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Résumé / Abstract

Nous étudions la classe de jeux différentiels dont l�équation de transition

et les contraintes sont caractérisées par l�homogénéité du premier degré. Nous

prouvons que si la fonction d�objectif possède l�homogénéité du degré ", alors la

meilleure réponse aux stratégies markoviennes qui possèdent l�homogénéité du

premier degré doit avoir la même propriété, et la fonction de valeur est caractérisée

par l�homogénéité du degré ". On obtient un résultat similaire dans le cas d�une

transformation logarithmique de la fonction d�objectif. L�article contient trois

exemples.

We consider the class of differential games with transition dynamics

and constraints that are homogeneous of degree one. We show that if the

integrand of the objective function is homogeneous of degree ", then best replies

to linear homogeneousMarkov strategies are linear homogeneous, and the value

function is homogeneous of degree ". A parallel result holds when one applies

logarithmic transformation to the integrand. Examples are provided.
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1. Introduction

Di�erential games (and their discrete time counterparts) have been increasingly

used by economists to model strategic interactions of economic agents when the

state of the system changes over time. Often the strategy space is restricted to

include only strategies that condition actions on the current value of the state vari-

ables. These strategies are called Markov strategies. Even with this restriction,

the multiplicity of Nash equilibria is a common feature of di�erential games. Equi-

librium selection has been a subject of intensive research, and there is a plethora

of criteria for selection, with varying degrees of sophistication. In many models,
there exist equilibrium strategies that are linear in the state variables. The least
that can be said in favor of these equilibria is that linear rules are simple and save

computational e�orts.

In this paper, we show that for a class of model, best replies to linear strategies

are themselves linear. In section 2, the main propositions are stated and proved.
Section 3 contains some examples in continuous time. The discrete time versions
of the propositions are stated in Section 4, and an example in discrete time is
provided.

2. The Model in Continuous Time

We consider a continuous time di�erential game with two players. (Our results

generalize easily to games with N players.) There are n state variables and each
player has m control variables. These are denoted by x 2 Rn

+
, c1 2 Rm

+
and

c2 2 R
m
+
. The evolution of the state variables is given by :

�

x= F (x; c1; c2) , (2.1)

where F is a vector of n functions, F1,F2,..., Fn. There are also h inequality

constraints:

G (x; c1; c2) � 0 (2.2)

A player i is said to follow a Markov strategy if ci (t) is uniquely determined

by the current value of the state variables :

ci (t) = Xi (x (t)) (2.3)



where Xi is a function from Rn
+
to Rm

+
. Player i has the utility function Ui (ci).

Given player i's Markov strategy Xi, we de�ne player j's best reply to Xi

as a Markov strategy Xj such that for all t and all x (t), player j's integral of

discounted utility using Xj is at least as great as what he could get under any

other alternative strategy cj (t) = gj (x (t)). In symbols,

Vj (x (t)) =
Z
1

t
e�r(s�t)Uj [Xj (x (s))]ds �

Z
1

t
e�r(s�t)Uj [gj (x (s))] ds (2.4)

where x (s) is the solution of

�

x (s) = F [x;Xi (x) ;Xj (x)] ; s � t (2.5)

with x (t) given, and x (s) is the solution of

�

x (s) = F [x;Xi (x) ; gj (x)] ; s � t (2.6)

with x (t) given.
A Markov perfect equilibrium is a pair of Markov strategies that are best

replies to each other.

We can now state our main result:

Proposition 1 : Assume that Uj is homogeneous of degree � > 0, that Fand

G are homogeneous of degree one in (x; c1; c2), and that player j's opponent uses
a Markov strategy that is homogeneous of degree one. Then

(i) Player j's best reply is homogeneous of degree one in x.

(ii) Vj (x (t)) is homogeneous of degree � in x.

Proof : Without loss of generality, let t = 0 and x (0) = b. Given Xi and
given x (0) = b, player j's best reply Xj yields a time path for cj, which we denote

by

2



cj (s) = � (s; b) (2.7)

This time path solves the optimal control problem

Max

Z
1

0

e�rsUj (cj (s)) ds (2.8)

subject to

�

x= F [x;Xi (x) ; cj] ; G [x;Xi (x) ; cj] � 0 (2.9)

x (0) = b (2.10)

The associated time path for the state variables is denoted by

x (s) =  (s; b) (2.11)

We claim that if x (0) = �b (� > 0), then the control path �� (s; b) is feasible
and the associated path for the state variables is � (s; b). This is obvious, be-
cause F is homogeneous of degree one, and player i's strategy is, by assumption,
homogeneous of degree one.

