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Evidence from Local Projections 
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Abstract/Résumé 

We shed new light on the short-term dynamic effects of cyclones on local economic growth in 
India. We proxy local GDP growth with night-time light intensity data and construct a cyclone 
index that varies across months and districts depending on windspeed exposures. Using local 
projections on highly granular data for the period 1993M1-2011M12, we find that yearly 
estimations hide large short-term differential impacts and that the negative impact of cyclones 
is the largest between 4 and 8 months after the event. 

Nous apportons un nouvel éclairage sur les effets dynamiques à court terme des cyclones sur la 
croissance économique locale en Inde. Nous substituons la croissance du PIB local par des 
données d'intensité lumineuse nocturne et construisons un indice cyclonique qui varie selon les 
mois et les districts en fonction de l'exposition à la vitesse du vent. En utilisant des projections 
locales sur des données très détaillées pour la période 1993M1-2011M12, nous constatons que 
les estimations annuelles cachent d'importants impacts différentiels à court terme et que 
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1 Introduction

Cyclones have increased in frequency and intensity over the past decades, causing damages

that exceed 200 billion USD yearly (World Meteorological Organization).1 Hence, enhancing

risk reduction and resilience is of primary importance and requires reliable estimates of the

economic impacts of cyclones.

The aim of this paper is to produce precise estimates of the short-term dynamic impacts

of cyclones on local economic growth in India. We contribute to the existing literature by

performing the analysis at a highly granular time and geographical level (month and district)

and, foremost, using local projections. This method, first proposed by Jordà (2005), is based

on sequential regressions of the endogenous variable shifted several steps ahead. Our results

show that the impact of a cyclone becomes negative around 4 months after the event, reaches

its maximum after 6 months and gradually vanishes after 8 months, implying that disaster

relief policies should focus on the first year. Our estimates are robust to a series of robustness

checks.

We proxy GDP growth at the local level using satellite night-light data, which are avail-

able at a high frequency and level of spatial disaggregation. Despite the fact that the relation-

ship between night lights and consumption may be non-linear, there is substantial evidence of

a high correlation between luminosity and GDP (e.g. Elliott et al., 2015; Bertinelli & Strobl,

2013; Chen & Nordhaus, 2011; Henderson et al., 2011). To assess the economic growth

impacts of cyclones we construct a measure of cyclone exposure that varies by district and

month, and which captures windspeed intensities at each district’s centroid. Importantly

for identification, conditional on location fixed effects, cyclones’ strikes are exogenous to

economic activity (see Pielke et al., 2008).2 Finally, we focus on India which is one of the

countries most affected by cyclones.3

A vast empirical literature has examined the effects of natural disasters on long-run ag-

gregate economic growth, producing contrasting evidence.4 Cyclones are inherently local

phenomena; damages are localized and depend on population density and firms’ concentra-

tion. Looking at aggregate economic outcomes at the national level might be misleading.

1“Natural Disasters Could Cost 20 Percent More By 2040 Due to Climate
Change”, E360 digest 27, 2020, Yale University. https://e360.yale.edu/digest/

natural-disasters-could-cost-20-percent-more-by-2040-due-to-climate-change
2Location fixed effects (in our case, districts fixed effects) account for the fact that some regions (e.g.

coastal areas) may be more prone to cyclones. Yet, even if some areas are more likely to be hit, the exact
timing of a strike, path and strength of a cyclone are unpredictable.

3Approximately 10% of the world’s cyclones strike India, affecting more than 370 million people yearly.
See https://ncrmp.gov.in/cyclones-their-impact-in-india/

4A survey of works discussing the effects of natural disasters on the long-run dynamics of GDP per capita
can be found in Hsiang & Jina (2014).
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Yet, only few studies have examined the impact of tropical storms on economic growth at

the local level. Hsiang (2010) is one of the precursors of using wind-field histories to proxy

hurricane exposures that vary across locations within region and over time. Consistent with

our results, Hsiang (2010) finds that, in 28 Carribean-basin countries, tropical cyclones are

associated with temporary drops in output. These losses are driven by the agricultural and

tourism sectors, while the construction industry expands as a result of rebuilding activities.

