

9. Suppose we are in the dividend realization stage of a market. There have been 15 dividend payments 
already. The chance that you receive more dividend payments is 

a. 90%. 
b. lower than 90%. 
c. higher than 90%. 
d. none of the above. 

10. Suppose at the end of the trading stage of a market, you have 20 shares and 4,500 EM in cash. In 
the dividend realization stage, there are 6 dividend payments. Your earning from this market is 
________ EM.  
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Part II Instructions (BRT-2) 
 
General Information 
This part of the experiment consists of several asset markets, in which 10 participants (including 
yourself) trade stocks of a fictitious company. 
 
Market Description  
At the beginning of each market, half of the participants are endowed with 20 shares and 3,000 units 
of cash measured in experimental money (EM), and the other half participants are endowed with 60 
shares and 1,000 EM of cash.  
Each market consists of two stages: a trading stage and a dividend realization stage. 
 
Trading Stage 
The trading stage consists of an indefinite number of rounds. Each round lasts for 2 minutes, during 
which you can sell and/or buy shares using an interface described later. At the end of each trading round 
and before the trading stage ends, your shares and cash will be carried over to the next trading round. 
The length of the trading stage is determined by the following rules. At the end of each round, the 
computer will draw a random number between 1 and 100 to determine whether the trading stage will 
continue or not. Specifically, if the computer draws a random number between 1 and 90 (inclusively), 
the trading stage will continue; otherwise, if the random number is between 91 and 100 (inclusively), 
then the trading stage ends. Therefore, after each round, the trading stage will continue with a chance 
of 90% and end with a chance of 10%. 
However, in the first 10 rounds, called a block, you will trade without being informed of the realization 
of the random draws, even if a random number greater than 90 has been drawn. At the end of round 10, 
you will be shown the realization of the random draws for all 10 rounds in the block and learn whether 
or not the trading stage has actually ended within the block. If the trading stage has ended within the 
block of the first 10 rounds, the final round of the trading stage will be the first round in which the 
realization of the random draw exceeds 90, and your decisions after the final round will be ignored. If 
the trading stage has not ended within the block, then it continues to round 11. From round 11 on, you 
will be informed of the realization of the random draw at the end of each round. The final round of the 
trading stage is reached once the random draw exceeds 90. 
 
Dividend Realization Stage 
After the trading stage finishes, the dividend realization stage starts, where you collect dividends for 
the shares you own at the end of the final round of the trading stage. All shares receive an indefinite 
number of 5-EM dividend payments; the number of payments is determined as follows. You receive 
one dividend payment for sure. After each dividend payment, the computer will draw a random number 
between 1 and 100: if the number is greater than 90, then there will be no further dividend payments; 
otherwise, there will be a new dividend payment followed by another random draw. The number of 
dividend payments can potentially run from 1 to infinity. On average, you will receive 10 dividend 
payments, or 50 EM, for each share you own at the end of the final round of the trading stage. In the 
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dividend payment stage, you no longer make decisions: the computer will decide how many dividends 
you receive, and you simply watch dividends accrue. 
 
Trading Interface 
In each trading round, you will trade using an interface similar to figure 1 (you will have the opportunity 
to practice with the interface for 3 minutes before the formal experiment starts). 
Trade is organized as a double auction: all traders can submit offers to buy and offers to sell, and accept 
others’ offers.  
Each offer has two parts, the price and quantity. The price quote can be any integer from 1 to a 
maximum of 500 EM. The quantity is the number of shares you intend to trade at this price. You must 
have enough cash to support your offer to buy and enough shares to support your offer to sell. 
Otherwise, you will receive a reminder and your offer will not go through. All offers are listed in the 
order book. Your own offers are in blue, and other people’s offers are in black. The offers are ordered 
according to prices, with the best offer at the top. For your convenience, the best offer posted by others 
is highlighted. The following rules will apply when you post or accept offers to buy and offers to sell. 

• When you post an offer to buy, the price has to be lower than the lowest offer to sell in the order 
book. (Otherwise, you can simply accept the lowest offer to sell.) 

• When you post an offer to sell, the price has to be higher than the highest offer to buy in the 
order book. (Otherwise, you can simply accept the highest offer to buy.) 

• When you accept an offer by others, the offer has to be the best offer available. That is, when 
you accept an offer to buy, it has to be the highest offer to buy. When you accept an offer to 
sell, it has to be the lowest offer to sell. 