It remains to prove that, with x (0) = �b, the feasible control path �� (s; b) is
optimal. We use the method of proof by contradiction. Suppose �� (s; b) is not

optimal for x (0) = �b. Then there exists a feasible consumption path ecj (s) such
that Z

1

0

e�rsUj (ecj (s)) ds >
Z
1

0

e�rsUj (�� (s; b)) ds (2.12)

It follows that, for x (0) = b, the feasible control 1

�
ecj (s) gives the following

integral of discounted utility ow :

I =
Z
1

0

e�rsUj

�
1

�
ecj (s)

�
ds =

Z
1

0

e�rs
�
1

�

��
Uj (ecj (s)) ds (2.13)

Therefore
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I >

�
1

�

�� Z 1

0

e�rsUj (�� (s; b)) ds =
Z
1

0

e�rsUj (� (s; b)) ds (2.14)

This is in contradiction with the fact that � (s; b) solves the optimal control

problem (2.8) subject to (2.9) and (2.10). Thus (i) is proved.

To prove (ii), we note that

Vj (b) =
Z
1

0

e�rsUj (� (s; b)) ds (2.15)

and, from (i),

Vj (�b) =
Z
1

0

e�rsUj (�� (s; b)) ds (2.16)

From (2.15), (2.16) and the assumption that Uj (cj)is homogeneous of degree

�,

Vj (�b) = ��Vj (b) (2.17)

This completes the proof of proposition 1.

It is easy to adapt the proof of proposition 1 to prove the following result :

Proposition 2 : Assume, instead, that Uj = ln [W (cj)], where W(cj) is
homogeneous of degree � > 0. Then, given the other assumptions stated in
proposition 1, the following results obtain:

(i) Player j's best reply is homogeneous of degree one in x:
(ii) Vj (x (t)) satis�es the following property:

Vj (�x (t)) =
� ln�

r
+ Vj (x (t)) (2.18)

Proof :
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Part (i) : replace (2.13) and (2.14) by

I =
Z
1

0

e�rs ln

�
W

�
1

�
ecj (s)

��
ds = �

� ln�

r
+
Z
1

0

e�rs lnW (ecj (s)) ds (2.19)

I > �
� ln�

r
+
Z
1

0

e�rs ln [W (�� (s; b))] ds =
Z
1

0

e�rs ln [W (� (b))] ds (2.20)

Part (ii) : use an argument parallel to the proof of part (ii) of proposition 1.

Corollary : Under the assumption of proposition 2, if x is a scalar (i.e. there
is only one state variable) then

Vj (x) =
� lnx

r
+B (2.21)

where B is a constant.

Proof :

Write �x = x+ (� � 1)x. Then , from (2.18)

V (x+ (�� 1) x)� V (x) =
� ln�

r
(2.22)

Divide both sides of (2.22) by (�� 1) x and take the limit as � tends to 1.
The resulting left hand side is the derivative of V with respect to x, and the right

hand side is �=xr. This completes the proof.

3. Some examples

We now illustrate our results by some examples.
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3.1. Example 1 : A resource with declining e�ectiveness.

Our �rst example is an instance of a class of problems studied by Cornes, Long

and Shimomura (1994). It concerns the long term decline in e�ectiveness of a

pesticide. Let x (t) denote the e�ectiveness of the pesticide, and ai (t) the rate of

application of the pesticide by farmer i. There are N farmers. The aggregate rate

of application is

a (t) =
NX
i=1

ai (t) : (3.1)

Insects tend to develop resistance to pesticides over time. To capture this
feature, we suppose that x (t) declines with aggregate application :

�

x (t) = �a (t) (3.2)

The decline in e�ectiveness means that we must distinguish the nominal doses,
ai (t), from the e�ective doses ai (t)x (t). We assume that each farmer's pro�t is

an increasing function of the e�ective doses that he applies to his �eld :

�i (t) = [ai (t)x (t)]
�

2 ; 0 < � < 1 (3.3)

Each farmer wants to maximize the integral of the discounted pro�t ow:

Max

Z Ti

0

�i (t) e
�rtdt (3.4)

It is understood that when x becomes zero, the pesticide becomes worthless.
A convenient way to take this into account is to impose the following constraint
on problem (3.4) :

x (Ti) � 0 (3.5)

We allow each �rm to choose its own terminal time Ti.

