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The College Premium Rollercoaster and the Rebound of 
Lifetime Wage Growth: A Structural Analysis* 

Raquel Fonseca†, Etienne Lalé‡, François Langot§, Thepthida Sopraseuth** 
 

Abstract/Résumé 
 

In this paper, the authors develop a general equilibrium overlapping generations model with 
human capital to analyze the evolution of the wage premium associated with university 
education and lifetime earnings profiles in the United States between 1940 and 2020. The model 
incorporates choices related to schooling and on-the-job training, along with aggregate economic 
shocks and cohort-specific trends in initial skill endowments and learning abilities. The estimated 
model replicates the W-shaped pattern of the college wage premium as well as the flattening 
and subsequent steepening of earnings over the life cycle. The results show that variations in 
labor efficiency—rather than shifts in relative skill prices—are the primary drivers of these 
dynamics. The authors also highlight the significant role of declining initial skills and learning 
capacities among more recent cohorts. However, adjustments in educational attainment and 
relative wages help offset these disadvantages. Without such market mechanisms, the lifetime 
earnings gap between individuals with and without university degrees would widen substantially, 
and the college premium would double. 
 

 

Dans ce document, les auteur‧e‧s développent un modèle d’équilibre général à générations 
imbriquées avec capital humain pour analyser l’évolution de la prime salariale liée aux études 
universitaires et des profils de revenus sur l’ensemble de la vie active aux États-Unis entre 1940 
et 2020. Le modèle prend en compte les choix de scolarisation et de formation en emploi, ainsi 
que des chocs économiques d’ampleur variable et des tendances propres aux différentes 
générations quant à leurs compétences initiales et leurs capacités d’apprentissage. Le modèle 
estimé reproduit la trajectoire en « W » de la prime universitaire ainsi que la tendance des 
revenus à s’aplatir, puis à s’accentuer à nouveau au cours de la vie professionnelle. Les résultats 
montrent que ce sont les variations dans l’efficacité du travail — plutôt que dans les écarts de 
rémunération selon le niveau de compétence — qui expliquent principalement ces changements. 
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Les auteur‧e‧s soulignent également le rôle déterminant de la baisse des compétences initiales 
et des capacités d’apprentissage chez les générations récentes. Toutefois, les ajustements dans 
les niveaux de scolarité atteints et dans les salaires relatifs permettent de compenser en partie 
ces désavantages. En l’absence de ces mécanismes, les écarts de revenus sur l’ensemble de la vie 

entre travailleur‧euse‧s diplômé‧e‧s et non diplômé‧e‧s se creuseraient davantage, et la prime 
universitaire doublerait. 
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1 Introduction

This paper analyzes the evolution of the U.S. college wage premium and lifetime wage growth
since 1940 through the lens of a structural, general equilibrium OLG model of human capital.
We argue that understanding these patterns requires a nonstationary framework featuring
aggregate technology shocks, cohort-specific human capital dynamics, and market-wide in-
teractions. Our main contribution is to show that changes in the quality of workers, as
captured through human capital endowments and learning capabilities, are more central to
explaining wage inequality in the post-WWII era than changes in the relative skill prices.

Stylized facts. Our starting point is the college premium and lifetime wage-growth pro-
files, which are extensively studied in the empirical literature. We make a simple point by
contrasting the perspective afforded by cross-sectional data with that of cohort-based data:
what we observe across ages at a point in time differs from what we see within a cohort over
time. This difference motivates a nonstationary model of wage inequality.1

Our review of the college premium and lifetime wage-growth profiles also allows us to
emphasize rich dynamics in the data that we later exploit to estimate our theoretical model.
The college premium – the wage gap between college and non-college workers – follows a non-
monotonic trajectory over time: in what Autor et al. (2020) describe as a “real rollercoaster
ride”, it increased during the 1950s and 1960s, narrowed in the 1970s, and surged again
after 1980. As for lifetime wage growth, prior research has documented a flattening of
the age profile of wages for the 1940 to 1970 cohorts. We highlight a reversal: expected
lifetime wage growth became steeper for cohorts entering the labor market after 1970. This
rebound is misrepresented in cross-sectional data – underestimated for skilled workers and
overestimated for unskilled ones – presumably because such data fail to account for the
changes in the macroeconomic environment and evolving cohort characteristics. Overall, the
double dip in the college premium and the shifting profile of lifetime wage growth offer rich
ground for identifying our nonstationary model.

A model of human capital. We then develop a general equilibrium OLG model of
human capital à la Ben-Porath (1967), with three distinctive features. First, educational
attainment is endogenous. Before entering the labor market, individuals choose whether to
attend college based on their expectations of future returns, which themselves depend on

1To illustrate the difference between cross-sectional and cohort-based views of wage inequality, consider
the experience premium as measured by the wage of older workers relative to young workers. A cross-
sectional snapshot from 1940 indicates that wages are 60% higher by the end of working life relative to wages
upon entering the labor market. However, when tracking the cohort of workers who entered the labor market
in 1940 and became older workers by the 1970s, we find that wages tripled over their working lives. In a
stationary world, there would be no difference between these two measurements of the experience premium.

2



the college premium, i.e., the relative price of efficient labor units supplied by workers with
different levels of educational attainment. Second, the model is cast in a general equilibrium
framework, with a CES production function combining heterogeneous worker types. Hence
the prices of labor and thereby the college premium are endogenously determined. Third and
crucially, our model incorporates several exogenous driving forces “dragging” the economy
along a transition path. Specifically, the production function is subject to aggregate shocks
that are either skill-neutral or skill-biased (i.e., SBTC) in nature, and successive cohorts
entering the labor market may differ in terms of initial human capital endowments and
learning capabilities.

Using U.S. Census data from 1940 to 2020, we structurally estimate all model parameters,
including the time paths of aggregate and cohort-specific shocks. Through the estimation
exercise, we also recover key unobserved quantities and prices such as the supply of efficient
labor units from different educational groups and the price of labor.2

Results. We estimate an elasticity of substitution between skilled and unskilled workers
around 2 and a time path of SBTC shocks that is highly consistent with the narrative of
technological acceleration: a modest rise through the mid-century, followed by a sharp takeoff
starting in the 1980s. These estimation results are valuable in their own right: the recent
literature (reviewed below) has argued in favor of higher elasticity values, and uncovering
such timing for SBTC has typically proved difficult.

The distinction between headcounts – the number of workers in the workforce – and
efficient labor units – reflecting on-the-job human capital accumulation through the Ben-
Porath technology – plays a pivotal role in these results. In particular, workers are price-
takers and therefore invest more in human capital accumulation than in a scenario where
they would internalize the impact on aggregate labor prices of labor, and labor efficiency
units of unskilled and skilled workers are strategic complements in the aggregate production
function. These dimensions amplify the gap between headcounts and efficient labor units.
According to the model, the time path of relative efficient labor units picks up earlier than
that of the relative supply of college versus non-college workers, explaining our estimation
results for SBTC.3 Our estimated CES elasticity around 2 also derives from this: college and
non-college workers entering the aggregate production function are highly heterogeneous
once we account for efficient labor units.

The estimation exercise yields two other key results. First, it finds that the quality of

2The identification strategy exploits variation across both time and cohorts: we use the curvature of
life-cycle wage profiles across cohorts to disentangle the price and quantity components of human capital.

3The model also predicts that, after the 2000s, while the quality of skilled workers stagnates, the quality
of unskilled ones deteriorates more rapidly, causing the skilled/unskilled quality ratio to continue rising even
as the population shares of skilled/unskilled workers level off.
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recent cohorts of workers has deteriorated in terms of both initial human capital endowments
– the human capital stocks they bring to the labor market upon entry – and learning capabil-
ities – the TFP parameter of the Ben-Porath technology. Second, it shows that the relative
aggregate price of labor (i.e., college versus non-college workers) has remained remarkably
stable since 1940. Consequently, the dynamics of wage inequality are driven by changes in
quantities: the supply of workers and efficient units of labor.

Finally, by conducting counterfactual scenarios, we disentangle the roles of aggregate
and cohort-specific shocks as well as endogenous adjustment mechanisms in shaping wage
inequality. We establish, first, that aggregate shocks, and in particular SBTC, are important
to capture the dynamics of the college premium rollercoaster and shifting profile of lifetime
wage growth, yet that cohort-specific changes in human capital parameters play an even more
important role. Second, we find that suppressing two endogenous adjustment mechanisms,
namely cohort-specific changes in educational attainment and changes in the aggregate skill
prices, leads to a massive increase in wage inequality. For instance, without these forces,
the college premium in 2020 would be between 3 and 3.5 vs. 1.9 in the data and baseline
model. Hence the model highlights a somewhat overlooked lesson from general equilibrium
analyses: that equilibrium adjustment can act as a mitigating force on wage inequality.

Related literature. Our paper contributes to a literature that employs structural models
to analyze the determinants of the college premium and lifetime wage profiles.4 In a nutshell,
the novelty of our approach is to combine endogenous human capital accumulation, an
educational choice margin, and a general equilibrium OLG setup, and estimate it along the
transition path of the U.S. labor market between 1940 and 2020. This structure allows us
to reproduce the college premium rollercoaster, the rebound of lifetime wage growth, along
with the secular increase in college attainment, as the outcomes of forward-looking decisions
and equilibrium market interactions.

A key paper in this literature is Heckman et al. (1998). The authors set up a rich general-
equilibrium model with a Ben-Porath (1967) technology and prices of labor efficiency units
derived from a CES production function for aggregate output which takes non-college and
college workers as its inputs. These are the key elements of our analysis as well, but our

4Our analysis contributes more broadly to the literature on U.S. wage inequality. This research, which
is too voluminous to be reviewed here, has identified numerous drivers of wage inequality, including changes
in the real value of the minimum wage (e.g., DiNardo et al. (1996), Lee (1999)), the erosion of workers’
bargaining power (e.g., Freeman (1992), Card (2001)), globalization and trade liberalization (e.g., Krugman
(1995, 2008), Helpman (2018)), and taxation and top-end wage inequality (e.g. Piketty & Saez (2003)), to
name a few. We are cognizant of these factors and we intend by no means to downplay their importance.
These factors are partly encapsulated in the variable coined “skill-neutral technological change” in the model,
which contributes to driving overall wage inequality. More importantly, and as emphasized in the quantitative
analysis, the model explains only a portion of overall wage inequality.
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model is simplified compared to Heckman et al. (1998) as we abstract from savings decisions
and physical capital.5 These simplifications allow us to consider a larger set of exogenous
driving forces for our model – aggregate and cohort-specific shocks. By putting these factors
in competition against each other, we obtain a rich assessment of the sources of changes in
U.S. wage inequality. Most notably, the endogenous educational choice margin plays a key
role in our analysis, dampening the rise of the college premium.

The paper is also closely related to a key contribution by Guvenen & Kuruscu (2010).
The authors develop a variant of Ben-Porath (1967), with linear utility as in our analysis,
featuring several dimensions of worker heterogeneity that shape the response of the wage
distribution to a SBTC shock. We view our analysis as complementary in that we abstract
from heterogeneity in initial human capital endowments and learning capabilities within
cohorts, while, on the other hand, we analyze how these have changed across successive
cohorts.6,7 Most importantly, unlike Guvenen & Kuruscu (2010), we allow non-college and
college workers to be imperfect substitutes in the aggregate production function, and we
let the educational composition adjust endogenously over time. As mentioned, general-
equilibrium effects play a major role according to our estimated model.

Our paper naturally relates to the literature on understanding changes in lifetime wage
inequality. Like Huggett et al. (2011), we rely on a Ben-Porath technology to analyze the
curvature of the age profile of wages. Certain factors that have been emphasized in the
literature, such as changes in occupational mobility (Kambourov & Manovskii (2009)) and
changes in the remuneration of individual skills (Lagakos et al. (2018)) are not explicitly
considered in our model, but are somewhat captured by the exogenous driving forces (espe-
cially the cohort-specific shocks to human capital endowments and learning capabilities) that
generate the dynamics of wages over time. Our structural model estimation also partially
controls for demographic changes in the workforce, which have been linked to the dynamics
of lifetime wage inequality (Jeong et al. (2015); Hendricks (2018); Kong et al. (2018)).

Last, we add to the literature on the elasticity of substitution between skilled and un-
skilled workers, which is usually estimated at around 1.5 (see, among others, Katz & Murphy
(1992), Heckman et al. (1998), Krusell et al. (2000), and Card & Lemieux (2001)). In con-
trast to Bowlus & Robinson (2012), who provide a decomposition with exogenous prices, and

5Consequently, we keep the real interest rate unchanged throughout the estimation and experiments.
6In addition, Guvenen & Kuruscu (2010) consider two types of labor, raw and abstract (with only the

latter becoming more productive as workers acquire human capital), and also allow for worker heterogeneity
in terms of human capital investment windows and beliefs. All these features are absent from our model.

