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Ce rapport présente une application des algorithmes d'apprentissage aux
séries chronologiques financières. L'approche traditionnelle est basée sur
l'estimation d'un modèle de prédiction, qui minimise par exemple l'erreur
quadratique entre les prédictions et les réalisations de la variable à prédire, ou qui
maximise la vraisemblance d'un modèle conditionnel de la variable dépendante.
Nos résultats sur des séries financières montrent que de meilleurs résultats peuvent
être obtenus quand les paramètres du modèles sont plutôt choisis de manière à
maximiser le critère financier voulu, ici les profits en tenant compte des pertes
attribuables aux transactions. Des expériences réalisées avec 35 titres canadiens
sont décrites.

The application of this work is to decision taking with financial time-
series, using learning algorithms. The traditional approach is to train a model using
a prediction criterion, such as minimizing the squared error between predictions and
actual values of a dependent variable, or maximizing the likelihood of a conditional
model of the dependent variable. We find here with noisy time-series that better results
can be obtained when the model is directly trained in order to maximize the financial
criterion of interest, here gains and losses (including those due to transactions)
incurred during trading. Experiments were performed on portfolio selection with 35
Canadian stocks.
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1 Introduction

Most applications of learning algorithms to �nancial time-series are based

on predicting the value (either discrete or continuous) of output (depen-

dent) variables given input (independent) variables. For example, the

parameters of a multi-layer neural network are tuned in order to mini-

mize a squared error loss. However, in many of these applications, the

ultimate goal is not to make good predictions, but rather to use these

often noisy predictions in order to take some decisions. In fact, the

performance of these systems is usually measured in terms of �nancial

pro�tability and risk criteria, after some heuristic decision taking rule

has been applied to the trained model's outputs.

Because of the limited amount of training data, and because �nancial

time-series are often very noisy, we argue here that better results can be

obtained by choosing the model parameters in order to directly maximize

the �nancial criterion of interest. What we mean by training criterion

in this paper is a scalar function of the training data and the model

parameters. This scalar function is minimized (or maximized) with an

optimization algorithm (such as gradient descent) by varying the pa-

rameters. In section 2, we present theoretical arguments justifying this

direct optimization approach. In section 3, we present a particular cost

function for optimizing the pro�ts of a portfolio, while taking into ac-

count losses due to transaction costs. It should be noted that including

transactions in the cost function makes it non-linear (and not quadratic)

with respect to the trading decisions. When the decisions are taken in

a way that depends on the current asset allocation (to minimize trans-

actions), all the decisions during a trading sequence become dependent

of each other. In section 4 we present a particular decision taking, i.e.,

trading, strategy, and a di�erentiable version of it, which can be used

in the direct optimization of the model parameters with respect to the

�nancial criteria. In section 5, we describe a series of experiments which

compare the direct optimization approach with the prediction approach.

2 Optimizing the Correct Criterion

It has already been shown how arti�cial neural networks can be trained

with various training criteria to perform a statistically meaningful task:

for example, with the mean squared error criterion in order to estimate

the expected value of output variables given input variables, or with

cross-entropy or maximum likelihood, in order to build a model of the

conditional distribution of discrete output variables, given input vari-
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ables [Whi89, RL91].

However, in many applications of learning algorithms, the ultimate

objective is not to build a model of the distribution or of the expected

value of the output variables, but rather to use the trained system in or-

der to take the best decisions, according to some criterion. The Bayesian

approach is two-step: �rst, estimate a conditional model of the output

distribution, given the input variables, second, assuming this is the cor-

rect model, take the optimal decisions, i.e, those which minimize a cost

function.

For example, in classi�cation problems, when the �nal objective is to

minimize the number of classi�cation errors, one picks the output class

with the largest a-posteriori probability, given the input, and assuming

the model is correct. However, this incorrect assumption may be hurt-

ful, especially when the training data is not abundant (or non-stationary,

for time-series), and noisy. In particular, it has been proven [HK92] for

classi�cation tasks that this strategy is less optimal than one based on

training the model with respect to the decision surfaces, which may be

determined by a discriminant function associated to each class (e.g., one

output of a neural network for each class). The objective of training

should be that the decision that is taken (e.g., picking the class whose

corresponding discriminant function is the largest) has more chance of

being the correct decision, without assuming a particular probabilistic

interpretation for the discriminant functions (model outputs). Since the

number of classi�cation errors is a discrete function of the parameters,

several training schemes have been proposed that are closer to that ob-

jective than a prediction or likelihood criterion: see for example the

work on the Classi�cation Figure of Merit [HW90], as well as the work

on training neural networks through a post-processor based on dynamic

programming for speech recognition [DBG91] (in which the objective is

to correctly recognize and segment sequences of phonemes, rather than

individual phonemes).