While it is possible to solve the above di�erential game problem directly, it is
convenient to transform variables so that proposition 1 can be applied. De�ne a

new control variable

ci (t) = [ai (t)x (t)]
1

2 (3.6)

Then, from (3.2), (3.3) and (3.6)
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�

�

x (t) = �
NX
i=1

c2i

.
x (3.7)

�i (t) = [ci (t)]
�

(3.8)

It follow from proposition 1 that farmer i's best reply is of the form

ci (t) = �ix (t) (3.9)

if all other farmers use linear strategies

cj (t) = �jx (t) ; j 6= i (3.10)

In what follows, we focus on a symmetric solution. The Bellman-Hamilton-
Jacobi equation for the representative farmer i is

rVi (x) =Max

"
c�i + V

0

i (x)

 
�
c2i
x
� (N � 1) �2x

!#
(3.11)

where the maximization is with respect to ci and where �j = � for all j 6= i.
Applying proposition 1, we write

Vi (x) = Ax� (3.12)

and (3.11) becomes

rAx� =Max

"
c�i � �Ax��1

 
(N � 1)�2x+

c2i
x

!#
(3.13)

This yields the �rst order condition

�c��1i = 2�Ax��1 (ci=x) (3.14)

or

ci = x (2A)
1

��2 (3.15)

Substituting (3.15) into (3.13), and using the assumption of a symmetric so-
lution, we obtain

rAx� = (2A)
�

��2

�
1�

�N

2

�
x� (3.16)
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Since A is non-negative (�rms do not make losses in equilibrium), equation

(3.16) implies that a symmetric equilibrium in linear strategies exists if and only

if N < 2

�
. Under this assumption, the e�ectiveness of the pesticide declines to

zero only asymptotically. The equilibrium time horizon is in�nite. Solving (3.16)

for A and substituting into (3.15), we obtain the linear strategy

ci =

�
r

2� �N

�1

2

x (3.17)

provided that N < 2

�
. The nominal doses are

ai = c2i =x =
rx

2� �N
(3.18)

As N approaches 2

�
from below, ai tends to in�nity.

3.2. Example 2 : Exploiting a common pool.

This example is a special case of the class of problems studied by Clemhout and
Wan (1985). Let x (t) denote the stock of oil in a common pool. The N players
are the countries that have access to the pool. Their rates of extraction are ci (t),
i = 1; 2; :::; N . The utility function for player i is U (ci) = ln (c�i ). The transition
equation is

�

x= �
NX
i=1

ci (3.19)

We assume that the time horizon is in�nite, and all countries maximize the
integral of discounted utility.

If player i believes that all other players use the strategy

cj = �x (3.20)

then, according to proposition 2, its best reply must be of the form

ci = �ix (3.21)

The Bellman-Hamilton-Jacobi equation for player i is

rVi (x) =Max
h
ln c�i + V

0

i (x) (�ci � (N � 1) �x)
i

(3.22)
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According to the corollary to proposition 2, rVi (x) must be of the formA lnx+

B. Use this in (3.22) to obtain.

rA lnx+ rB =Max

�
ln c�i �

A

x
(ci + (N � 1) �x)

�
(3.23)

The �rst order condition yields

ci = �x=A (3.24)

Assuming a symmetric equilibrium, we have

� = �=A (3.25)

Substitute (3.24) and (3.25) into (3.22) to obtain

rA lnx+ rB = � lnx+ ln (�=A)� � �N (3.26)

Since the above equation must hold for all x > 0, it follows that

A = �=r (3.27)

rB = �ln (�=A)� �N (3.28)

The equilibrium rate of extraction is therefore

ci (t) = rx (t) (3.29)

It is interesting to observe that the strategy (3.29) is independent of the num-
ber of players. This contrasts sharply with (3.17). Finally, from (3.29) and (3.19),

�

x =x = �rN (3.30)

4. The Discrete Time Versions

It is clear that propositions 1 and 2 also apply in discrete time. The only modi�-

cations are that (2.1) and (2.4) are replaced by their discrete time counterparts:

x (t+ 1) � x (t) = F (x (t) ; c1 (t) ; c2 (t)) (4.1)
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Vj (x (t)) =
1X
s=t

Uj [Xj (x (s))] b
s�t (4.2)

where 0 < b < 1 is the discount factor.

An example : Exploitation of renewable resources.