7Guvenen & Kuruscu (2012) argue that the Ben-Porath model with only one type of labor cannot
generate changes in wage inequality resulting from SBTC (Proposition 6 in their paper). However, their
argument relies on SBTC being a one-off, surprise, permanent change in the productivity parameter that
favors skilled workers, which is different from our analysis.
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Bowlus et al. (2023), who identify prices from “flat spots” in wage profiles and estimate a
very high elasticity, our approach jointly endogenizes prices and quantities within a general
equilibrium OLG framework. Recent work by Bowlus et al. (2023) and Bils et al. (2025)
revises this elasticity upward, estimating it around 4. While, like these two papers, we dis-
tinguish between labor measured in headcounts and efficiency units, our estimated elasticity
of substitution of 2 remains more in line with the earlier literature.

Outline. The paper is organized as follows. Section 2 presents stylized facts that con-
trast cross-sectional and cohort views of wage inequality. This sets the stage for our model
presented in Section 3 and estimated in Section 4. That section also discusses mechanisms
that explain wage inequality at a given point in time. In Section 5, we use counterfactual
scenarios to analyze wage inequality dynamics, specifically changes in the college premium
and lifetime wage growth. Section 6 concludes.

2 Stylized facts : Cross-section vs. cohort-based

In this section, we make a simple point. We contrast the perspective afforded by cross-
sectional data with that from cohort-based data when examining the college premium and
wage-experience profiles oft-studied in the empirical literature. As wage inequality statistics
across ages at a point in time differ from those within a cohort over time, we argue in favor
of a nonstationary framework.

Data on real weekly earnings by education and age. We use decennial IPUMS U.S.
Census data from 1940 to 2020, focusing on full-time, full-year male wage earners aged 16 to
59 (as in Katz & Murphy (1992), Jeong et al. (2015) among others).8 Workers are categorized
as either “college” (some college education or more) or “non-college” (high school education
or less). Throughout the paper, a cohort is defined by the year (decade) of labor market
entry. The analysis begins with the 1940 cohort, as this is the first cohort for which U.S.
Census earnings data are available. Notice that cohorts 1940 through 1990 are observed over
their complete working lives, using data from 1940 to 2020. “Age” refers to years of work
experience since labor market entry. Experience is calculated as the number of years since
completing formal education and is grouped into four categories: 0-9 (referred to as “young”),
10-19, 20-29, and 30-39 years (referred to as “old”). All weekly earnings are adjusted to 2010
dollars using the Consumer Price Index. While the dataset consists of repeated cross-sections
rather than panel data, it offers large, representative samples across time.

8To avoid distortions caused by the COVID-19 pandemic, we use 2019 data as our endpoint, hereafter
referred to as “2020”. See Appendix A for further details.
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Table 1: College premium and experience premium: Cross-section vs. cohort

College premium Experience premium
Young Old College Non-college

Cohort Cross-sec. Cohort Cross-sec. Cohort Cross-sec. Cohort
(1) (2) (3) (4) (5) (6) (7)

1940 1.62 1.60 1.56 1.63 3.17 1.66 3.30
1950 1.25 1.40 1.59 1.47 2.48 1.31 2.15
1960 1.43 1.56 1.57 1.50 1.88 1.38 1.71
1970 1.43 1.56 1.67 1.53 1.69 1.40 1.44
1980 1.37(a) 1.45(b) 1.75(c) 1.64(d) 1.88(e) 1.55 1.48
1990 1.58 1.57 1.90 1.72 1.96 1.73 1.63

note: ‘College premium’: real weekly wage of college-educated workers relative to non-college workers. ‘Experience

premium’: real weekly wage of older workers relative to young workers. ‘Young’: workers with 0-9 years of experience.

‘Old’: workers with 30-39 years of experience. ‘Cross-section’: ratios computed using young and old workers from the

same year of cross-sectional data. ‘Cohort’: ratios computed using data from when the cohort was young and again when

the same cohort was old (30 years later). (a) In 1980, young college workers earned 37% more than their non-college

counterparts. (b) In 1980, old college-educated workers (those who entered the labor market in 1950) earn 45% more than

their non-college counterparts (who had also entered the labor market in 1950). (c) Old college-educated workers from the

1980 cohort (those who are “old” in 2010) earned 75% more than non-college old workers from the same cohort. (d) Old

workers in 1980 earn 64% more than young workers that same year. (e) Old workers from the 1980 cohort (those who are

“old” in 2010) earn 88% more than young workers from the same cohort (i.e., those entering the labor market in 1980).

Table 1 displays the college premium and the experience premium across successive co-
horts, using two distinct measurement strategies: cross-sectional versus cohort-based. Each
entry reports the ratio of real weekly wages between groups (e.g., college vs. non-college,
old vs. young), allowing us to contrast what one observes when comparing individuals at a
point in time versus tracking cohorts over their working lives.

College premium. Table 1, column (1) displays the evolution over time of young workers’
college premium. One can clearly see the “rollercoaster ride” (Autor et al. (2020)) : the college
wage premium rebounded in the 1950s and 1960s before narrowing in the 1970s, and then
greatly increasing post-1980. A similar pattern is observed when using the wages of older
workers to measure the College premium.

Let us briefly compare the “cross-sectional view” and “cohort-based view” of the college
premium. In 1980, using cross-sectional data, college-educated older workers earned, on
average, 45% more than their non-college counterparts (column (2)). In contrast, the cohort
that entered the labor market in 1980 reached an older age around 2010. In that year, older
workers from the 1980 cohort earned 75% more than their non-college peers (column (3)).
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This discrepancy arises presumably because the 1980 cohort benefited from the rising SBTC
over the course of its lifetime – an effect that is naturally missed by the cross-sectional view
relying on a snapshot of data in 1980.

Experience premium: wage flattening/wage steepening. The contrast between
cross-section and cohort-based approaches is especially relevant for the experience premium
(also referred to as “age premium”, “lifetime wage profile”, or “expected lifetime wage growth”).

Focusing on college-educated workers, column (5) reports the cohort-based experience
premium, the wage of older workers relative to young workers from the same cohort. For
the 1940 cohort, whose working life spanned from 1940 to 1970, this premium is 3.17, indi-
cating that wages more than tripled over their working life. In contrast, the cross-sectional
experience premium observed in 1940 (column (4)) is only 1.63. This discrepancy arises pre-
sumably because the cohort-based measure captures the post-World War II economic boom
that shaped the careers of the 1940 cohort. Such macroeconomic dynamics are entirely
missed when comparing young and old workers within the same cross-sectional data in 1940.
Our model explicitly incorporates these changes in aggregate conditions when analyzing
life-cycle earnings profiles.

In addition, notice in column (5) that expected wage growth drops for later cohorts: 2.48
for the 1950 cohort, down to 1.69 for the 1970 cohort, consistent with what the literature
refers to as “wage flattening”. Including more recent data provides us with some new insights.
For the 1980 and 1990 cohorts, we observe some “wage steepening”: cohort-based experience
premia are 1.88 and 1.96 (column (5)), respectively. These patterns suggest a rebound of
lifetime wage growth for recent cohorts of college-educated workers. This is consistent with
the gradual unfolding of SBTC, which continues to raise the relative demand for skilled
labor – not only benefiting young workers entering the labor market, but also older workers
progressing through their careers.

Crucially, these dynamics are missed when looking only at cross-sectional data.9 Com-
paring columns (4) and (5) of Table 1, we observe that the cross-sectional view tends to
underestimate lifetime wage growth for college-educated workers from the 1970 cohort on-
ward. Symmetrically, as we expect SBTC to depress the wages of non-college workers,
cross-sectional data (columns (6) and (7)) tend to overestimate their life-cycle wage growth
over the same period.

In sum, Table 1 illustrates the contrast between cross-sectional and cohort-based views
of wage inequality: what we observe across ages at a point in time differs from what we see

9This echoes recent evidence by Kleven et al. (2025), who show that short-run micro estimates of labor
supply elasticities typically close to 0.2 substantially understate long-run responses, around 0.5, once dynamic
career mechanisms such as promotions and job switches are taken into account.
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within a cohort over time. This contrast itself indicates changes in the underlying macroe-
conomic environment, which underpins the theoretical framework we develop next. At the
same time, the cross-sectional and cohort-based profiles of wage inequality are intertwined in
that all age groups working within the same year face the same rental price for their human
capital during that year. This aspect will be central to our model’s estimation.

3 Model

3.1 Demographics and overlapping cohorts

The economy is populated by overlapping cohorts of workers. A cohort is indexed by c,
which denotes the year (decade) when it enters the labor market. A cohort is a continuum of
workers whose age is indexed by a. Age is discretized into four intervals which, equivalently,
refer to the number of years of work experience, namely 0-9, 10-19, 20-29 and 30-39 years.10

Although somewhat of a misnomer, we will refer to those individuals with 0-9 years of work
experience as “young” or “early-career”, and those with 30-39 years as “old” or “late-career”.
Hence, a ∈ [0, 10, 20, 30], while c ∈ [1910, 1920, ..., 2020] tracks the decade of entry into the
labor market. Age and cohort are related to time through t = a+ c.

There are two education groups, indexed by z, in each cohort. Before entering the labor
market, young workers choose whether or not to pursue higher education (details follow).
Those who attend college are referred to as “skilled” workers (z = s), while those who do
not are considered “unskilled” workers (z = u). The share of cohort-c educated workers Ls

c,
which plays a key role in the model, in determined endogenously. The age distribution for
each skill group z is calibrated exogenously using Census data.

Specifically, if we denote the mass of new entrants as Mc and the fraction of skilled
workers within cohort c as Ls

c, the mass of skilled entrants at date t (the birth year of
cohort c) is M s

t,t = Ls
tMt, i.e., a share Πs

t,t ≡ Ms
t,t

Mt
= Ls

t of that new population. The
population mass evolves according to: M z

t,t+a = (1− ϱzt,t+a)M
z
t,t+a−10, ∀a ∈ {10, 20, 30}, and

∀z ∈ {s, u}, where ϱzt,t+a is the net-exit rate (i.e., the effect of mortality and migration) which
is taken from Census data. The share of skilled workers in cohort c reaching experience level
a is then Mz

t,t+a

Mt
= Lz

t

∏a
i=10(1 − ϱzt,t+i).11 Hence, Πs

t,t+a = Mt

Mt+a
Lz
t

∏a
i=10(1 − ϱzt,t+i) links

the demographic weights at each date to the endogenous skill choice Ls
t . More concisely,

Πs
t,t+30 = χs

t,t+30L
s
t , where χs

t,t+30 ≡
∏30

i=10(1− ϱzt,t+i) is exogenous and observed in the data,
allowing us to construct the macroeconomic aggregates of the model using the observed

10As the model is calibrated on decennial Census data, we consider 10-year intervals.
11By definition Πs

t,t+a =
Mz

t,t+a

Mt+a
, so that Mz

t,t+a

Mt
= Πz

t,t+a
Mt+a

Mt
.
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Πz
t,t+a. Total population in the labor market is normalized to 1 at any time t, such that∑
a,z Π

z
t−a,t = 1.

3.2 Human capital investments
Schooling choice. Choices about education are made once and for all before entering the
labor market. Workers are heterogeneous with respect to their costs of enrolling in college
education. These costs, which capture both the monetary and nonpecuniary components of
the decision, are idiosyncratic shocks ε drawn from a random distribution G. Workers observe
the realization of ε and choose whether to attend college before age a = 0 by solving:

max{V u
c ;V

s
c − ε},

where V z
c , z ∈ {s, u}, is the expected discounted sum of wages for workers from cohort c

(hence entering the labor market in year t = c) with education level z. Since schooling is
a binary decision and the idiosyncratic cost ε is sunk once that decision is made, a worker
enrolls in college education and becomes “skilled” (z = s) when ε ≤ ε̃c, where ε̃c = V s

c − V u
c .