The latter work is also related to several proposals to build modular

systems that are trained cooperatively in order to optimize a common

objective function (see [BG91] and [Ben96], Chapter 5). Consider the

following situation. We have a composition of two models M1, and

M2, with the output of M1 feeding the input of M2. Module M1 com-

putes y(x; �1), with input x and parameters �1. Module M2 computes

w(y(x; �1); �2), with parameters �2. We have a prior idea of what M1

should do, with pairs of input and desired outputs (xp; dp), but the ul-

timate measure of performance, C(w), depends on the output w of M2.

In the context of this paper, as in Figure 1, M1 represents a prediction

model (for example of the future return of stocks), M2 represents a trad-
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ing module (which decides on portfolio weights w, i.e., when and how

much to buy and sell), and C represents a �nancial criterion (such as

the average return of the decision policy).

We compare two ways to train these two modules: either train them

separately or train them jointly. When trained jointly, both �1 and

�2 are chosen to minimize C, for example by back-propagating gradients

throughM2 intoM1. When trained separately,M1 is trained to minimize

some intermediate training criterion, such as the Mean Squared Error

(MSE) C1 between the �rst module's output, y(xp; �1), and the desired

output dp (here dp could represent the actual future return of the stocks

over some horizon for the pth training example):

C1(�1) =
X

p

(dp � y(xp; �1))
2 (1)

Once M1 is trained, the parameters of M2 are then tuned (if it has

any parameters) in order to minimize C. At the end of training, we

can assume that local optima have been reached for C1 (with respect

to parameters �1) and C (with respect to parameters �2, assuming M1

�xed), but that neither C1 nor C have reached their best possible value:

@C1

@�1
= 0

@C

@�2
= 0 (2)

After this separate training, however, C could still be improved by chang-

ing y, i.e., @C

@y
6= 0, except in the trivially uninteresting case in which

y does not inuence w, or in the unlikely case in which the value of �1
which minimizes C1 also minimizes C when �2 is chosen to minimize

C (this is essentially the assumption made in the 2-step Bayes decision

process).

Considering the inuence of �1 on C over all the examples p, through

y,
@C

@�1
=
X

p

@C

@y(xp; �1)

@y(xp; �1)

@�1
; (3)

so we have @C

@�1
6= 0, except in the uninteresting case in which �1 does

not inuence y. Because of this inequality, one can improve the global

criterion C by further modifying �1 along the direction of the gradient
@C

@�1
. Hence separate training is generally suboptimal, because in gen-

eral each module cannot perform perfectly the desired transformations

from the preconceived task decomposition. For the same number of free

parameters, joint training of M1 and M2 can reach a better value of C.
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Figure 1: Task decomposition: a prediction module (M1) with input x

and output y, and a decision module (M2) with output w. In the case

of separate optimization, an intermediate criterion (e.g., mean squared

error) is used to train M1 (with desired outputs d). In the case of joint

optimization of the decision module and the prediction module, gradients

with respect to the �nancial criterion are back-propagated through both

modules (dotted lines).
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Therefore, if one wants to optimize on a given training set the global

�nancial criterion C while having as few free parameters as possible in

M1, it is better to optimize M1 with respect to C rather than with

respect to an intermediate goal C1.

3 A Training Criterion for Portfolio Man-

agement

In this paper, we consider the practical example of choosing a discrete

sequence of portfolio weights in order to maximize pro�ts, while taking

into account losses due to transactions. We will simplify the represen-

tation of time by assuming a discrete series of events, at time indices

t = 1; 2; : : : ; T . We assume that some decision strategy yields, at each

time step t, the portfolio weights wt = (wt;0; wt;1; : : : ; wt;n), for n + 1

weights. In the experiments, we will apply this model to managing n

stocks as well as a cash asset (which may earn short-term interest). We

will assume that each transaction (buy or sell) of an amount v of asset

i costs cijvj. This may be used to take into account the e�ect of di�er-

ences in liquidity of the di�erent assets. In the experiments, in the case

of cash, the transaction cost is zero, whereas in the case of stocks, it is

1%, i.e., the overall cost of buying and later selling back a stock is about

2% of its value. A more realistic cost function should take into account

the non-linear e�ects of the amount that is sold or bought: transaction

fees may be higher for small transactions, transactions may only be al-

lowed with a certain granularity, and slippage losses due to low relative

liquidity may be higher for large transactions.