Bertinelli & Strobl (2013) also look at the Carribean and find that local effects are short-lived

and twice as large as those predicted by an aggregate analysis. Elliott et al. (2015) instead

focus on coastal China with similar results. Our paper differs from these along two lines, the

country of study and the methodology.

2 Data

2.1 Night Lights

We measure local economic growth using night-light data from the Defense Meteorological

Satellite Program (DMSP).5 The data are collected daily at the pixel level and consist in

a number between 0 (no light output) and 63 (maximum light output). Night light data

at the daily level are characterized by a large number of missing data from instances when

satellites are unable to capture the light intensity, i.e. because of cloud coverage.

The raster format of the data makes it straightforward to aggregate them at a higher

temporal and/or geographical level in order to match them to other economic variables.

For our purpose, we aggregate night-light data at the district and month level. Since the

geographical definition of many Indian districts changed over time, we focus only on districts

that did not change their borders during the period of analysis. This reduces the original

sample of 641 (overlapping) districts to 275 units.6 We use moving averages (MA) of night-

lights, over 3, 5 and 7 months, in order to smooth monthly random variations (e.g. due to

clouds).

2.2 District Exposure to Tropical Storms

A tropical storm is a powerful fast-rotating storm characterized by a still low-pressure center

and wind speeds that typically exceed 33 knots. To measure district exposure to storms in

5https://www.ospo.noaa.gov/Operations/DMSP/index.html
6Note that a two-samples test for the equality of the means shows that the means of the dependent

variable and the cyclone index are statistically indistinguishable in both the selected sample and the sample
of excluded districts. This suggests that in terms of observables the districts we exclude from the analysis
are similar to the districts we include in the sample. Test results are available upon request.
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a given month we construct a continuous measure, Hdt, which captures the force that winds

exert on built structures:

Hdt =
∑
h∈H

xdh, (1)

where h denotes a storm and H is the set of storms affecting district d in month t. Impor-

tantly, since cyclones can have effects hundreds of kilometers away from their track, districts

may be impacted even if they do not directly lie on the track. As we explain below, we use

wind field models to estimate winds in locations further away from the track and consider

districts as being treated if the winds to which they are exposed exceed 33 knots.

The variable xdh measures district d exposure to cyclone h and is computed using a

quadratic function of damages, as e.g. in Yang (2008) and Pelli & Tschopp (2017):7

xdh =
(wdh − 33)2

(wmax − 33)2
if wdh ≥ 33, (2)

where wdh is the maximum wind speed (in knots) observed at district d’s centroid during

cyclone h. To compute wdh we use the values given by storms’ best tracks from the National

Oceanic and Atmospheric Administration (NOAA) Tropical Prediction Center and feed them

to Deppermann (1947) wind field model, as we explain in more details in Appendix A. wmax

represents the maximum wind speed in the sample and the number 33 corresponds to the

Saffir-Simpson scale threshold above which winds qualify as tropical storm. This threshold

is reasonable for developing countries (Pelli et al., 2022).8 xdh ∈ (0, 1), with 0 indicating

the absence of winds above the threshold and 1 indicating that the district was exposed to

maximum wind speeds. By construction Hdt ∈ (0,
∑

H).

In our sample, 493 observations (around 8% of the dataset) have positive exposures to

tropical storms. The top panels of Figure 1 show box plots of district monthly night-light

growth (left) and the cyclone exposure index for positive exposures (right), by state for

the period 1993M1-2011M12. The bottom panels map the same variables for the month of

October 1999. The Figure indicates that there is substantial variation in both variables over

time and across districts.

7While quadratic forms have been used in previous works, other studies such as Emanuel (2005) argue
that the dissipation of wind kinetic energy is theoretically described by a cubic function of wind velocity. In
Appendix C we show results based on a cubic damage function.

8In Appendix D, we compute winds using the HURRECON wind field model as an alternative to Dep-
permann (1947). We also propose different specifications of the index, moving the threshold to higher levels.
Our results are broadly robust to such changes.