Thus, the share of college workers from cohort c is:

Ls
c = G(ε̃c) = G(V s

c − V u
c ) (1)

On-the-job training (OJT). In each period of her working lifetime (i.e., a ∈ [0, 10, 20, 30]),
a worker of skill level z has one unit of time that can be allocated to working and invest-
ing in human capital accumulation through OJT. As time devoted to OJT is diverted from
working, the cost of human capital accumulation is measured in terms of foregone wages.
A worker from cohort c enters the labor market at time t = c without any experience, i.e.
a = 0, and works until age a = 30, i.e. retires at time t = c+ 30. Her objective is:

V z
c = max

eza,c∈[0;1]

30∑
a=0

βayzc+a s.t.


yzc+a = ℓza,cR

z
t

ℓza,c = (1− eza,c)h
z
a,c

hza+10,c = (1− δ)hza,c + αz
c(e

z
a,ch

z
a,c)

ζz

∀z = s, u. (2)

β is the discount factor. yzc+a denotes the real wage of a worker with skill z at time t =
c + a. The wage is the product of the worker’s individual units of efficient labor ℓza,c and
the aggregate rental price of human capital Rz

t (also referred to as the “price of labor” or
“skill price”) during year t for skill level z. Efficient labor ℓza,c depends on two elements:
first, the stock of human capital hza,c and, second, time devoted to OJT, denoted as eza,c.
The dynamics of the human capital, starting from the initial (cohort-specific) endowment

10



hz0,c, accounts for depreciation over time at rate δ, and workers’ human capital investment
through OJT. Importantly, note that in (2) the curvature of the production function of
human capital ζz is assumed to be skill-specific, while the initial human capital endowment
and the ability-to-learn parameter {hz0,c;αz

c} are both skill- and cohort-specific.
The Ben-Porath (1967) model admits an analytical solution (see Huggett et al. (2011))

for a given sequence of skill prices that a worker faces over her working lifetime, {Rz
a}30a=0,

z ∈ {s, u}. Let us define Ωz
a,c ≡

(eza,ch
z
a,c)

1−ζz

αz
cζ

z , for which the solution is determined by12

Ωz
a,c = β

Rz
t+10

Rz
t

[
1 + (1− δ)Ωz

a+10,c

]
with Ωz

30,c = 0, t = a+ c. (3)

Time optimally allocated to OJT and the dynamics of human capital dynamics are:

eza,c =
(αz

cζ
zΩz

a,c)
1

1−ζz

hza,c
, (4)

hza+10,c = (1− δ)hza,c + (αz
c)

1
1−ζz (ζzΩz

a,c)
ζz

1−ζz , (5)

given hz0,c, the initial stock of human capital for workers from cohort c and education level
z. The recursive solution to the Ben-Porath problem delivers a set of supply functions for
efficient units of labor, ℓza,c ≡ (1− eza,c)h

z
a,c with c = t− a, given by:

ℓz30,t−30 = Λ(Rz
t−30, R

z
t−20, R

z
t−10, R

z
t )

ℓz20,t−20 = Λ(Rz
t−20, R

z
t−10, R

z
t , R

z
t+10)

ℓz10,t−10 = Λ(Rz
t−10, R

z
t , R

z
t+10, R

z
t+20)

ℓz0,t = Λ(Rz
t , R

z
t+10, R

z
t+20, R

z
t+30),

(6)

z ∈ {s, u}. The functions Λ(·) highlight that the efficient labor supply decisions depend on
the entire path of skill prices Rz

t over an individual’s lifetime.

3.3 Aggregate output

In the goods market, output is produced by a perfectly competitive firm according to:

Yt = XtF (Lu
t ,Ls

t) = Xt

[
(Lu

t )
η + dt(Ls

t)
η

] 1
η

with

{
Lu

t =
∑

c ℓ
u
t−c,cL

u
cχ

u
c,t

Ls
t =

∑
c ℓ

s
t−c,cL

s
cχ

s
c,t,

(7)

12See Appendix B for details and analytical proofs.
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and η ∈ (−∞; 1[. In (7), the inputs Lz
t , z ∈ {s, u}, represent aggregate units of efficient labor

at time t. 1
1−η

is the elasticity of substitution between skilled and unskilled labor – a key
parameter in our analysis.13 Xt is a common shifter capturing labor-augmenting technolog-
ical change, but also potentially other evolving features of the macroeconomic environment
such as labor market institutions.14 For simplicity, we refer to the shock process Xt as
skill-neutral technological change. In contrast, dt embodies skill-biased technological change
(SBTC hereafter). Note that the shocks captured by Xt and dt are truly aggregate shocks,
as they affect all workers present in the labor market at time t. Finally, the production
function in (7) abstract from physical capital.

Recall that each worker supplies ℓza,c = (1 − eza,c)h
z
a,c units of efficient labor, made up of

time spent working on the job (1− eza,c) and human capital (hza,c). The aggregate input Lz
t is

the sum of all efficient labor units ℓzt−c,c offered by all cohorts working in period t, weighted by
the demographic weights: Πz

c,t = Lu
cχ

z
c,t. Finally, note that in our human capital framework,

there is clear distinction between the total supply of labor of type z in year t, denoted Lz
t ,

and its effective use in the production function, denoted Lz
t . The latter adjusts the raw labor

supply by its quality, which is determined by efficiency levels, ultimately governed by the
accumulation of human capital. In sum, human capital investments create a wedge between
the two measures of human capital stocks, Lz

t and Lz
t .

Wages yza,c are given by:

yua,c = ∂Yt

∂Lu
c

= ℓua,cXtFu,t = ℓua,cXt (Lu
t )

η−1

[
(Lu

t )
η + dt (Ls

t)
η

] 1
η
−1

≡ ℓua,cR
u
t

ysa,c = ∂Yt

∂Ls
c

= ℓsa,cXtFs,t = ℓsa,cXtdt (Ls
t)

η−1

[
(Lu

t )
η + dt (Ls

t)
η

] 1
η
−1

≡ ℓsa,cR
s
t

(8)

where yza,c is observed in the data as the average real weekly wage of workers of age a from
cohort c and skill level z. Workers’ efficient labor, ℓza,c, and the aggregate price of skill z at

13Labor is aggregated within each skill group by summing over all age groups, meaning that workers
of different ages are perfect substitutes within skill groups. However, note that workers from different age
groups belong to distinct cohorts that differ in initial human capital endowments hz

0,c and learning ability αz
c .

Consequently, the aggregation combines heterogeneous types of labor for which quality is pre-determined,
reducing the degree of substitutability between age groups within a skill z.

14As an illustration, consider how a change in the legal minimum wage, denoted as wM
t , would affect the

model’s equilibrium. With a uniform productivity distribution ϵ ∼ U [ϵ, ϵ] among unskilled workers and an
aggregate unskilled employment given by Lu

t =
∑

a

∫ ϵ

ϵ∗
ϵ(i)ℓua,t−aL

u
t−aχ

u
t−adi, the average wage for unskilled

workers is given by R
u

t = 1
2 (ϵR

u
t + wM

t ). Indeed, the real wage of individual i is Ru
t (i) = max{wM

t , ϵ(i)Ru
t }

with ϵ(i)Ru
t the marginal productivity of each worker i where Ru

t = Xt (Lu
t )

η−1
[(Lu

t )
η
+ dt (Ls

t )
η
]
1
η−1. The

worker is employed only if ϵ(i)Ru
t ≥ wM

t , i.e., ϵ(i) ≥ ϵ∗t :=
wM

t

Ru
t

. In this case, the average wage for unskilled

workers is R
u

t = Ru
t
ϵ+ϵ∗t
2 . Hence, a change in wM

t would affect R
u

t just like any other shock captured by Xt.
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time t, Rz
t , are endogenously determined in the model. The path of skill prices Rz

t depends
directly on the paths of the aggregate shocks {Xt, dt}, and indirectly through the endogenous
adjustments of ℓzc,t coming from individuals’ responses to changes in skill prices.

3.4 Equilibrium properties

We now examine key properties of the model to gain insights into the mechanisms driving
movements in both the college premium and lifetime wage growth.

First, notice the relation between the cross-section of wages observed at time t and the
underlying, aggregate labor prices. We can rewrite the model’s solution as

yz30,t−30 = ℓz30,t−30R
z
t

yz20,t−20 = ℓz20,t−20R
z
t

yz10,t−10 = ℓz10,t−10R
z
t

yz0,t = ℓz0,tR
z
t

 ⇔


yz30,t−30 = Φ(Rz

t−30, R
z
t−20, R

z
t−10, R

z
t )

yz20,t−20 = Φ(Rz
t−20, R

z
c−10, R

z
t , R

z
t+10)

yz10,t−10 = Φ(Rz
t−10, R

z
t , R

z
t+10, R

z
t+20)

yz0,t = Φ(Rz
t , R

z
t+10, R

z
t+20, R

z
t+30)

(9)

where Φ(·) = Λ(·)Rz
t . Property 1 clarifies further the relations between wages, skill prices,

and drivers of changes in these prices:

Property 1. In response to aggregate shocks to either Xt or dt, the wage yza,c of a-c-z
individuals grows if workers raise their supply of efficient labor ℓza,c and/or the rental price
of human capital Rz

t increases. These two drivers of wage changes are intertwined because:

(i) OJT increases when workers anticipate growth in the price of human capital Rz
t (Equa-

tion (3)), which they take as given;

(ii) Rz
t decreases through marginal productivity effects with Lz

t , the aggregate units of effi-
cient labor entering production at time t (Equation (8));

(iii) Ru
t (resp. Rs

t ) increases with Ls
t (resp. Lu

t ) through complementarity in the production
function (Equation (8)).

In particular, since individuals take prices as given, they ignore key aggregate effects
when choosing their own OJT efforts. First, they influence the aggregate price Rz

t of their
own skill level negatively, which reduces the corresponding OTJ incentives. Second, they
increase marginal productivity and therefore the price of labor for the other skill group.
The effects of additional OJT efforts on wages, however, are ambiguous since wages are the
product of both aggregate prices and the individual supply of efficient labor.
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College premium. The average wage for each skill level z ∈ {s, u} is given by

Y z
t =

Rz
t

∑
a ℓ

z
a,t−aL

z
t−aχ

z
t−a∑

a L
z
t−aχ

z
t−a

= Rz
t

Lz
t

Lz
t

. (10)

Hence, the average wage depends on the price of labor Rz
t and the aggregate stock of efficient

units of labor Lz
t divided by the population size Lz

t of z-skilled workers at time t. The ratio
between Y s

t and Y u
t is the college premium. We can further detail how the premium is related

to some of the key parameters and variables of the model:

Property 2. The college premium, given by

Y s
t

Y u
t

=
Rs

t

Ru
t

∑
a ℓsa,t−aL

s
t−aχ

z
t−a∑

a Ls
t−aχ

s
t−a∑

a ℓua,t−aL
u
t−aχ

u
t−a∑

a Lu
t−aχ

u
t−a

= dt

(
Ls

t

Lu
t

)η
1− Ls

t

Ls
t

(11)

depends on the SBTC shifter dt, educational choices through Lz
t , z ∈ {s, u}, and the aggregate

efficient labor inputs of each skill group Lz
t , z ∈ {s, u}.

By applying logs to Equation (11), we can clearly express a relation between our model
and the college premium literature. We have:

log

(
Y s
t

Y u
t

)
= log(dt)︸ ︷︷ ︸

SBTC

+η log

(
Ls

t

Lu
t

)
︸ ︷︷ ︸

efficient
labor units

− log

(
Ls
t

1− Ls
t

)
︸ ︷︷ ︸

skill supply

(12)

The first element of (12), SBTC, increases the demand for skilled labor, thereby raising the
college premium. The third component, the supply of skilled labor, mitigates the increase in
the college premium. The middle component, efficient labor units, is a distinctive feature of
our analysis. For instance, in Goldin & Katz (2007) and Acemoglu & Autor (2011), there is
no distinction between bodies and efficient labor units, so that Equation (11) boils down to

log

(
Y s
t

Y u
t

)
= log(dt)︸ ︷︷ ︸

SBTC

−1

ϵ
log

(
Ls
t

1− Ls
t

)
︸ ︷︷ ︸

skill supply

(13)

where ϵ = 1
1−η

> 0 is the elasticity of substitution between skilled and unskilled labor. In our
framework, the skill supply Lz

t is endogenous and may differ from efficient labor units Lz
t .

In this respect, our model cautions against running a simple OLS regression of log-relative
wages against a time trend and the log skill supply in (13) to recover ϵ. As suggested by
(12), this OLS regression would be fraught with endogeneity issues.
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Steady-state environment versus transitional dynamics. In a non-stationary set-
ting like ours (and in the observed data), the ratio of education premia across experience
groups does not approximate differences in wage profiles across skill groups. Specifically,
the ratio of the life-cycle wage profile of skilled to unskilled workers differs from the ratio
of higher-education premia between age groups: ys30–39/y

s
0–9

yu30–39/y
u
0–9

̸≡ ys30–39/y
u
30–39

ys0–9/y
u
0–9

. This equivalence
holds only in a stationary environment, where the cohort wage profiles and cross-sectional
wage profiles coincide with each other (as in e.g. Jeong et al. (2015)).

4 Structural estimation

In this section, we describe how the parameters of the model are structurally estimated using
wage and education U.S. Census data for all cohorts between 1940 to 2020. The estimation
strategy leverages the model’s OLG structure, cohort heterogeneity, and general equilibrium
feedback mechanisms to jointly identify the key parameters governing individual behavior
and macroeconomic outcomes. We then present and discuss several key estimation results.

4.1 Estimation strategy

Table 2 presents the U.S. Census wage data that we use to estimate the model.15 As explained
further below, we also use U.S. Census data describing the share of college-educated workers
entering the labor market in t = 1940, ...., 2020.

Table 2: Observed wages across cohorts and over time

a
30 y1940 y1950 y1960 y1970 y1980 y1990 y2000 y2010 y2020 y y y
20 y y1940 y1950 y1960 y1970 y1980 y1990 y2000 y2010 y2020 y y
10 y y y1940 y1950 y1960 y1970 y1980 y1990 y2000 y2010 y2020 y
0 y y y y1940 y1950 y1960 y1970 y1980 y1990 y2000 y2010 y2020
t 1910 1920 1930 1940 1950 1960 1970 1980 1990 2000 2010 2020 2030 2040 2050

note: t: year. a: age group. “0”: 0-9 years of work experience. “10”: 10 to 19 years of work experience. “20”: 20 to 29

years of work experience. “30”: 30 to 39 years of work experience. Each color denotes a cohort c aging over the years. Each

cell yt refers to wages for workers of age a observed in year t. The cohort c is given by c = t− a.