The training criterion is a function of the whole sequence of portfolio

weights. At each time step t, we decompose the change in value of the

assets in two categories: the return due to the changes in prices (and

revenues from dividends), Rt, and the losses due to transactions, Lt.

The overall return ratio is the product of Rt and Lt over all the time

steps t = 1; 2; : : : ; T :

overall return ratio =
Y

t

RtLt (4)

This is the ratio of the �nal wealth to the initial wealth. Instead of max-

imizing this quantity, in this paper we maximize its logarithm (noting

that the logarithm is a monotonic function):

C
def

=
X

t

(logRt + logLt) (5)
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The yearly percent return is then given by (eCP=T � 1) � 100%, where

P is the number of time steps per year (12, in the experiments), and

T is the number of time steps (number of months, in the experiments)

over which the sum is taken. The return Rt due to price changes and

dividends from time t to time t + 1 is de�ned in terms of the portfolio

weights wt;i and the multiplicative returns of each stock rt;i,

rt;i
def

=valuet+1;i=valuet;i; (6)

where valuet;i represents the value of asset i at time t, assuming no

transaction takes place: rt;i represents the relative change in value of

asset i in the period t to t + 1. Let at;i be the actual worth of the ith

asset at time t in the portfolio, and let at be the combined value of all

the assets at time t. Since the portfolio is weighted with weights wt;i,

we have

at;i
def

=atwt;i (7)

and

at =
X

i

at;i =
X

i

atwt;i (8)

Because of the change in value of each one of the assets, their value

becomes

a0
t;i

def

= rt;iat;i: (9)

Therefore the total worth becomes

a0t =
X

i

a0t;i =
X

i

rt;iat;i = at
X

i

rt;iwt;i (10)

so the combined worth has increased by the ratio

Rt

def

=
a0
t

at
(11)

i.e.,

Rt =
X

i

wt;irt;i: (12)

After this change in asset value, the portfolio weights have changed as

follows (since the di�erent assets have di�erent returns):

w0

i;t

def

=
a0
t;i

a0
t

=
wt;irt;i

Rt

: (13)

At time t + 1, we want to change the proportions of the assets to the

new portfolio weights wt+1, i.e, the worth of asset i will go from a0tw
0

t;i
to
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a0
t
wt+1;i. We then have to incur for each asset a transaction loss, which

is assumed simply proportional to the amount of the transaction, with

a proportional cost ci for asset i. These losses include both transaction

fees and slippage. This criterion could easily be generalized to take into

account the fact that the slippage costs may vary with time (depending

on the volume of o�er and demand) and may also depend non-linearly

on the actual amount of the transactions. After transaction losses, the

worth at time t+ 1 becomes

at+1 = a0t �
X

i

cija
0

twt+1;i � a0tw
0

t;ij

= a0
t
(1�
X

i

cijwt+1;i � w0

t;i
j): (14)

The loss Lt due to transactions at time t is de�ned as the ratio

Lt

def

=
at

a0
t�1

: (15)

Therefore

Lt = 1�
X

i

cijwt;i � w0

t�1;i
j: (16)

To summarize, the overall pro�t criterion can be written as follows, in

function of the portfolio weights sequence:

C =
X

t

log(
X

i

rt;iwt;i) +

log(1�
X

i

cijwt;i � w0

t�1;i
j) (17)

where w0 is de�ned as in equation 13. Therefore we can write C in terms

of the return ratios rt;i, the decisions wt;i, and the relative transactions

costs ci as follows:

C =
X

t

log(
X

i

rt;iwt;i) +

log(1�
X

i

cijwt;i �
wt�1;irt�1;iP
i
wt�1;irt�1;i

j) (18)

At each time step, a trading module computes wt, from w0

t�1
and

from the predictor output yt, as illustrated (unfolded in time) in Figure 2.

To backpropagate gradients with respect to the cost function through

the trader from the above equation, one computes @C

@wt;i
, when given
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Figure 2: Operation of a trading module, unfolded in time, with inputs

yt (network output) and w0

t�1 (previous portfolio weights after change in

value), and with outputs wt (next portfolio weights). Rt is the return of

the portfolio due to changes in value, Lt is the loss due to transactions,

and rt;i is the individual return of asset i.