4



Figure 1: Cyclone Exposure Index

Note: Top Panel: Plots of district monthly night-light growth (left) and the cyclone exposure index for positive
exposures (right) over the period 1993M1-2011M12, by state. The dark bars in the middle of the blue rectangles
represent the median. The left (right) of the box is the first (third) quartile. The end of the left (right) whisker
is the 1st percentile (99th percentile). Outliers are excluded. Bottom panel: The maps show night-light growth
(left) and cyclone exposure (right), for October 1999. Labels in brackets are percentiles of the distribution of
each variable. We focus only on the 275 districts which did not change their boundaries over time.

3 Model

Local projections allow us to draw Impulse Response Functions (IRFs) for the change in

night-light intensity for a number of months following the storm without specifying an un-

derlying multivariate dynamic system. Local projections are relatively new and were adopted

only recently by the environmental economics literature to study the impact of natural dis-

asters (see e.g. Barattieri et al., 2021; Roth Tran & Wilson, 2021). The main idea and

radical innovation consists in estimating local projections at each period of interest rather

than extrapolating at increasingly distant horizons from a given set of coefficients.

We run a series of regressions of the endogenous variable shifted several steps ahead:

Growthd,t+k = βk0 +βk1Hdt+β
k
2Hd,t−1+βk3Hnt+β

k
4Hn,t−1+βk5Growthn,t+γd+δst+ud,t+k, (3)
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where Growthd,t+k, the cumulative growth between t−1 and t+k in district d, is measured by

the difference in the log of night lights, smoothed using MAs. Hdt captures district exposure

to storms at time t, and Hd,t−1 is its one-month lag. Hnt measures storms’ exposure in the

neighboring district n, and Hn,t−1 is its one-month lagged value. Growthn,t denotes neighbor

growth between period t−1 and t. γd is a set of district fixed effects capturing any underlying

and time-invariant characteristics of a district that could affect economic growth and δst are

state-year fixed effects that capture state-wide time-varying characteristics, such as changes

in the ruling political party, the introduction of new policies or possible changes in satellite

readings. ud,t+k is the error term.9

4 Results and Comments

In this Section we plot the estimated coefficients β̂k1 at the different time horizons k, nor-

malized for the average storm exposure in our dataset, i.e. the direct impact of a storm in

district d.10, 11

Baseline results are reported in Figure 2. The blue line represents the local projection

while the shaded area is the 95% confidence interval. Panel A shows the response to the av-

erage storm exposure in the sample (0.042) on the growth of (raw) night-time light intensity.

The remainder of the Figure shows results obtained using MAs of night-time light intensity

(MA of order 3, 5 and 7 for Panels B, C and D, respectively).

As expected, Panel A displays several up-and-down jumps, likely due to the uneven

nature of night-light data. As the order of the moving average increases, the curve becomes

smoother and exhibits fewer abrupt variations. Local projections based on MA of order 3

and 5 yield similar results, whereas the last panel (MA of order 7) is most likely prone to

over-smoothing.

9Neighbor districts are determined by using a contiguity matrix. If one district has more than one
neighbor, Hnt is defined as the maximum cyclone exposure across neighbor districts and neighbor growth by
the average across neighbors. Standard errors are corrected to account for spatial correlations in the error
terms. MAs generate time dependence and, therefore, create a problem of autocorrelation of the residuals.
We deal with this issue by using the robust standard errors proposed by Driscoll & Kraay (1998) and Newey
& West (1987).

10We may also plot the total impact of a storm, i.e. the direct impact plus the indirect impact from a
neighboring storm. However, the coefficients βk3 are hardly ever statistically significant and quantitatively
small (less than 1% of the direct impact of a cyclone).

11In Appendix B we run a monthly specification with leads of the cyclone exposure measure, district and
state-year fixed effects. Results show that the leads have no impact on night-light growth, which supports
the assumption of conditional independence of cyclones.
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Figure 2: Baseline Results

Note: Results of the local projections (direct effect) on a 12-month time horizon for the average cyclone exposure,
allowing for spatially autocorrelated errors and controlling for both the contemporaneous and lag of the neighbor
cyclone exposure, as well as district and state-year FE. Top 1% of night lights has been trimmed. 95% confidence
intervals.