As an illustration, consider the 1980 cohort in Table 2. These workers enter the labor
market in 1980 at age a = 0, corresponding to 0-9 years of work experience. Ten years later,

15Note that for “old” workers in 1940, i.e. those from the 1910 cohort, we do not observe any prior wage.
Similarly, we miss wage data on the 1920 and 1930 cohorts before 1940; these are the wages without a time
subscript in Table 2. Likewise, in 2020, we miss information about the future: young workers in 2020 choose
their life-cycle human capital conditional on their expectations on the future path of skill prices, up until
2050. We describe in this section how we infer these missing wages.
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in 1990, they are observed with 10-19 years of experience (a = 10), and so on, up to the year
2010, when they reach 30-39 years of experience (a = 30). Thus, each cohort is observed over
a span of four decades. Consider now the year 1980 in Table 2. The labor market includes
four cohorts in 1980: the 1950 cohort (age 30), the 1960 cohort (age 20), the 1970 cohort
(age 10), and the 1980 cohort (age 0). The workers belonging to these four age groups face
the same equilibrium skill price Rz

1980, which aggregates their heterogeneous productivity
and investment decisions. Specifically, the aggregate prices affect the workers belonging to 4
successive 10-year cohorts within a given year (decade), while a given cohort makes decisions
over a 40-year period. This enables the identification strategy described below.

Unknown parameters. The model period is set to be a decade. We calibrate β = 1
(1.04)10

to match an annual real interest rate of 4%. As in Heckman et al. (1998), we assume that δ is
homogeneous across skill levels and cohorts. We let the curvature of the human production
functions ζu and ζs be specific to each skill, but we restrict it to be homogeneous across
cohorts. Last, we assume that G(ε) is log-normal, with mean µε and standard deviation σε.

Given β, the vector Θ = {Θy,Θs,Θf} of unknown parameters is defined by:

Θy =
{{{

αz
c , h

z
0,c

}2020

c=1910
, {Rz

t }
2050
t=1910 , ζ

z
}s

z=u
, δ
}

Θs = {µε, σε} Θf =
{
η, {dt, Xt}2020t=1940

}
Θy consists of parameters and prices that regulate the OJT decision problems, with dim(Θy) =

(2 × 12 + 15 + 1) × 2 + 1 = 81.16 Θs is the vector of parameters governing the schooling
choice problem, with dim(Θs) = 2. Θf contains parameters of the aggregate production
function, with dim(Θf ) = 1 + (2 × 9) = 19. Thus, the estimation of Θ requires at least
dim(Θ) = 81 + 2 + 19 = 102 moments from the data.

Empirical moments. Using U.S. Census data, we compute average wages yzc,t by age a
for the two skill levels z ∈ {s, u} across six cohorts c = {1940, 1950, . . . , 1990} for which the
data cover the full working life of workers (see Table 2). This yields 48 empirical moments
(6 cohorts × 4 age groups × 2 skill levels).

For cohorts that entered the labor market before 1940 (1910, 1920, 1930) and cohorts
that entered after 1990 (2000, 2010, 2020), part of the wage data is missing (see Table 2).
To address this limitation, we construct fitted wage profiles to recover the complete lifetime
wage profiles of the workers belonging to those cohorts.17 This procedure yields 48 additional

16Note that the vector for Rz
t spans the years 1910 through 2050, whereas those for αz

c and hz
0,c span years

only until 2020. The reason is that the estimation seeks to rationalize data for “old” workers in 2020 (yz30,2020),
among other data. Yet yz30,2020 depends on all workers that are present in the labor market at t = 2020,
including the younger ones whose decisions depend on aggregate skill prices up until 2020 + 30 = 2050.

17Appendix C describes how the out-of-sample data are estimated. For the wage profiles of the 1910 to
1930 cohorts, we verify the plausibility of the fitted profiles by comparing them to data from the 1915 Iowa
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empirical moments.
The other key empirical moment is the share of skilled workers across cohorts, also

derived from U.S. Census data. Specifically, we obtain 9 empirical moments, denoted Ls
c,

where c = {1940, 1950, . . . , 2020}, measuring the proportion of college-educated individuals
among workers with 0 to 9 years of labor market experience.

The complete set of empirical targets is:

ψ =

{{{
yua,c

}30

a=0

}2020

c=1910
;
{{
ysa,c

}30

a=0

}2020

c=1910
; {Ls

c}
2020
c=1940

}
with dim(ψ) = 105.

Given that dim(ψ) > dim(Θ), the model is over-identified and an estimate of Θ can be
found by minimizing the distance ||ψ − m(Θ)||, where m(Θ) denotes the counterparts to
the empirical moments contained in ψ generated (simulated) using the vector of model
parameters Θ.

Intuition behind the identification of Θy. Using Equation (9) and a cross-section of
U.S. Census wages {yza,t−a}30a=0, the identification of the parameters is based on:

yz30,t−30 = Φ(Rz
t−30, R

z
t−20, R

z
t−10, R

z
t )

yz20,t−20 = Φ(Rz
t−20, R

z
c−10, R

z
t , R

z
t+10 )

yz10,t−10 = Φ(Rz
t−10, R

z
t , R

z
t+10 , R

z
c+20 )

yz0,t = Φ(Rz
t , R

z
t+10 , R

z
t+20 , R

z
c+30 )

and


yz30,t−20 = Φ(Rz

t−20, R
z
t−10, R

z
t , R

z
t+10 )

yz20,t−10 = Φ(Rz
t−10, R

z
t , R

z
t+10 , R

z
c+20 )

yz10,t = Φ(Rz
t , R

z
t+10 , R

z
t+20 , R

z
c+30 )

yz0,t+10 = Φ(Rz
t+10 , R

z
t+20 , R

z
t+30 , R

z
c+40 )

(14)

for each period t = 1940, . . . , 2010 and skill group z ∈ {s, u}. Suppose that past skill prices
Rz

t−30, Rz
t−20, and Rz

t−10 are known (i.e., the Rz
t−h values on a white background). The top

line of the left block of Equation (14) shows that Rz
t can be recovered directly from the wage

and the optimal decisions of older workers (those with a = 30 at date t; gray background).
Next, conditional on workers’ optimal decisions, the remaining lines on the left allow us to
back out the forward-looking prices Rz

t+10, Rz
t+20, and Rz

t+30 (light-gray background). Moving
to the next U.S. Census wave (the block on the right-hand side for period t+10 in (14)) adds
four additional data moments {yza,t+10−a}30a=0 – the cross-section of wage data for that period
– but only one additional unknown, Rz

t+40 (the sole value on a dark-gray background).
More generally, 4 skills prices {Rz

τ}t+30
τ=t can be derived from the time-t cross-section (given

an initial vector {Rz
t−30, R

z
t−20, R

z
t−10} and the model solution Φ), which implies that C cross-

sections of wages provide us with (C − 1) × (4 − 1) extra data moments. We use these

State Census. For those of 2000, 2010, and 2020 cohorts, we cannot cross-check the fitted wage profiles
against external data. Appendix C also details the additional restrictions required to estimate the general-
equilibrium model over the period 1930–2020.
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additional free moments to identify
{
αz
c , h

z
0,c

}2020

c=1940
which are intuitively related to the level

and slope of each cohort’s lifetime wage profile. This dimension of the estimation process
leverages the fact that the pooled U.S. Census data tracks cohorts over time, as opposed to
exploiting the overlap between cohorts at a given point in time. It also allows us to recover
the depreciation rate, δ.

Intuition behind the identification of Θf . For a given set of parameter estimates
{Θy,Θs}, solving workers’ decision problem yields values for:{{

{Lz
c,0, y

z
a,c, ℓ

z
a,c}2020c=1910

}30

a=0
, {Rz

t }2050t=1910

}
z=u,s

with ℓza,c = (1− eza,c)h
z
a,c.

By aggregating using population shares from U.S. Census data for each age and year, Πz
a,t, we

obtain the aggregate efficient labor inputs Lz
t , z ∈ {s, u} in the production function (Equation

(7)) for each t = 1940, ..., 2020. Our approach to recover the elasticity of substitution between
unskilled and skilled labor (η) follows Acemoglu & Autor (2011), albeit with a key difference.
We rely on a time-series OLS estimation, as in Acemoglu & Autor (2011), but distinguish
between the headcounts, Lz

t , and the efficient units of labor Lz
t . Specifically, given our model

solution for the college premium ( Y s
t

Y u
t

) (see Equation (12)), we estimate

log

(
Y s
t

Y u
t

)
+ log

(
Ls
t

1− Ls
t

)
︸ ︷︷ ︸

dependent variable

= g(t) + η log

(
Ls

t

Lu
t

)
+ εt,

using an OLS regression, where εt denotes the regression residual and g(t) is a flexible
polynomial of time.18 Finally, with the estimated value for η at hand, we use the firms’
first-order conditions (Equation (8)) to pin down Xt and dt for t = 1940, 1950, ..., 2020.

Numerical methodology. Our structural model assumes that the economic environment
is stationary before t = 1910 and after t = 2050. For a given vector of model parameters Θ,
we solve the model backward along the transition path, then forward to recover aggregate
quantities and prices, and iterate until convergence. In practice, we use an iterative trial-
and-error procedure to minimize the distance between model-generated moments m(Θ) and
their empirical counterparts ψ.

18In practice, g(t) is a cubic polynomial of time. Acemoglu & Autor (2011) consider a linear trend as
their data begin in the mid-1960s. The evolution of the college premium in Figure 2, panel (a), suggests
that a linear trend is indeed a good approximation after the 1960s. When adding data from the early 1940s,
it seems sensible to allow for a non-linear trend. This is confirmed in the OLS estimation: the non-linear
trend terms are significant at the 1% level. Goldin & Katz (2007) analyze data from the mid-1910s. They
use a linear trend but allow the slope of the trend to change between sub-periods.
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4.2 Estimation results

4.2.1 Model fit
Empirical targets. Appendix D reports all statistics regarding the model fit. We show
that the model provides a good fit for wages across all cohorts and ages for both skilled and
unskilled workers. The model thus captures both cross-sectional and cohort-based stylized
facts from Section 2.

The model also replicates the rise in skilled labor’s share across cohorts as observed in
the data. Notably, it captures the sharp increase in college attainment before 1990, followed
by a marked deceleration thereafter. This shift in educational attainment pace, captured
by the model’s educational choice equation (1), is illustrated in Figure 1. Furthermore, the
model reproduces the slowdown in college-related earnings gains for post-1990 cohorts. After
the 1990 cohort, gains from college education remain high but stop increasing. Meanwhile,
the data show a continued rise in the college premium (Figure 2, panel (a)). The model
successfully captures both features – stagnant gains from college education alongside a rising
college premium – by attributing the latter primarily to declining average wages among non-
college workers, as shown further below in Figure 6.
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Figure 1: Supply of college workers (Ls
c) and college attendance expected gains (V s

c − V u
c )

note: Share of college-educated individuals among young workers for each cohort entering the labor market between 1940

and 2020, Ls
c, plotted against the expected gains from college attendance faced by young workers, V s

c − V u
c .

Wage inequality. The model successfully replicates key features in between-group wage
inequality changes, including the double dip in the college premium in 1950 and 1970, as

19



well as the steep increase observed after 1980 (Panel (a) of Figure 2). To assess overall wage
inequality, Panel (b) of Figure 2 reports the coefficient of variation of wages. The data (left
axis) show an average value of 0.71, compared to 0.29 in the model (right axis), implying
that the model accounts for about 40% of observed inequality. While too stylized to match
inequality levels precisely, the model reproduces key trends: the V-shaped pattern from the
1940s to 1960s, stagnation in the 1970s, and the rise in recent decades.
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Figure 2: College premium and overall wage inequality: Model vs. data
note: IPUMS U.S. Census 1940-2019 and authors’ own calculations. Real weekly wage (in 2010 U.S. dollars) of full-time,

full-year working men. Data: solid lines. Model: dashed lines.

4.2.2 Estimated parameters
Time- (and cohort-)invariant parameters. We report in Table 3 the estimated values
for parameters that are common across cohorts. The depreciation rate of human capital is
estimated at 10% over a 10-year horizon, which is approximately 1% per year. In Huggett
et al. (2011), the depreciation rate of human capital is around 2% per year, but the authors
also point out that this value may be overestimated due to time allocated to work and
learning being the same at each age.

The curvature of the production function of human capital is 0.75 for both skilled and
unskilled workers. Our structural estimation yielding the same value for both worker types
aligns with the modeling choices in Guvenen & Kuruscu (2010) and is consistent with the
confidence intervals reported in Heckman et al. (1998). Regarding the levels, Guvenen &
Kuruscu (2010) calibrate ζ to 0.8, while Heckman et al. (1998) consider values between
0.83 and 0.94. Our estimates are slightly lower than these values. This difference may be
explained by the sample time periods used for estimation. For instance, Heckman et al.
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(1998) use data from the early 1960s onward, whereas we consider data starting in the early
1940s.