@C

@w0

t

. The trading module can then compute @C

@w0

t�1

from @C

@wt
, and this

process is iterated backwards in time. At each time step, the trading

module also computes @C

@yt
from @C

@wt
.

To conclude this section, it should be noted that the introduction of

transaction losses in the training criterion makes it non-linear in the de-

cisions (whereas the pro�t term is linear in the decisions). Note that it is

not even di�erentiable everywhere (but it is di�erentiable almost every-

where, which is enough for gradient descent optimization). Furthermore,

when the decision at time t is taken in function of the previous decision

(to avoid unnecessary transactions), all the decisions are coupled to-

gether, i.e., the cost function can't be separated as a sum of independent

terms associated to the network output at each time step. For this rea-

son, an algorithm such as back-propagation through time has to be used

to compute the gradients of the cost function.

4 The Trading Modules

We could directly train a module producing in output the portfolio

weights wt;i, but in this paper we use some �nancial a-priori knowledge

in order to modularize this task in two subtasks:

8



1. with a \prediction" module (e.g.,M1 in �gure 1), compute a \desir-

ability" value yt;i for each asset on the basis of the current inputs,

2. with a trading module, allocate capital among the given set of assets

(i.e., compute the weights wt;i), on the basis of yt and w0

t�1;i
(this

is done with the decision module M2 in �gure 1).

In this section, we will describe two such trading modules, both based

on the same a-priori knowledge. The �rst one is not di�erentiable and it

has hand-tuned parameters, whereas the second one is di�erentiable and

it has parameters learned by gradient ascent on the �nancial criterion

C. The a-priori knowledge we have used in designing this trader can be

summarized as follows:

� We mostly want to have in our portfolio those assets that are de-

sirable according to the predictor (high yt;i).

� More risky assets (e.g., stocks) should have a higher expected re-

turn than less risky assets (e.g., cash) to be worth keeping in the

portfolio.

� The outputs of the predictor are very noisy and unreliable.

� We want our portfolio to be as diversi�ed as possible, i.e., it is

better to have two assets of similar expected returns than to invest

all our capital in one that is slightly better.

� We want to minimize the amount of the transactions.

At each time step, the trading module takes as input the vectors

yt (predictor output) and w0

t�1 (previous weights, after change in value

due to multiplicative returns rt�1). It then produces the portfolio weight

vector wt, as shown in Figure 2. Here we are assuming that the assets

0 : : : n � 1 are stocks, and asset n represents cash (earning short-term

interests). The portfolio weights wt;i are non-negative and sum to 1.

4.1 A Hard Decisions Trader

Our �rst experiments were done with a neural network trained to min-

imize the squared error between the predicted and actual asset returns.

Based on advice from �nancial specialists, we designed the following

trading algorithm, which takes hard decisions, according to the a-priori

principles above. The algorithm described in �gure 3 is executed at each

time step t.
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1. By default, initialize wt;i  w
0

t;i for all i = 0 : : : n.

2. Assign a quality
t;i

(equal to good, neutral, or bad) to each stock (i =

0 : : : n� 1):

(a) Compute the average desirability �yt  
1

n

P
n�1

i=0
yt;i.

(b) Let rankt;i be the rank of yt;i in the set fyt;0; : : : ; yt;n�1g.

(c) If yt;i > c0 �yt and yt;i > c1yt;n and rankt;i > c2

Then

quality
t;i
 good,

Else,

If yt;i < b0 �yt or yt;i < b1yt;n or rankt;i < b2

Then, quality
t;i
 bad,

Else, quality
t;i
 neutral.

3. Compute the total weight of bad stocks that should be sold:

(a) Initialize kt  0

(b) For i = 0 : : : n� 1

� If quality
t;i

= bad and w
0

t�1;i > 0 (i.e., already owned), Then

(SELL a fraction of the amount owned)

kt  kt + �w
0

t�1;i

wt;i  w
0

t�1;i � �w
0

t�1;i

4. If kt > 0 Then (either distribute that money among good stocks, or

keep it in cash):

(a) Let st  number of good stocks not owned.

(b) If st > 0

Then

{ (also use some cash to buy good stocks)

kt  kt + �w
0

t�1;n

wt;n  w
0

t�1;n(1� �)

{ For all good stocks not owned, BUY: wt;i  kt=st.