Figure 2 suggests that cyclones have a positive, yet temporary, effect on the growth

of night lights in the first two-three months after the event. These positive results could

be explained by the correlation between cyclones and cloud cover. This correlation might

affect the way satellites collect night-light data and thus impact the results in the first

month (maybe also the second one).12 This positive effect is also consistent with emergency

assistance, immediate disaster relief and rebuilding. The negative impact of storms on night-

light growth becomes apparent around 4 months after the event, peaks at 6 months and

essentially vanishes after 8 months (IRFs produced from local projections automatically show

cumulative effects). Figure C.1 in Appendix C shows that using a cubic damage function

yields similar patterns.13

12Whether the correlation between cloud coverage and night lights is positive or negative depends on the
timing of the strike and the moment satellites collect data.

13In Appendix D we present robustness results based on alternative specifications of the cyclone exposure
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It is important to note that, when the same data are used to generate yearly impacts, the

size of the baseline estimate is comparable with Strobl (2011) who finds that the average hur-

ricane causes growth rates to fall by 0.45 percentage points in US coastal counties.14 When

we move to monthly data, the negative effects for an average exposure are quantitatively

larger; at around 6 months after the storm, monthly growth drops by 20 (Panel C) to 30

(Panel B) percent. Note that, although night-time light intensity and GDP are highly posi-

tively correlated, recent evidence by Bluhm & McCord (2022) suggests that the relationship

between night lights and GDP is likely non-linear, for instance to change across different

levels of industrialization, population density or average income across the regions under

scrutiny. Hence, while our results definitely highlight that cyclones have rather large nega-

tive impacts on short-term GDP growth, a 20-30 percent drop in the growth of night-light

intensity does not necessarily mirrors into the exact same fall in GDP growth.

The finding that the negative impact of a disaster on economic growth is short-lived is

in line with other studies such as Cavallo et al. (2013), Bertinelli & Strobl (2013), Hsiang

(2010), Noy (2009), and Raddatz (2007). We add to the debate about the economic impact

of natural disasters by applying the method of local projections proposed by Jordà (2005).

This method provides us with a clear visualization of the timing and the extent of the damage

caused by storms on the growth of night light intensity at the monthly level. From a policy

perspective, our results highlight that relief policies should be concentrated in the first year

after the disaster. Moreover, our results can also be helpful for the stream of literature

currently trying to provide reliable estimates of the likely future costs of climate change.

Such damage estimates are necessary in order to evaluate various climate-change mitigation

policies.
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index. First, in equation (2) we replace the 33 knots threshold by higher values, thereby focusing on more
violent cyclones. Then, we propose to use an alternative windfield model, the HURRECON model, to
compute maximum wind speeds (wdh in equation (2)).

14Results from yearly regressions are presented in Appendix E.
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Supplementary Material

A District Wind Exposure

In order to compute the maximum windspeed affecting each district during each cyclone,

wdh, we use storms’ best tracks from the National Oceanic and Atmospheric Administration

(NOAA) Tropical Prediction Center. These tracks provide information on the path of the

cyclone at six-hour intervals and include coordinates and windspeed records for the eye of

the cyclone.

Using this information, we linearly interpolate storms’ best tracks at every kilometer

and obtain a series of landmarks (kh). For each district within the vortex that encircles

landmark k, we compute the corresponding wind speed wdkh using the Rankine-combined

formula for vortices (Deppermann, 1947). The formula accounts for the fact that winds grow

exponentially up to a maximum and fall sharply thereafter:

wdkh = ekh

(
Ddkh

26, 9978

)
if Ddkh ≤ 26, 9978,

wdkh = ekh

(
26, 9978

Ddkh

)0.5

if Ddkh > 26, 9978,

where Ddkh denotes distance between landmark kh and district d’s centroid, ekh is wind speed

at landmark kh and 26.9978 is Simpson and Riehl radius of maximum wind speed (in nautical

miles).15 Finally, we retain wdh = max{wdkh}.