Table 3: Common parameter values

Parameters Value
δ Human capital depreciation rate 10%
ζs Curvature of human capital prod. function (eh)ζ

s , skilled 0.75
ζu Curvature of human capital prod. function (eh)ζ

u , unskilled 0.75
η Elasticity of substitution between skilled and unskilled 1

1−η
2.06

note: Values of parameters shared across cohorts from the estimated model.

Finally, the elasticity of substitution between skilled and unskilled workers in the CES
production function is estimated at 1

1−η
= 2.06, well within the range of 1 to 2.5 commonly

found in the literature (Katz & Autor (1999)). This value is notably lower than the estimate
of 5.3 reported by Bowlus et al. (2023). The magnitude of this elasticity is crucial for
decomposing the factors driving the college premium. A higher elasticity of substitution
implies a smaller impact of shifts in relative labor supplies on the college premium (see
Equation (13)). Bowlus et al. (2023) find that, with their larger elasticity estimate, only a
modest increase in SBTC is needed to explain the observed increase in relative skill prices.
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Figure 3: Labor supply and efficient labor units
note: Population shares and efficient labor units of skilled vs. unskilled workers, overall and expressed in relative terms.

We conjecture that the smaller elasticity in our estimation reflects substitution between
heterogeneous worker types rather than homogeneous workers as assumed in the literature.
Figure 3, reporting the aggregate supply of skilled and unskilled workers (panel (a)) together
with efficient labor by skill level (panel (b)), illustrates this point. The dynamics in panel
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(a) are quite different from those in panel (b). For example, in 1980, the number of college
workers (Ls

c) is half that of non-college workers (Lu
c ), but they are equal in terms of efficient

labor units (i.e., Ls
c = Lu

c in 1980). By 2000, when the number of college and non-college
workers intersect, efficient labor units from college workers are twice those from non-college
workers. The fact that the increase in efficient skilled labor (Ls

t) exceeds the rise in the
number of skilled workers (Ls

t) helps explain the moderate growth in the relative price of
human capital (Rs

t/R
u
t , Figure 6, panel (a)), despite the strong estimated SBTC shift ben-

efiting skilled workers (dt, Figure 5, panel (b)).19 Panel (c) in Figure 3 provides a measure
of the larger increase in relative employment when measured in efficiency units than when
measured in headcounts.

Cohort-specific parameters. Figure 4, panel (a) reports the estimated human capital
endowments upon labor market entry, hz0,c. After a rise in initial human capital from the
early 1940s to the 1960 cohort, Figure 4 suggests that h0,c declines. The fall in h0,c for
the post-1960s cohorts seems to dovetail with declining SAT scores observed in the data
(also reported in panel (a) of Figure 4). Hayes et al. (1996) relate this dynamics to the
simplification of school textbooks since the 1970s, arguing that reduced textual complexity
contributed to deteriorating verbal skills among high school students. These patterns are also
consistent with evidence of falling academic selectivity (Hoxby (2009)) and reduced study
effort among college students since the early 1960s (Babcock & Marks (2011)), suggesting a
broad deterioration in young workers’ human capital.

Figure 4, panel (b), reports the estimated, cohort-specific ability-to-learn parameter αz
c .

First, we find higher ability-to-learn for skilled than for unskilled workers, a standard result
in the literature (see Belzil et al. (2017)). Second, our estimation indicates declining αz

c values
for more recent cohorts, albeit at a slower rate for skilled workers. We can only speculate
about why this might be the case, but in our view a promising explanation lies in the many
labor market changes that have eroded the returns to human capital investments. While
Engbom (2022) shows that wages grow more over the life-cycle in more fluid labor markets
(as job-to-job mobility allows workers to find jobs where their skills are most valued), a large
literature documents declining labor market fluidity in the U.S. (see Molloy et al. (2016)
and others). Likewise, the so-called falling job ladder (Baksy et al. (2024)) leads to reduced
earnings gains from human capital investments.

19Property 1 in Section 3.4 provides intuition for this result. When workers make OJT decisions, they
take the aggregate rental price of labor Rz

t and the productivity benefits they receive from other workers’
OJT efforts as given. Consequently, they invest more in human capital than in a scenario where they would
internalize these general equilibrium spillovers, and they also invest more as they benefit from strategic
complementarity in the production function.
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note: Values of cohort-specific parameters for the estimated model. Panel (a): the dashed line shows SAT scores (plotted

against the left axis) from the National Center of Education Statistics.

Aggregate shocks: Xt and dt. Figure 5 reports the estimated time paths of Xt and
dt. As shown, Xt rises initially during the post-WWII economic boom – a period of rapid
growth in output and wages. After 1970, however, Xt begins to decline. While this may
appear surprising, the time path of Xt is fully consistent with the estimation strategy of
targeting wage dynamics rather than output directly. Specifically, the downward trajectory
of Xt likely captures the structural decline in the labor share, a well-documented empirical
phenomenon beginning in the 1970s (Karabarbounis & Neiman (2014)).20

In panel (b) of Figure 5, the growth of dt accelerates after 1980, continues to rise through
the 1990s, and then slightly slows down in the 2000s. This pattern aligns with the historical
narrative of computer adoption in the 1980s, ICT diffusion in the 1990s, and a subsequent
slowdown in technological progress following the “dot-com bust”. It is noteworthy that our
model generates this realistic profile for technological progress. Indeed, Acemoglu & Autor
(2011) point out that the canonical model, using Equation (13), predicts a deceleration
of SBTC (relative demand for high-skilled workers) in the 1990s. However, this prediction
"does not accord with common intuitions regarding the nature or pace of technological change
occurring in this era", as Acemoglu & Autor (2011) argue.21

Panel (c) of Figure 5 provides a decomposition of output growth since the postwar period:

20Several explanations of the falling labor share have been proposed, including the weakening of workers’
bargaining power due to declining unionization and labor market deregulation (Farber et al., 2021, Stansbury
& Summers, 2020), and the long-run erosion of the real minimum wage (Lee (1999), Autor et al. (2016) and
Footnote 14 above).

21Heckman et al. (1998) and Guvenen & Kuruscu (2010) make assumptions about the pace of SBTC,
contrary to our strategy of estimating by fitting the model to aggregate wage data.
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Figure 5: Aggregate shocks and output growth decomposition
note: Values of the aggregate technological shocks from the estimated model and their contribution to output growth.

output, corresponding to the economy’s wage bill, has increased by a factor of 2.5, driven
primarily by the expansion of efficient skilled employment (Ls

t), which has risen more than
3.5-fold, and by SBTC (dt), which has more than doubled. In contrast, efficient unskilled
employment (Lu

t ) has declined, as has skill-neutral technological progress (Xt).

4.3 Key mechanisms

Finally, we highlight key mechanisms that emerge from the estimated model to explain the
earnings gap between unskilled and skilled workers, the growth of lifetime wages, and their
dynamics across cohorts.

Stable Rs
t/R

u
t vs. rising Y s

t /Y
u
t . Figure 6 reveals a striking finding from the estimated

model. Panel (a) shows that the relative price of skilled labor (Rs) to unskilled labor (Ru)
remains remarkably stable from 1940 to 2020. The two price series increase in levels due
to common aggregate trends (Xt) and complementarity in the production function, but the
key point is that their ratio is essentially flat. In sum, the widening wage gap between skill
groups is not driven by a widening of the gap between the prices of skilled and unskilled
labor.

In contrast, Panel (b) of Figure 6 displays the evolution of average wages, Y z
t , z ∈ {s, u},

which depend on aggregate labor efficiency units of all age groups ℓzt priced at Rz
t . There

is substantial divergence: the wages of skilled workers rise steadily over time, while those of
unskilled workers decline after the 1970s. Given stable relative prices, this divergence mainly
reflects changes in the relative supply of efficient labor units.
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Figure 6: Price of human capital and average wages
note: Price of human capital and average wages from the estimated model.

Sources of the dynamics of Ls
t/Lu

t . The previous paragraphs highlight the importance
of a quantity effect, namely changes in Ls

t/Lu
t . To unpack the sources of these dynamics,

Figure 7 reports the life-cycle profiles of OJT and accumulated human capital across cohorts
and skill groups. First, panels (a) and (c) show time allocated to OJT. Workers from early
cohorts, such as those entering in 1940, devote up to 40% of their time to training at the
beginning of their careers.22 Over time, this effort declines, particularly among unskilled
workers. The 1970 cohort marks a turning point: skilled workers maintain sustained OJT
effort, devoting 25% of their time endowment to OJT, while unskilled workers reduce their
efforts sharply to 15% of their time. This behavioral divergence sets the stage for growing
inequality in human capital accumulation.

Panels (b) and (d) of Figure 7 illustrate how these differences in OJT translate into
accumulated human capital. Skilled workers not only start with higher initial human capital
(e.g., hs0,1940 ≈ 2.95 versus hu0,1940 ≈ 2.21; Figure 4), but also continue to accumulate it
throughout their careers. For more recent cohorts, skilled old workers’ human capital stock
is still larger than what they had upon labor market entry, despite lower initial endowments.
In contrast, unskilled workers experience a decline both in initial human capital and in
subsequent accumulation, leading to flatter or even declining wage profiles.23

22Figure 7 shows that, assuming a 40-hour workweek, our model predicts young skilled workers from the
1940 cohort devote 7.7 hours weekly to on-the-job training, rising to 10.5 hours weekly for later cohorts.
These estimates fall within the lower range reported by Barron et al. (1997) for new hires and by Loewenstein
& Spletzer (2000) using NLSY data.

23A key aspect of human capital accumulation is what Cunha & Heckman (2007) describe as “dynamic
complementarities”: a higher stock of human capital tomorrow increases the returns to human capital in-
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Figure 7: On-the-job training and human capital by age, cohort and skill level
note: Panels (a) & (c): Optimal on-the-job training (OJT) ea,c. “Ay”: Young skilled (unskilled) workers in 1940 devote

42% (43%) of their time endowment to OJT. “Ao”: In 1970, the 1940-young workers have become older; they set OJT

to zero. The graph report decision on OJT for each cohort c = 1940, 1950, ..., 2020. Panels (b) & (d): Stock of human

capital ha,c. “Ay”: Young skilled (unskilled) workers’ human capital in 1940 is h0−9,1940 = 2.95 (2.21). “Ay” In 1970, the

1940-young workers have become older, their human capital is h30−39,1940 = 4.10 (2.83).
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It is also useful to relate Figure 7 to the estimated parameters shown in Figure 4. Skilled
workers benefit from higher learning ability (αs

c > αu
c ) and higher human capital endowments

(hs0,c > hu0,c). While both features of the human capital production function decline among
more recent cohorts, the decline is slower for skilled workers, reinforcing their relative ad-
vantage over unskilled workers. Although skilled workers spend more time away from direct
production (as they invest more in human capital), the productivity gains from OJT (higher
hza,c) more than compensate for the difference in time investments (lower 1 − eza,c), so that
their ℓza,c = (1− eza,c)h

z
a,c remains higher compared to their unskilled counterparts.

5 Counterfactual scenarios

We now use counterfactual experiments to disentangle the roles of aggregate and cohort-
specific shocks as well as endogenous adjustment mechanisms in shaping wage profiles and
inequality. Since 1970 appears as a turning point in much of the dynamics highlighted in
the previous section, we typically run counterfactual calculations by “freezing” parameters
or variables at their 1970 values.24

5.1 Constant aggregate and cohort-specific shocks

In the first set of counterfactual experiments, we hold constant at their estimated 1970
levels either the aggregate technology shocks dt and Xt or the cohort-specific human capital
production factors hz0,c and αz

c . These experiments jointly show that changes in the macro
environment, whether technological or sociodemographic, are necessary to reproduce the
observed pattern of rising wage inequality since the 1970s.

No SBTC (dt): Falling lifetime wage growth, but college premium still rises.
Holding dt fixed at its 1970 level, we shut down rising SBTC. Table 4 shows that this leads
to a collapse in lifetime wage growth: for the 1990 cohort, wage growth falls to 0.71 for
unskilled workers and 0.80 for skilled workers (column (3)). This confirms the importance of
SBTC in sustaining upward-sloping life-cycle earnings profiles. However, as shown in Table
5, the college premium in 2020 remains high at 1.97 (versus 1.93 in baseline; column (4)),
and even rises slightly in 1970 (1.57 vs. 1.49 in baseline; column (2)). This counterintuitive
result arises because unskilled cohorts experience a more pronounced decline in effective labor
units when SBTC is suppressed. Indeed, in an environment with strong SBTC and imperfect

vestments, which in turn boosts human capital today.
24We highlight the most important results in this section and report the full set of model predictions in

Appendix E .
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substitutability between skilled and unskilled labor, unskilled workers benefit indirectly from
the rising productivity of skilled workers.