Consider a pool in which two species of �sh coexist. Let Xt and Yt denote

the current stocks, and Ct and Dt the corresponding rates of harvest. We assume

that

Xt+1 = (Xt �Ct)
�1 Y

�1
t (4.3)

Yt+1 = (Yt �Dt)
�2 X�2

t (4.4)

where 1 > �i > 0 while �i can be positive or negative. If both �1 and �2 are
negative, the two species are said to be mutually competing; if both �i are positive,
they are symbiotic species; while if �1 is positive and �2 is negative, then X are
the predators and Y are the preys. Our formulation slightly di�ers from that of
Fischer and Mirman (1992a, 1992b), who assume that both Ct and Dt appear in

each growth equation. We will focus on the special case where �i + �i = 1,which
was not considered by Fischer and Mirman.

Assume that there are two countries that have common access to the �shing
pool. Their rates of catch are Cit and Dit , i = 1; 2, such that, by de�nition

C1t + C2t = Ct (4.5)

D1t +D2t = Dt (4.6)

Suppose that country i believes that country j follows the linear �shing rules :

Cjt = jXt (4.7)

Djt = �jYt (4.8)

If we assume that utility functions are
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Ui = lnCi + lnDi (4.9)

for i = 1; 2, then it follows from our proposition 2 that the best reply is homoge-

neous of degree one in the stocks. This can be explicitly calculated by considering

a value function of the form

Vi = Ai lnX +Bi lnY + Ei (4.10)

The Bellman equation is

Vi (Xt;Yt) =Max [lnCit + lnDit + bVi (Xt+1; Yt+1)] (4.11)

Substituting (4.7), (4.8) into (4.3) , (4.4), and maximizing the right-hand side of
(4.11) with respect to Cit and Dit give

(1 + b�1Ai)Ci = X (1 � j) (4.12)

(1 + b�2Bi)Di = Y (1 � �j) (4.13)

Substituting (4.12) and (4.13) into (4.11), we obtain the following equations

Ai = 1 + b�1Ai + b�2Bi (4.14)

Bi = 1 + b�2Bi + b�1Ai (4.15)

Solving for Ai and Bi

Ai = (1� b�2 + b�2) =4 (4.16)

Bi = (1� b�1 + b�1) =4 (4.17)

where

4 = (1� b�1) (1� b�2)� b2�1�2 (4.18)

In what follows we assume that 4 > 0 and that

�i � �i < 1 (4.19)
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so that both Ai and Bi are positive. It follows that the best reply strategies of

country i are linear :

Ci = iX (4.20)

Di = �iY (4.21)

where

i =
(1� j)

1 + b�2Ai

(4.22)

�i =
(1� �j)

1 + b�2Bi

(4.23)

Furthermore, as it is clear that Ai = Aj = A and Bi = Bj = B, we must have

i = j =  and �i = �j = �, i.e. the linear strategies are necessarily symmetric :

i = j =  =
1

2 + b�1A
<

1

2
(4.24)

�i = �j = � =
1

2 + b�2B
<

1

2
(4.25)

From (4.3), (4.4), (4.7), (4.8), (4.20), (4.21), (4.24) and (4.25), the evolution
of the system is given by

Xt+1 = [Xt (1 � 2)]
�1 Y

�1
t (4.26)

Yt+1 = [Yt (1 � 2�)]�2 Y �2
t (4.27)

Let

x = lnX ; y = lnY (4.28)

� = � ln (1� 2) > 0 (4.29)

� = � ln (1 � 2�) > 0 (4.30)

The system (4.26) and (4.27) can be written as
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xt+1 = �1xt + �1yt � � (4.31)

yt+1 = �2xt + �2yt � � (4.32)

This system is equivalent to the following second order di�erence equation in x

xt+2 � (�1 + �2) xt+1 + (�1�2 � �1�2) xt = ��� �1� (4.33)

Since �i + �i = 1, the characteristic equation of (4.33) has two roots, r1 = 1,

and

�1 < r2 = �1 + �2 � 1 < 1 (4.34)

The general solution of (4.33) is of the form

xt = E + Ft+G (�1 + �2 � 1)
t

(4.35)

where E and G are arbitrary constants, and

F =
��� (1� �1)�

2� �1 � �2
< 0 (4.36)

Therefore x will tend to minus in�nity, implying that X will tend to zero, as t

tends to in�nity. A similar argument shows that Y will also tend to zero.

We have shown that along the Markov equilibrium path, both species are
driven to extinction. It can be shown that if the two countries cooperate to
maximize the sum of their utility ows, extinction is also optimal, but exploitation
will be at a slower rate.
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