B Monthly Specification with Leads

In this subsection we run a monthly specification with leads of the cyclone exposure measure.

The results, exposed in Table B.1, show that, conditional on location fixed effects, the

leads have no impact on night-light growth, which supports the assumption of conditional

independence of cyclones. Specifically, we run the following specification:

Growthd,t = β0 + β1Growthd,t−1 + β2Hd,t+1 + β3Hd,t+2 + γd + δst + ud,t, (B.1)

where t denotes a month and Growthd,t is the monthly growth rate of night lights between

t − 1 and t. Hd,t+1 and Hd,t+2 capture district exposure to storms at time t + 1 and t + 2,

15The radius of maximum wind speed is typically computed using the difference in barometric pressure
between the center and the outskirts of the storm. Due to the large number of missing values for barometric
pressure in storms’ best tracks, we follow Simpson & Riehl (1981) and Hsu & Zhongde (1998) and apply the
average radius of maximum windspeed to all cyclones.
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respectively. γd is a set of district fixed effects and δst are state-year fixed effects. ud,t is the

error term.

Table B.1: Monthly Specification with Leads

One lead Two leads

(1) (2)

Growtht−1 -0.380∗∗∗ -0.376∗∗∗

(-36.23) (-31.10)

Cyclonet+1 1.232 1.417
(0.37) (0.41)

Cyclonet+2 -7.426
(-1.24)

Observations 12159 11246

Note: t statistics in parentheses. ∗ p<0.10, ∗∗

p<0.05, ∗∗∗ p<0.01. All specifications include dis-
trict FE and state-year FE. Both columns show re-
sults based on the baseline exposure index.

C Cubic Damage Function

In this section, we replace the square in equation (2) with a cube (see Figure C.1). Following

Emanuel (2005), this formulation assumes a cubic relationship between the cyclone’s energy

and the force exerted on physical structures. Results remain similar to those obtained with

a quadratic damage function.
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Figure C.1: Cubic Damage Function

Note: Cubic damage function of cyclone exposure. Results of the local projections (direct effect) on a 12-month
time horizon for the average cyclone exposure, allowing for spatially autocorrelated errors and controlling for
both the contemporaneous and lag of the neighbor cyclone exposure, as well as district and state-year FE. Top
1% of night lights has been trimmed. 95% confidence intervals.

D Alternative Definitions of Cyclone Exposure

In this section we test the robustness of our main results using alternative definitions of the

index of district exposure to cyclones. We focus on our preferred specification of night-light

intensity growth; MA of order 3 and 5, and present results with 95% confidence intervals.

While in India a threshold of 33 knots is high enough for winds to cause serious damages

on infrastructures (e.g. Pelli et al., 2022), studies in the US have used higher thresholds (e.g.

Emanuel, 2011). Accordingly, we first replace the 33 knots threshold by 50 (Figure D.1a) and

64 knots (Figure D.1b). Second, instead of using the traditional Rankine-combined formula

for vortices, we compute wind speed at each landmark (wdkh) using the HURRECON model

(see Boose et al., 2004, for details on the formula and parametrization). Results based on

this alternative model are shown in Figure D.1c. Overall, these alternative specifications of

13



the exposure index yield similar results and do not alter the main conclusions drawn using

our baseline cyclone index.

Figure D.1: Alternative Specifications of Cyclone Exposure

(a) Increasing the threshold to 50 knots

(b) Increasing the threshold to 64 knots

(c) Computing windspeed using the HURRECON model

Note: Results of the local projections (direct effect) on a 12-month time
horizon for the average cyclone exposure, allowing for spatially autocor-
related errors and controlling for both the contemporaneous and lag of
the neighbor cyclone exposure, as well as district and state-year FE. Top
1% of night lights has been trimmed. 95% confidence intervals.
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E Yearly Results

In this section we perform yearly regressions, as it is done for instance in Strobl (2011) for

the Caribbean. The goal of this exercise is twofold. First, we show that our data, when

annualized, produce results that are well aligned with the existing literature. This reassures

us of the quality of the data. Second, the annual specifications allow us to highlight that

yearly estimates hide rich short-term adjustment patterns which we specifically study using

monthly local projections.