No macro trend (Xt): Steeper lifetime wage growth, smaller college premium.
Next, suppose that aggregate shocks Xt remain fixed at their 1970 value instead of experi-
encing the series of negative shocks portrayed in Figure 5. According to our model, lifetime
wage growth would have been substantially higher for post-1970 cohorts. For example, wage
growth for the 1990 cohort would have reached 2.67 for unskilled and 3.14 for skilled workers,
compared to 1.58 and 1.98 in the baseline (Table 4, column (3)). The college premium in
2020 would have dropped to 1.69 (Table 5, column (4)), versus 1.93 in the baseline. This
scenario illustrates that Xt acts as a level shifter across all groups but disproportionately
benefits low-skilled workers, compressing the college premium. In this sense, the aggregate
skill-neutral shifter Xt is an equalizing force.

No cohort trend (h0,c, αc): lifetime wage growth rebounds, lower college premium.
Finally, in Tables 4 and 5, we consider the effect of freezing human capital endowments and
learning ability at their estimated 1970 levels, thereby halting the decline observed among
more recent cohorts. As shown, this raises wage growth across the board, especially for
skilled workers: 2.19 (Table 4, column (3)), versus 1.98 in the baseline. At the same time,
this leads to a lower college premium in 2020, namely 1.59 (Table 5, column (4)) versus
1.93 in the baseline. This scenario underscores that the post-1970 decline in h0,c and αc,
especially among unskilled workers, is a key structural driver of stagnating wage profiles and
rising inequality.

5.2 Disabling endogenous responses

In the second set of counterfactual experiments, we examine the consequences of suppress-
ing two mechanisms: cohort-specific changes in educational attainment reflected in Ls

c and
endogenous changes in the aggregate skill prices Rz

t for z ∈ {s, u}. The stark result emerg-
ing from these experiments is that in the absence of such adjustment mechanisms, wage
inequality rises massively.

No education expansion (Ls
c): Asymmetric wage profiles and explosive college

premium. If the share of college-educated workers had been held constant at its 1970
level, the college premium in 2020 would rise to 3.03 (Table 5, column (4)) versus 1.93 in the
baseline. Skilled workers would in addition experience lifetime wage growth by 2.29, while
unskilled workers would experience near-stagnation (a lifetime wage growth rate of 1.12;
Table 4, column (3)). The intuition is straightforward: the scarcity of skilled labor inflates
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Table 4: Lifetime wage growth

Cohort c
Years t in the labor market

1940
1940− 1970

1970
1970− 2000

1990
1990− 2020

(1) (2) (3)
Unskilled workers
Baseline 3.35 1.42 1.58
Aggregate and cohort-specific shocks:

Fixed dt 3.30 0.73 0.71
Fixed Xt 3.36 2.22 2.67
Fixed {hz0,c, αz

c}, z ∈ {s, u} 1.61 1.34 1.48
Aggregate and cohort-specific responses:

Fixed Ls
c 3.33 1.16 1.12

Exogenous Rz
t , z ∈ {s, u} 1.64 0.70 0.73

Skilled workers
Baseline 3.29 1.67 1.98
Aggregate and cohort-specific shocks:

Fixed dt 3.36 0.72 0.80
Fixed Xt 3.27 2.48 3.14
Fixed {hz0,c, αz

c}, z ∈ {s, u} 1.83 1.77 2.19
Aggregate and cohort-specific responses:

Fixed Ls
c 3.32 1.93 2.29

Exogenous Rz
t , z ∈ {s, u} 11.75 1.58 1.52

note: : Lifetime wage growth as measured by yz30−39,c/y
z
0−9,c. ‘Baseline’ presents model outcomes with the full dynamics

coming from aggregate and cohort-specific shocks and responses. The rest of the table presents model outcomes where

either aggregate or cohort-specific shocks or responses are held constant at their estimated 1970 value(s) in 1970 (or, in

the case of Rz
t , follow an exogenous time path after 1970).

Table 5: The college premium

Year t 1940 1970 1990 2020
(1) (2) (3) (4)

Baseline 1.46 1.49 1.51 1.93
Aggregate and cohort-specific shocks:

Fixed dt 1.45 1.57 1.55 1.97
Fixed Xt 1.46 1.46 1.40 1.69
Fixed {hz0,c, αz

c}, z ∈ {s, u} 1.51 1.55 1.52 1.59
Aggregate and cohort-specific responses:

Fixed Ls
c 1.45 1.48 1.82 3.03

Exogenous Rz
t , z ∈ {s, u} 0.86 1.20 1.81 3.53

note: The college premium as measured by Y s
t /Y u

t . ‘Baseline’ presents model outcomes with the full dynamics coming

from aggregate and cohort-specific shocks and responses. The rest of the table presents model outcomes where either

aggregate or cohort-specific shocks or responses are held constant at their estimated 1970 value(s) in 1970 (or, in the case

of Rz
t , follow an exogenous time path after 1970).
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its price. In this sense, education choices act as a stabilizing force – when more people enroll
in college in response to high returns, it prevents the college premium from spiraling upward.
This dynamic feedback is typically absent from partial equilibrium analyses. In addition, as
skilled workers benefit from a booming price of their skill, their expected wage growth over
careers becomes much larger than in baseline.

Exogenous skill prices (Rz
t , η = 1): Extreme inequality and output collapse.

Finally, we assess the importance of endogenous adjustments in skill prices. To do so, we
impose a linear production function (η = 1), as in Guvenen & Kuruscu (2010), which implies
that the rental price of effective labor units is entirely determined by the aggregate shifters
(Xt and dt) and no longer responds to endogenous variation in labor supply.

As Table 5 shows, breaking the price feedback loop by making Rz
t exogenous pushes the

college premium to 3.53 in 2020 (Table 5, column (4)) versus 1.93 in the baseline). Moreover,
Table 4 indicates that skilled workers from the 1990 cohort still see their earnings increase
over the life cycle (1.52 versus 1.98 in the baseline; Table 4, column (3)), while unskilled
workers experience near-zero wage growth (0.73). Additionally, in appendix Figure 13, we
report that aggregate output in this experiment remains essentially stagnant over the period
analyzed (in other words, it drops relative to output in the baseline experiment). This high-
lights the fundamental equilibrating mechanism coming from skill prices. In the benchmark
model (endogenous Rz

t ), Rs
t and Ru

t grow at the same rate, whereas in the counterfactual sce-
nario (exogenous Rz

t ) they diverge owing to differences in the paths of Xt and dt. Absent this
mechanism, wage inequality explodes and aggregate performance is severely compromised.

5.3 Sensitivity analysis

The results of our counterfactual scenarios are based on a structural model and thus depend
on the quality and fit of our model estimation. In Appendix F, we conduct a detailed analysis
of local identification of our model’s parameters. We find that the Jacobian matrix has full
rank, indicating that no parameter is redundant or a linear combination of others.

Our model assumes that agents have perfect foresight over the future paths of aggregate
shocks and prices. In Appendix G, we show that our findings remain valid even under the
extreme assumption of myopic behavior. The intuition is straightforward: what matters for
human capital decisions is the expected change in its price (see Figure 6); this price steadily
increases for both skill levels, so that even myopic workers are incentivized to invest more
in OJT and to pursue higher education in an economy where the price of human capital is
expected to rise. Some quantitative differences relative to the baseline model emerge, but
the main results are preserved under myopic expectations.
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Finally, the baseline results are obtained using data on full-time, full-year working men.
We report in Appendix H stylized facts, estimated parameters, and counterfactual experi-
ments when full-time, full-year working women are included in the sample. We show that
our main results continue to hold.

6 Conclusion

Our paper sheds new light on the factors that have contributed to the evolution of U.S. wage
inequality in the post-WWII era. First, aggregate technological shocks affecting all job and
worker types as well as skill-biased technological change. Second, cohort-specific changes in
the parameters governing human capital accumulation, including human capital endowments
upon labor market entry and the ability to learn over the working life. Third, endogenous
adjustments in educational attainment and equilibrium responses of skill prices. We assess
the role of these forces within a unified general equilibrium model matching cross-sectional
and cohort wage data.

Based on counterfactual experiments, we find that changes in the macro environment,
whether technological or sociodemographic, are necessary to reproduce the observed pattern
of rising wage inequality since the 1970s. The deterioration of cohort-specific human capital
production parameters plays a critical role in the flattening of lifetime wage profiles, especially
for non-college workers. Endogenous mechanisms, education choices and price feedbacks, act
as stabilizing forces. Without them, the increase in the college premium and the rebound of
lifetime wage profiles become extreme.

While we do not simulate specific policy interventions, the logic of the model itself –
how education and skill accumulation decisions interact with general equilibrium prices and
the dynamics of overlapping cohorts – yields important insights. For instance, the model
suggests that tuition subsidies or broad-based expansion of college access may have indirect
effects on older generations through general equilibrium wage effects. Thus, the impact of
such policies should not be assessed solely based on their direct beneficiaries – young workers.
The model also highlights a forward-looking disincentive effect that can arise in periods of
rapid educational expansion. When individuals expect a continued rise in the supply of
skilled workers, they anticipate lower future returns to skill and rationally scale back their
effort in post-education human capital accumulation, particularly OJT. This mechanism
suggests that increasing the number of college graduates may not translate into proportional
gains in the effective skill level of the workforce. Hence, without complementary policies to
sustain quality, educational expansions may yield limited gains in productivity or equity.
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Online appendix

A Data appendix

We use decennial IPUMS US Census data from 1940 through 2020.25 Following standard
practice in the literature (Katz & Murphy (1992), Jeong et al. (2015), among others), we
focus our main analysis on full-time, full-year male workers (with results for women reported
in Appendix H). Specifically, we include only employed men working for wages who report
at least 35 weekly hours and over 39 weeks of work during the year.26 We exclude workers in
farming and fishery occupations as well as members of the armed forces. Finally, we restrict
our sample to individuals aged 16 to 59.

Non-college workers include high school graduates and high school dropouts, while college
workers include individuals with some college, BA, MA, and PhD degrees.27

Throughout the paper, we refer to cohorts by the decade they entered the labor mar-
ket. We use “age” to mean “age in the labor market”, which corresponds to work experience
measured as years since completing education. We infer the age at which education ended
from completed education levels. This proxy is likely accurate for male workers, who expe-
rience fewer career interruptions than female workers. Given that Census data is collected
decennially, we categorize workers into four experience groups: 0-9 years of work experience
(“young” workers), 10-19 years, 20-29 years, and 30-39 years (“old” workers).

Our main earnings variable is the real weekly wage, calculated as annual wage divided
by the number of weeks worked. We use the CPI to convert all wages into 2010 dollars.

25We refer to our final data point as “2020” throughout the paper, though we use 2019 Census data as
our endpoint to avoid pandemic-related outliers from 2020.

26We follow Kong et al. (2018) to determine weekly hours worked.
27Note that we define skilled workers as those with some college or more, and unskilled workers as high

school graduates and dropouts. Other papers, such as Acemoglu & Autor (2011), compare only college
graduates versus high school graduates, so their college premium measures the relative wage between these
two specific groups. Our broader classification corresponds to our model’s requirement to partition workers
into two groups, while studies like Acemoglu & Autor (2011) aim to contrast groups with distinctly different
educational attainment levels.
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B Analytical solutions for the Ben-Porath model

This section presents analytical solutions for the Ben-Porath model. Most importantly, we
show that all structural parameters can be identified without imposing any normalization.

Proposition 1. The value functions V z
c,a are linear functions with respect to hzc,a:
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Proof. Guess that (15) holds at age a = 30 (the terminal age). Then Az
c,30 = Rz

c+30 and
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Using Equations (5), (15) and (16), the value function at age a is then
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which satisfies Equation (15) and yields expressions for Az
c,a and Bz

c,a(α
z
c).

Proposition 2. The parameter sets {hzc,0, αz
c , R

z
c+a}30a=0 and {hz

c,0

λ
, αz

c

λ1−ζz , λR
z
c+a}30a=0 generate

different wage sequences {yzc,a}30a=0.

Proof. Note that Az
c,a = Rz

c+a+β(1− δz)Az
c,a+1 ⇒ Az

c,a =
∑30

i=a[β(1− δz)]i−aRz
c+i. Therefore,

multiplying Rz
c+i by λ also multiplies Az

c,a by λ, while leaving Bz
c,a(α

z
c) and ezc,ahzc,a unchanged.

Using Equations (5) and (16), we obtain:
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Compare the wage sequences generated by the parameter set {hzc,0, αz
c , R

z
c+a}Aa=0 vs. param-
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eter set {hz
c,0

λ
, αz

c

λ1−ζz , λR
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The wage sequences are identical if and only if ezc,a is identical under both parameter sets. We
show that this cannot hold. Indeed, compare the hzc,a obtained under each set of parameters:
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However, ezc,ahzc,a is identical under both sets of parameters. This in turn implies that
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,

showing that the two parameter sets lead to different ezc,a.