• You cannot accept your own offers.  
Trade is realized whenever an offer is accepted. If you would like to accept the highlighted offer, enter 
a number in the field “quantity” located at the bottom of the screen, then click on the “Sell” or “Buy” 
button. 
Your share and cash inventories will be updated to reflect your trading activities. If you buy shares, 
your shares increase by the quantity traded, and your cash is diminished by the amount = price*quantity. 
The reverse happens if you sell shares. 
 
Number of Markets 
After a market ends, depending on the time remaining, the experimenter will inform you whether or 
not a new market will start. If yes, you repeat the same procedure: your endowment of shares and cash 
will be reset, and the market will consist of a trading stage and a dividend realization stage as described 
above. If there is no new market open, you will be informed of your total earnings in this part of the 
experiment. 
 
 
Calculate Your Earnings 
Your earnings (in EM) in each market are the sum of two parts: 
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(3) cash at the end of the final round of the trading stage 
(4) the number of shares at the end of the final round of the trading stage * the number of dividend 

payments in the dividend realization stage * 5 
 

Your total earnings in this part of the experiment are the summation of earnings from all markets, which 
will be converted into Canadian dollars at a rate of 500 EM = $1. 
 
Review of Important Information 

• There will be several markets, each consisting of a trading stage and a dividend realization stage. 
You start with the same endowment of cash and shares in each new market. 

• The trading stage consists of an indefinite number of trading rounds. In any trading round, the 
trading stage may continue with probability 0.9 and end with probability 0.1. Therefore, on average 
the length of the trading stage is 10 rounds.  

• Within the block of the first 10 rounds of the trading stage of a market, you will not be informed of 
whether the trading stage has ended or not. 

• Each trading round lasts for 2 minutes. 
• In each market, during the trading stage, your share and cash holdings at the end of a trading round 

will be carried over to the next trading round. 
• Your earnings in a market will be determined by your cash holdings at the end of the final round 

of the trading stage plus the total dividends received during the dividend realization stage; the final 
round could be within the block or outside of the block. 

• In the dividend realization stage, you collect dividends for the shares you own at the end of the final 
round of the trading stage for an indefinite number of times. After each dividend payment, there 
will be more dividends with a chance of 90%, and no further dividends with a chance of 10%. On 
average, you will receive 10 dividend payments, or 50 EM, for each share you own at the end of 
the final round of the trading stage. 

 
Quiz 
After you have read the instructions, please answer the following quiz questions. The experimenter will 
check whether your answers are correct. If you answer any question incorrectly, the experimenter will 
discuss with you why your answer is wrong and explain what the correct answer is. The purpose of this 
quiz is to ensure that you fully understand the instructions prior to the start of the experiment.  
11. Suppose in the trading stage of a market, after the block of 10 rounds finishes, the random draws 

are revealed as: 

round 1 2 3 4 5 6 7 8 9 10 

Random draw 52 3 86 74 21 8 93 5 24 12 

The final round of the trading stage is ______ 
12. Suppose in the trading stage of a market, the random draw sequence is 

round 1 2 3 4 5 6 7 8 9 10 11 12 
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Random draw 41 9 88 41 31 29 33 5 24 2 14 96 

The final round of the market is ______ 
13. Suppose the trading stage of a market has lasted for 15 rounds already. The chance that the trading 

stage continues to a new round is 
E. 90% 
F. Lower than 90% 
G. Higher than 9% 
H. None of the above  

14. For each share you hold at the end of the final round of the trading stage, you receive 
a. nothing. 
b. on average 10 dividend payments. 
c. exactly 10 dividend payments. 
d. exactly 50 EM of dividend payments. 

15. In each new market, you 
a. start with the same endowment of shares and cash. 
b. inherit cash and shares from the previous market. 

16. Suppose we are in the trading stage, trading round 5 of market 1, you 
a. start with the same endowment of shares and cash as in round 1. 
b. inherit cash and shares from the previous trading round. 

17. Suppose we are in the dividend realization stage of a market. There have been 15 dividend payments 
already. The chance that you receive more dividend payments is 

a. 90%. 
b. lower than 90%. 
c. higher than 90%. 
d. none of the above. 

18. Suppose at the end of the final round of the trading stage of a market, you have 20 shares and 4,500 
EM in cash. In the dividend realization stage, there are 6 dividend payments. Your earning from 
this market is ________ EM.  