We run the following yearly specification:

Growthdτ = β0 + Hβ + Hnβn + Gβ̃ + γd + δsτ + udτ ,

where H (Hn) are 2 × 1 vectors containing the indices of exposure to storm of district d

(and its neighboring district n) in years τ and τ − 1. The 3× 1 vector G includes the yearly

growth in night-light intensity in both district d and the neighbor district n, as well as the

lag of the neighbor’s growth. β, βn and β̃ are coefficients’ vectors. Finally, γd and δsτ are

district and state-year fixed effects, respectively, and udτ is the error term. Standard errors

are corrected to account for spatial correlations in the error terms.

Results are presented in Table E.1. The first column presents estimates obtained using

our baseline exposure index. The rest of the Table shows results based on our alternative

definitions of the index, as described in Section D of the Appendix. Figures in parenthesis

are t-statistics.
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Table E.1: Yearly Results

Baseline Cubic 50 knots 64 knots HURRECON

(1) (2) (3) (4) (5)

Cyclone -0.338∗∗ -0.283 -0.314∗ -0.266 -0.386∗∗

(-2.00) (-1.58) (-1.65) (-1.54) (-2.47)
Cycloneτ−1 0.160 0.070 0.095 0.044 0.165∗

(1.27) (0.74) (0.91) (0.58) (1.86)
Neighbor Cyclone 0.015∗∗ 0.004 0.009 0.008 0.005

(2.10) (0.50) (0.65) (0.42) (0.54)
Neighbor Cycloneτ−1 -0.004 0.010 0.018 0.029∗ 0.012

(-0.50) (1.25) (1.29) (1.75) (1.38)
Growthτ−1 -0.347∗∗∗ -0.348∗∗∗ -0.348∗∗∗ -0.348∗∗∗ -0.347∗∗∗

(-14.23) (-14.30) (-14.27) (-14.29) (-14.26)
Neighbor Growth -0.028 -0.027 -0.027 -0.027 -0.028

(-1.31) (-1.29) (-1.27) (-1.29) (-1.29)
Neighbor Growthτ−1 0.034 0.035 0.035 0.035 0.035

(1.55) (1.59) (1.61) (1.60) (1.62)
Observations 4628 4628 4628 4628 4628

Note: t statistics in parentheses. ∗ p<0.10, ∗∗ p<0.05, ∗∗∗ p<0.01. All specifications
include district FE and state-year FE. Standard errors corrected to account for spatial
correlations in the error terms. Column (1) shows results based on the baseline
exposure index. In column (2), the index is based on a cubic functional form. In
columns (3) and (4) the index is computed with higher thresholds, 50 and 64 knots,
respectively. The exposure index in the last column relies on the HURRECON model.

In line with existing evidence (e.g. Raddatz, 2007; Noy, 2009; Strobl, 2011), the estimates

indicate that cyclones have a negative contemporaneous impact on economic growth. The size

of the baseline estimate is comparable with Strobl (2011) who finds that the average hurricane

causes growth rates to fall by 0.45 percentage points in US coastal counties. The estimated

coefficients on the cyclone exposure index are precisely estimated for the baseline and the

HURRECON model, and borderline statistically significant in the other models, which may

highlight the importance of zooming into short-term monthly responses of economic growth.

In fact, local projections suggest that cyclones have sizable negative effects that become

apparent 4 months past the event and disappear after 8 months. Yearly regressions are

likely to mask these short-term differential impacts and, hence, yield imprecisely estimated

coefficients. Finally, lagged cyclone exposure does not appear to impact growth, which is

consistent with both the conclusions from the local projection estimates and earlier studies

(e.g. Bertinelli & Strobl, 2013; Cavallo et al., 2013)
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