Proposition 2 demonstrates that the solution of the Ben-Porath model allows to identify
all structural parameters without imposing any normalization.
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C Estimation restrictions
Out-of-sample data estimation. The six wage moments {y1910,1910+a}20a=0, {y1920,1920+a}10a=0

and y1930,1930+10 before 1940 are missing from the data. We estimate them under the assump-
tion that the wage profile is stable before 1940 and given by yc,c+a = µ̂c,0 + µ̂1 × a+ µ̂2 × a2,
where the estimated values µ̂1 and µ̂2 are obtained from the average wage profiles of the
1940, 1950, and 1960 cohorts. By observing y1910,1910+30, y1920,1920+20, y1930,1930+10 in the
1940 cross-sectional data, we then recover {µ̂c,0}1930c=1910 as follows:

y1930,1930 = µ̂1930,0 where y1930,1930+10 = µ̂1930,0 + µ̂1 × 10 + µ̂2 × 102,

y1920,1920 = µ̂1920,0 where y1920,1920+20 = µ̂1920,0 + µ̂1 × 20 + µ̂2 × 202,

y1910,1910 = µ̂1910,0 where y1910,1910+30 = µ̂1910,0 + µ̂1 × 30 + µ̂2 × 302,

which in turn yields the estimated values of {{yc,c+a}30a=0}
1930

c=1910.
The same logic applies to y2000,2000+10, {y2010,2010+a}10a=0, and {y2020,2020+a}30a=10. The

2020 cross-sectional data provides us with the observed values of y2020,2020, y2010,2010+10, and
y2000,2000+20, which we use together with:

y2020,2020 = µ̂2020,0 where y2020,2020 = µ̂2020,0,

y2010,2010 = µ̂2010,0 where y2010,2010+10 = µ̂2010,0 + µ̂1 × 10 + µ̂2 × 102,

y2000,2000 = µ̂2000,0 where y2000,2000+20 = µ̂2000,0 + µ̂1 × 20 + µ̂2 × 202,

where the estimated µ̂1 and µ̂2 are obtained from the average wage profiles of the 1970, 1980,
and 1990 cohorts. This yields estimated values of {{yc,c+a}30a=0}

2020

c=2000.

Stationarity assumptions. With these out-of-sample estimated data at hand, the model
can be estimated for the cohorts entering the labor market between 1910 and 2020 under
the following stationarity assumptions:

• before (and including) the 1910 decade the economy is at steady state, i.e., yC,C+a =

yC′,C′+a for all C ∈ (−∞, 1900] and C ′ = 1910, with these steady-state restrictions
propagating as shown in Table 6;

• after 2020, the steady-state restrictions propagate as shown in Table 7.

These stationarity, or steady-state, assumptions make it possible to compute the general
equilibrium of the model before 1930 and after 2020 – periods during which individuals from
the earlier cohorts (prior to and including 1900) and future cohorts (after 2030) are active
in the labor market.
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Table 6: Propagation of steady-state restrictions — Before 1910

30 y1910,1910+30 y1910,1910+30 y1910,1910+30 y1910,1910+30 y1910,1910+30

20 y1910,1910+20 y1910,1910+20 y1910,1910+20 y1910,1910+20 y1920,1920+20

10 y1910,1910+10 y1910,1910+10 y1910,1910+10 y1920,1920+10 y1920,1930+10

0 y1910,1910 y1910,1910 y1920,1920 y1930,1930 y1940,1940
C (−∞, 1900] 1910 1920 1930 1940

note: The gray-shaded values correspond to the restrictions implied by the stationarity assumption, which is fully effective

prior to and including the 1900 cross-section.

Table 7: Propagation of steady-state restrictions — After 2020

30 y1990,1990+30 y2010,2000+30 y2010,2010+30 y2020,2020+30 y2020,2020+30

20 y2000,2000+20 y2010,2010+20 y2020,2020+20 y2020,2020+20 y2020,2020+20

10 y2010,2010+10 y2020,2020+10 y2020,2020+10 y2020,2020+10 y2020,2020+10

0 y2020,2020 y2020,2020 y2020,2020 y2020,2020 y2020,2020
C 2020 2030 2040 2050 [2060,+∞)

note: The gray-shaded values correspond to the restrictions implied by the stationarity assumption, which is fully effective

starting with the 2060 cross-section.
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D Model fit: Additional results
Wages yza,c. Figure 8 shows that the model provides a good fit for wages of all cohorts,
at all ages, for both unskilled and skilled workers. Given the model’s good fit for wages, it
also reproduces the phenomenon known as “wage flattening” – and its reversal for post-1970
cohorts, which we refer to as “wage steepening”.
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Figure 8: Wages by skill, age and cohort: Model vs. data
Source: IPUMS U.S. Census 1940-2019 and authors’ own calculations. Real weekly wage (in 2010 U.S. dollars) of full-time,

full-year male workers. Data: light blue for early-career wages, magenta for late-career wages. Model: blue for early-career

wages, red for late-career wages.

Panel (a) of Figure 8 displays wage profiles across cohorts 1940 through 1990 for college
workers. College workers entering the labor market in 1940 earn $474 per week initially,
rising to $733 in 1950, $1,225 in 1960, and $1,500 in 1970 when they have 30-39 years of
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experience. Dividing late-career wages by early-career wages yields wage growth of 3.2-fold
for the 1940 cohort, as shown in panel (b). For the 1970 cohort, college workers’ wages grow
by only 1.7-fold over their careers – the phenomenon the literature terms “wage flattening.”

Panel (b) of Figure 8 also demonstrates that “wage steepening” better describes post-
1970s workers’ experiences. Wages grow 1.8-fold for the 1980 cohort and 1.9-fold for the
1990 cohort. Panel (a) suggests that wage flattening and steepening are driven primarily by
rising early-career wages through the 1970 cohort, followed by declining early-career wages
for subsequent cohorts.

Panels (c) and (d) of Figure 8, which display wages by age and cohort for non-college
workers, show similar dynamics in life-cycle wage profiles. However, a notable difference
emerges in wages for workers with 30-39 years of experience: they decline starting with the
1970 cohort for non-college workers while continuing to rise for college workers. As can be
seen, non-college workers experience wage steepening because early-career wages fall even
more dramatically than late-career wages.

Education choice Ls
c. Recall that in our model the distribution G(ε) of education costs

yields the share of college workers in each cohort through: Ls
c = G(ε̃c) = G(V s

c −V u
c ). G(ε) is

assumed to be log-normal, and the estimated parameters are µε = 7.0583 and σε = 0.7879.
Table 8 reports the model-predicted relative supply of skilled labor among early-career

workers, Ls
c. The model matches the increase in the share of skilled labor for each cohort

observed in the data. Interestingly, the model captures the rapid increase in college education
prior to 1990 followed by a subsequent slowdown.

Table 8: Share of college workers among young workers (Ls
c): Model vs. data

Year 1940 1950 1960 1970 1980 1990 2000 2010 2020
Data 0.2616 0.2946 0.3772 0.4146 0.5031 0.6003 0.6193 0.6383 0.6453
Model 0.2438 0.2946 0.4056 0.4259 0.4723 0.6123 0.6566 0.6407 0.6453
Diff. -0.0178 0.0000 0.0284 0.0114 -0.0309 0.0119 0.0373 0.0023 0.0000

Source: IPUMS U.S. Census 1940-2019 and authors’ own calculations. ‘Diff.’: difference between the model and data.
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E Counterfactual experiments
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Figure 9: Counterfactual dynamics: Holding Xt constant after 1970
note: Main model outcomes (life-cycle wages, dynamics of aggregate prices and wages, decomposition of output growth)

under constant skill-neutral technological change (Xt) after 1970.
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Figure 10: Counterfactual dynamics: Holding dt constant after 1970
note: Main model outcomes (life-cycle wages, dynamics of aggregate prices and wages, decomposition of output growth)

under constant skill-biased technical change (dt) after 1970.
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Figure 11: Counterfactual dynamics: Holding {hz0,c, αz
c} constant after 1970

note: Main model outcomes (life-cycle wages, dynamics of aggregate prices and wages, decomposition of output growth)

when values of the cohort-specific human capital parameters {hz
0,c, α

z
c} are held constant after 1970.
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Figure 12: Counterfactual dynamics: Holding Ls
t constant after 1970

note: Main model outcomes (life-cycle wages, dynamics of aggregate prices and wages, decomposition of output growth)

under constant supply of young college-educated workers (Ls
t ) after 1970.
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Figure 13: Counterfactual dynamics: Exogenous Rz
t , z ∈ {s, u} (η = 1)

note: Main model outcomes (life-cycle wages, dynamics of aggregate prices and wages, decomposition of output growth)

under the assumptions of perfect substitutability between skills.
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F Model identification: Additional results

The high-dimensional nature of our macroeconomic model makes it difficult to provide a
formal proof of identification. However, we can assess local identification by measuring the
sensitivity of the model’s moments to changes in parameter values.

Jacobian matrix. We have 105 empirical targets: 48 real weekly wages for each skill level
and shares of college young workers for 9 cohorts. We first focus on the 48 cohort-specific
parameters governing human capital accumulation – specifically, the parameters hz0,c and αz

c

for 12 cohorts and 2 skill levels z ∈ {s, u}. Then we analyze the 4 parameters that are
common across cohorts – the elasticity of substitution η, the curvature ζz, z ∈ {s, u}, and
depreciation rate δ.

We vary each individual parameters θi = {θ+i , θ−i } by applying a 10% perturbation,
holding others fixed at their estimated values. Each parameter change induces changes in
the model’s moments, denoted here as mk with k = 1, . . . , 105. We then compute the
Jacobian matrix J(θ) of dimension 105 × 52, where each element of the Jacobian matrix
represents the change in moment k divided by the change in parameter θi: J(θi)k =

m+
k −m−

k

θ+i −θ−i
.

We find that the Jacobian matrix has full rank, indicating that no parameter is redundant
or a linear combination of others.

Heatmaps. The heatmap in Figure 14 represents the absolute values of the elements of
the Jacobian matrix for cohort-specific parameters governing human capital accumulation
and wage-related moments.28 Specifically, on the vertical axis, we report model parameters
estimated for 12 cohorts from 1910 to 2020, organized as follows: Rows 1-12 show hs0,c (initial
human capital upon labor market entry) for skilled workers, one per cohort. Rows 13-24 show
hu0,c for unskilled workers. Rows 25-36 show αs

c (returns to on-the-job training) for skilled
workers. Rows 37-48 show αu

c for unskilled workers. On the horizontal axis, we report the
96 moments corresponding to real weekly wages. The left side of the Figure displays real
wages of skilled workers across 12 cohorts from 1910 to 2020, with four moments per cohort
corresponding to the four life-cycle ages. The right side shows moments for unskilled workers’
real wages across the same cohorts.

The Jacobian heatmap reveals a diagonal sensitivity pattern, indicating that each pa-
rameter predominantly affects moments corresponding to its associated group (skilled or
unskilled of the corresponding cohort). This structure supports correct specification and
local identification of the parameters. Off-diagonal elements reflect the general equilibrium
interactions embedded in the model. Since different generations interact through the pro-

28To improve legibility, Figure 14 is scaled by 1,000, i.e., the figure reports |J(θi)k|/1000.
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Figure 14: Jacobian matrix for cohort-specific parameters governing human capital
accumulation: Moments on real weekly wages xxxxxxxxxxx

note: Absolute values of the elements of the Jacobian matrix for parameters hz
0,c and αz

c , with z ∈ {s, u}, on the vertical

axes and real weekly wage moments on the horizontal axes.

duction function at any given time, parameter perturbations affect not only their direct
cohort-specific moments but also, to a lesser extent, moments for other workers and cohorts.
The lighter intensity of these off-diagonal effects indicates that general equilibrium chan-
nels are present but do not dominate the direct identification structure, consistent with the
model’s intended economic mechanisms.

Next, in Figure 15 we present the absolute values of the elements of the Jacobian matrix
for the same cohort-specific model parameters but we focus now on moments related to the
supply of college young workers, i.e., Ls

c for cohorts c = 1940 through 2020. The Jacobian
heatmap displays a diagonal sensitivity pattern, indicating, again, that each parameter pre-
dominantly affects the moments corresponding to its associated group (skilled or unskilled,
for the relevant cohort c).
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Figure 15: Jacobian matrix for cohort-specific parameters governing human capital
accumulation: Share of college young workers xxxxxxxxxx

note: Absolute values of the elements of the Jacobian matrix for parameters hz
0,c and αz

c , with z ∈ {s, u}, on the vertical

axes and shares of college young workers on the horizontal axes.

Finally, Figure 16 displays the Jacobian heatmap for the parameters η, ζs, ζu, and δ.
Since they are common across cohorts, we expect variations in these parameters affect all
cohorts. On the horizontal axes of this Figure, we report both moments for real weekly
wages (on the left side of the axes) and the shares of college young workers in each cohort
(on the right-most side of the axes).

The parameter η governs the elasticity of substitution between skilled and unskilled labor
in the production function. As shown in the top panel of Figure 16, it influences outcomes
for all cohorts.