 
 
 



Internet Appendix C: Probability Weighting

We first provide a short description about probability weighting. Suppose agents face a risky

prospect with n outcomes x1 < x2 < xi < ... < xn, with probability p1, p2, ..., pi, ..., pn. Probabil-

ity weighting transforms the original probability pi to wi through

πi = w

(
n∑
j=i

pj

)
− w

(
n∑

j=i+1

pj

)
= w (qi)− w (qt+1) ,

and one often-used functional form for w(·) is

w(q) =
qγ

[qγ + (1− q)γ]1/γ .

Note the following:

1. The function w(·) is applied to the cumulative density function, where qi =
n∑
j=i

pj is the

cumulative probability of getting an outcome weakly better than xi, i.e., Pr(x ≥ xi), and

qi+1 =
n∑

j=i+1

pj is the the probability of outcomes strictly better than xi. The transformed

density probability πi is derived from the transformed cumulative probabilities.

2. The transformed probabilities πi satisfy

n∑
i=1

πi = 1.

3. We say event i is overweighted if πi > pi, and underweighted if πi < pi. Note that since

πi
pi

=
w (qi)− w (qi+1)

pi
,

whether event i is over/under weighted depends on the slope of the line that connects the

two points (qi, w(qi)) and (qi+1, w(qi+1)). If there are many events, the the slope of this line

can be appoximated by the slope of the function w at point qi. Note that qi is cumulative

probability counting events better than event i (not counting downward as in convention).

Roughly speaking, event i is overweighted if w′(qi) > 1 and underweighted if w′(qi) < 1.

Next we describe how to apply probability weighting to our experimental treatments. In treat-

ment A, at the end of each period after the dividend payment of 5 points, there is a random draw

that determines whether the market will continue. With probability δ = 0.9, the market continues,

and with probability 1− δ = 0.1, the market ends. So from a subject’s point of view, there are two

outcomes, the bad outcome has a small probability of 0.1.

1



outcome i prob (pi)

1: market ends (bad) p1 = 1− δ = 0.1

2: market continues (good) p2 = δ = 0.9

We can calculate transformed probabilities πi as follows:

π1 = w (1)− w (0.9) = 1− w(0.9) > 0.1

π2 = w(0.9)− w(0) = w(0.9) < 0.1

so that the bad outcome is overweighted and the good outcome is underweighted.

In treatments B and C, subjects trade the asset first (for a fixed 10 periods in treatment B and

a random number of periods in treatment C), and then learn about the dividend realizations of the

underlying asset in a separate stage. In the dividend realization stage, subjects get one dividend

for sure, after that, there is a random draw, with probability 0.1, dividend payment stops, and with

probability 0.9, dividend payment continues. The asset can be viewed as the following lottery:

outcome i (i.e., i dividends) with probability pi = δi−1(1− δ) for i = 1, 2, ...∞.

outcome i

d

2d

...

id

...

prob (pi)

1− δ = 0.1

δ(1− δ) = 0.09

...

δt−1(1− δ)
...

Define D as the random variable of accumulated dividends. According to the probability

weighting function, the weighted probability of receiving i dividends is

πi = π(id)

= w(Pr(D ≥ id))− w(Pr(D > id))

= w(qi)− w(qi+1)

= w(δi−1)− w(δi)

For examples,

π1 = π(d) = w (1)− w (0.9) = 1− w(0.9),

π2 = w(0.9)− w(0.81).

Note that π(d) for treatments B and C is the same as π(bad) in treatment A.

2



As mentioned earlier, for a prospect involving many outcomes, whether an event i is over/under

weighted can be approximated by whether w(qi) > 1. In the graph below, we draw the function

w(q) using γ = 0.71 ad the 450 line (which corresponds to γ = 1 and leads to the objective

probabilities per se). We solve w′(q) = 1 which has two solutions q= 0.11 and q̄ = 0.835.

Roughly speaking, events with qi lying within the interval [q,q̄] are underweighted, while those

with qi lying outside the interval are overweighted. In the case of treatments B and C, extremely

good and bad outcomes are overweighted, while the outcomes in the middle are underweighted.

With γ = 0.71, we know d and 2d are overweighted, and events with more than 22 dividends

are also overweighted. The rest are underweighted. The solution 22 is acquired from solving the

equation qi = δi−1 =q or ı̄ =
log q

log δ
+ 1.

The figure below shows the effect of probability weighting using γ = 0.71, plotting the trans-

formed probabilities π against the original probabilities (the dotted line is the 45 degree line). For

treatment A, after probability weighting, the bad outcome is overweighted, and the good outcome

is underweighted. For treatments B and C, the worst two outcomes and very good outcomes are

overweighted, and the rest outcomes are underweighted.
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