The parameter ζs affects the curvature of the human capital production function for
skilled workers. As expected, changes in ζs have a stronger impact on empirical moments
related to skilled workers. To a lesser extent, they also influence moments related to unskilled
workers. This pattern is consistent with the general equilibrium interactions embedded in the
production function, where changes in skilled labor also affect the marginal productivity of
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note: Absolute values of the elements of the Jacobian matrix for parameters η, ζs, ζu and δ, on the vertical axes and

moments on real weekly wages and shares of college young workers on the horizontal axes.

unskilled labor. Likewise, we see in Figure 16 that variations in ζu primarily affect moments
related to unskilled workers, while also generating spillover effects on the outcomes of skilled
workers.

The rate of human capital depreciation δ naturally affects all cohorts. Consistent with
the model’s economic mechanisms, its impact is stronger on wages observed later in the life
cycle – as shown by the darker intensity for late-career wages of each cohort.
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G The model under myopic expectations

In our model and numerical experiments, SBTC is the primary factor behind the observed
evolution of the college premium, changes in the cohort-specific parameters for human capital
accumulation are the most important drivers of changes in life-cycle wage profiles, and general
equilibrium adjustments are key for stabilizing wage inequality. In this section, we show that
these results continue to hold under the assumption of myopic behaviors.29

G.1 Solving the model under workers’ myopic expectations

Suppose that workers hold myopic expectations regarding the dynamics of the two human
capital pricesRz

t , z ∈ {s, u}. At time t, workers observe the current pricesRz
t and pricesRz

t−10

that have prevailed in the recent past. They make decisions on human capital investments
based on the following FOC:

Ωz
a,c = β

Rz
t

Rz
t−10

[
1 + (1− δ)Ωz

a+10,c

]
with Ωz

30,c = 0, t = a+ c. (17)

Equation (17) is similar to (3) in the baseline model, but with the key difference that the
expected increase in the price of human capital is assessed in a myopic fashion. Specifically,
instead of Rz

t+10

Rz
t

(the perfect foresight scenario prevailing in Equation (3) of the baseline

model), workers use Rz
t

Rz
t−10

(the growth rate of the price of human capital in the recent past)
to assess the future value of these investments.

We solve the OLG macroeconomic model similarly to the baseline, except that workers’
decisions are now based on myopic expectations (Equation (17)). In particular, the prices
of human capital Rs

t and Ru
t reflect the actual stocks of aggregate units of efficient labor at

time t, which may differ from workers’ expectations.

G.2 Counterfactual experiments

Table 9 reports the results of counterfactual experiments under myopic expectations. It
shows that the key mechanisms identified in Section 5.2 – endogenous schooling decisions
and endogenous skill prices – continue to play a critical role in reducing wage inequality, even
when workers are imperfectly anticipate the future path for the prices of human capital.

29Guvenen & Kuruscu (2010) investigate the implications of imperfect foresight and Bayesian learning in a
Ben-Porath model of labor earnings with rich dimensions of worker heterogeneity. They find that their result
regarding the response of the college wage premium to SBTC is not critically dependent on the assumption
of perfect foresight.
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Table 9: Counterfactual experiments under myopic expectations

College premium
Year 1940 1970 1990 2020

Baseline 1.46 1.49 1.51 1.93
Fixed Ls

c 1.48 1.47 1.76 3.06
Exogenous Rz

t , z ∈ {s, u} 0.84 0.82 1.67 3.55
Lifetime wage growth
Cohort 1940 1970 1990
Unskilled workers

Baseline 3.35 1.42 1.58
Fixed Ls

c 2.00 1.53 1.08
Exogenous Rz

t , z ∈ {s, u} 1.53 0.86 0.64
Skilled workers

Baseline 3.29 1.67 1.98
Fixed Ls

c 1.72 2.28 2.80
Exogenous Rz

t , z ∈ {s, u} 2.36 2.69 1.67

note: Model outcomes (college premium and lifetime wage growth) under myopic expectations. ‘Baseline’ presents model

outcomes with the full dynamics coming from aggregate and cohort-specific shocks and responses. The rest of the table

presents model outcomes where either aggregate or cohort-specific responses are held constant at their estimated 1970

value(s) in 1970 (or, in the case of Rz
t , follow an exogenous time path after 1970).

College premium. When the supply of skilled labor, Ls
t , is held fixed at its 1970 level,

the college premium rises much more steeply than in the baseline experiments, reaching 3.06
in 2020 (Table 9). Similarly, when the prices of human capital Rz

t are exogenous (instead
of adjusting endogenously, as in the baseline model), the college premium reaches an even
higher level of 3.55 in 2020 (vs. 1.93 in baseline). These counterfactual results confirm that
both endogenous education and price adjustments play a major role in dampening the rise
of the college wage premium.

Lifetime wage growth. In Table 9, we observe the same stabilizing role of endogenous
mechanisms for the behavior of lifetime wage growth profiles.

Under myopic expectations, wages at the end of a worker’s career are 58% higher than
early-career wages for unskilled individuals from the 1990 cohort. When skilled labor supply
is held fixed at its 1970 level, the 1990 cohort’s life-cycle wage growth falls to 1.08. Un-
der exogenous skill prices, it declines further to 0.64 – a dramatic decline illustrating the
importance of general equilibrium adjustments.

For skilled workers, the life-cycle growth rate of wages is 1.98 for the 1990 cohort. Fixing
education at the 1970 level leads to a steeper profile for this cohort (a 2.80 growth rate),
while exogenous skill prices reduces the growth rate to 1.67, showing that price feedbacks
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are essential in moderating the trajectory of skilled wage growth.
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H Including women

In this section, we report how the results change when full-time, full-year female workers are
also included in the sample of our analysis. Most of our main result continue to hold.

H.1 Stylized facts and model fit

Figure 17 displays life-cycle wage profiles by education group based on the broader sample
with both men and women. As expected, the inclusion of women in the sample leads to lower
observed wage levels, reflecting gender differences in hours worked, differences in occupations,
and possibly other due to other factors driving the gender wage gap. Despite the differences
in wage levels, the key qualitative patterns shown in Figure 8 of the main text are also present
in Figure 17: life-cycle wage profiles become flatter for the successive cohorts entering the
market after 1940, and then become steeper for the post-1970 cohorts. This observation
reinforces the conclusion that the flattening/steepening pattern is a fundamental feature of
U.S. wage dynamics in the post-WWII era.

Figure 18 shows that the model continues to replicate the key empirical patterns when
the sample includes both men and women. In Panel (a), the model matches the double dip
in the college premium (notably in 1950 and 1970) as well as the sharp increase after 1980,
consistent with the dynamics shown in Figure 2 of the main text based on the sample with
male workers only. Panel (b) reports the evolution of overall wage inequality (coefficient of
variation). Although the levels are again lower in the model compared to the data (reflecting
the limited degrees of worker heterogeneity included in the model), it reproduces the broad V-
shape behavior of inequality over time, including the stagnation in the 1970s and the upward
trend in recent decades. In sum, the model calibrated to data that includes both men and
women remains consistent with the key qualitative patterns characterizing between-group
wage inequality (the college premium) and overall wage dispersion.

H.2 Estimated parameters

Table 10 reports the estimated parameter values for the analysis that includes male and
female workers. They are essentially similar to the baseline parameter values. The elasticity
of substitution between skilled and unskilled workers is somewhat higher yet not too far from
that in the main text, namely 2.63 vs. 2.06 in our baseline analysis.

Figure 19 reports the estimated cohort-specific parameters for human capital accumula-
tion when the sample analyzed includes both men and women. The estimated values closely
mirror the baseline results shown in Figure 4. Human capital parameters vary significantly
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Figure 17: Wages by skill, age and cohort (including women): Model vs. data
note: IPUMS U.S. Census 1940-2019 and authors’ own calculations. Real weekly wage (in 2010 U.S. dollars) of full-time,

full-year male and female workers. Data: light blue for early-career wages, magenta for late-career wages. Model: blue for

early-career wages, red for late-career wages.

across cohorts, with a hump-shaped profile for the endowments in human capital upon entry
and a declining trend in the learning ability parameters, particularly for unskilled workers.
As in the baseline analysis, we observe a persistent asymmetry in favor of skilled workers,
who enter the labor market with higher initial endowments in human capital throughout.

Next, Figure 20 displays the paths of the two aggregate shocks Xt and dt for the model
estimated on the broader sample with the two gender groups. Their dynamics are similar
to those displayed on Figure 5 in the main text. In Figure 21, we also see that that the
relative price of skills, Rs

t/R
u
t , remains relatively stable over time, consistent with our baseline

56



1940 1950 1960 1970 1980 1990 2000 2010 2020

year

1.2

1.3

1.4

1.5

1.6

1.7

1.8

1.9

model

data

(a) College premium

1940 1950 1960 1970 1980 1990 2000 2010 2020
0.55

0.6

0.65

0.7

0.75

0.8

0.85

0.9

0.95

1

1.05

0.2

0.22

0.24

0.26

0.28

0.3

0.32

0.34

0.36

0.38

0.4

data

model

(b) Changes in overall wage inequality

Figure 18: College premium and overall wage inequality (including women):
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note: IPUMS U.S. Census 1940-2019 and authors’ own calculations. Real weekly wage (in 2010 U.S. dollars) of full-time,
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Table 10: Common parameter values (including women)

Parameters Value
δ Human capital depreciation rate 10%
ζs Curvature of human capital prod. function (eh)ζ

s , skilled 0.75
ζu Curvature of human capital prod. function (eh)ζ

u , unskilled 0.75
η Elasticity of substitution between skilled and unskilled 1

1−η
2.63

note: Values of parameters shared across cohorts for the model estimated on the broader male and female sample.
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Figure 19: Cohort-specific parameter values {αz
c , h

z
0,c}2020c=1940, z ∈ {s, u} (incl. women)

note: Values of cohort-specific parameters for the model estimated on the broader male and female sample.
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findings (Figure 6 in the main text). Given the widening gap in average wages between skilled
and unskilled workers, this stability in relative prices implies a substantial increase in relative
labor efficiency. This interpretation reinforces one of the core messages of the baseline model:
wage inequality is primarily driven by changes in the quality (rather than the price) of labor.
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Figure 20: Aggregate shocks (when including women)
note: Aggregate shocks of skill-neutral and skill-biased technological change in the model estimated on the broader male

and female sample.
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Figure 21: Price of human capital and average wages (including women)
note: Price of human capital and average wages in the model estimated on the broader male and female sample.
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H.3 Robustness of main results

Table 11 reports the results of counterfactual experiments from the model based on the
broader male and female sample.

Table 11: Counterfactual experiments (including women)

College premium
Year 1940 1970 1990 2020

Baseline 1.47 1.50 1.52 1.84
Fixed Ls

c 1.47 1.49 1.77 2.78
Exogenous Rz

t , z ∈ {s, u} 1.06 1.10 1.62 2.93
Lifetime wage growth
Cohort 1940 1970 1990
Unskilled workers

Baseline 3.18 1.35 1.52
Fixed Ls

c 3.16 1.14 1.15
Exogenous Rz

t , z ∈ {s, u} 2.00 0.86 0.89
Skilled workers

Baseline 3.07 1.54 1.83
Fixed Ls

c 3.10 1.77 2.07
Exogenous Rz

t , z ∈ {s, u} 7.25 1.80 1.83

note: Model outcomes (college premium and lifetime wage growth) estimated on the broader male and female sample.

‘Baseline’ presents model outcomes with the full dynamics coming from aggregate and cohort-specific shocks and responses.

The rest of the table presents model outcomes where either aggregate or cohort-specific responses are held constant at

their estimated 1970 value(s) in 1970 (or, in the case of Rz
t , follow an exogenous time path after 1970).

College premium. When the supply of skilled labor is fixed at its 1970 level, the college
premium reaches 2.78 in 2020, compared to 1.84 in the baseline analysis restricted to male
workers. When we hold the prices of skills Rz

t fixed at their 1970 levels, the college premium
rises even further to 2.93. These results reiterate the finding that endogenous responses in
both education and prices significantly reduce wage inequality.

Lifetime wage growth. In Table 11, we find that the lifetime growth rate of wages is
1.52 for unskilled workers from the 1990 cohort, according to the model estimated with data
from the male and female sample. This growth is significantly reduced when the supply of
college young worker is held constant at its 1970 level (1.15), and it even drops below one
(0.89) under exogenous skill prices.

For skilled workers, the life-cycle growth rates of wages is 3.07 for the 1940 cohort and 1.83
for the 1990 cohort. When the share of college-educated workers among young individuals is
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held constant after 1970, the wage profile becomes steeper for the 1990 cohort (2.07), while
using exogenous skill prices after 1970 reduces life-cycle growth rates to 1.83.

In sum, the lifetime wage profiles of non-college workers experience strong (counter-
factual) flattening for recent cohorts when general equilibrium effects are suppressed. For
college-educated workers, price responses play a key role in shaping lifecycle profile of wages
and, notably, in generating wage steepening among recent cohorts of workers.
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