Else (i.e., no good stocks were not already owned)

{ Let s0t  number of good stocks,

{ If s
0

t > 0

Then For all the good stocks, BUY: wt;i  w
0

t�1;i +

kt=s
0

t

Else (put the money in cash) wt;n  w
0

t�1;n + kt.

Figure 3: Algorithm for the \hard" trading module. See text for more

explanations.
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Statement 1 in �gure 3 is to minimize transactions. Statement 2 as-

signs a discrete quality (good, neutral, or bad) to each stock in function

of how the predicted return compares to the average predicted return and

to the return of cash. Statement 3 computes the current total weight

of bad stocks that are currently owned, and should therefore be sold.

Statement 4 uses that money to buy the good stocks (if any), distribut-

ing the available money uniformly among the stocks (or if no stock is

good increase the proportion of cash in the portfolio).

The parameters c0, c1, c2, b0, b1, and b2 are thresholds that determine

whether a stock should be considered good, neutral, or bad. They

should depend on the scale of y and on the relative risk of stocks versus

cash. The parameter 0 < � < 1 controls the \boldness" of the trader. A

small value prevents it from making too many transactions (a value of

zero yields a buy-and-hold policy).

In the experiments, those parameters were chosen using basic judg-

ment and a few trial and error experiments on the �rst training period.

However, it is di�cult to numerically optimize these parameters because

of the discrete nature of the decisions taken. Furthermore, the predic-

tor module might not give out numbers that are optimal for the trader

module. This has motivated the following di�erentiable trading module.

4.2 A Soft Decisions Trader

This trading module has the same inputs and outputs as the hard de-

cision trader, as in Figure 2, and executes algorithm described in 4 at

each time step t.

Statement 1 of �gure 4 de�nes two quantities (\goodness" and \bad-

ness"), to compare each asset with the other assets, indicating respec-

tively a willingness to buy and a willingness to sell. \Goodness" com-

pares the network output for a stock with the largest of the average

network output over stocks and the promised cash return. \Badness"

compares the network output for a stock with the smallest of the average

network output over stocks and the promised cash return. Statement 2

computes the amount to sell based on the weighted sum of \badness"

indices. Statement 3a then computes a quantity �t that compares the

sum of the goodness and badness indices. Statement 3b uses that quan-

tity to compute the change in cash (using a di�erent formula depending

on wether �t is positive or negative). Statement 3c uses that change in

cash to compute the amount available for buying more stocks (or the

amount of stocks that should be sold). Statement 4 computes the new

proportions for each stock, by allocating the amount available to buy

new stocks according to the relative goodness of each stock. In the �rst

11



1. (Assign a goodness value gt;i and a badness value bt;i between 0

and 1 for each stock)

� (Compute the average desirability) �yt  
1

n

P
n�1

i=0
yt;i.

� (goodness) gt;i  sigmoid(s0(yt;i �max(c0 �yt; c1yt;n)))

� (badness) bt;i  sigmoid(s1(min(b0 �yt; b1yt;n)� yt;i))

2. (Compute the amount to \sell", to be o�set later by an amount to

\buy")

kt  
P

n�1

i=0
sigmoid(�)bt;iw

0

t�1
; i

3. (Compute the change in cash)

(a) �t  tanh(a0 + a1
Pn�1

i=0
(bt;i � gt;i))

(b) If �t > 0 (more bad than good, increase cash)

Then wt;n  w0

t�1;n + �tkt

Else (more good than bad, reduce cash)

wt;n  �w
0

t�1;n
�t

(c) So the amount available to buy is:

at  kt � (wt;n � w0

t�1;n)

4. (Compute amount to \buy", o�set by previous \sell", and compute

the new weights wt;i on the stocks)

(a) st  
Pn�1

i=0
gt;i (a normalization factor)

(b) wt;i  w0

t�1;i
(1� sigmoide(�)bt;i) +

gt;i

st
at

Figure 4: Algorithm for the \soft" (di�erentiable) trading module. See

text for more explanations.
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term of statement 4a the proportions are reduced proportionaly to the

badness index, and in the second term they are increased proportionally

to the goodness index. Again, a parameter � controls the risks taken

by the trading module (here when � is very negative, the buy-and-hold

strategy will result, whereas when it is large, more transactions will oc-

cur). Note that sigmoid(x) = 1

1+exp�x
. The sigmoid(�) rather than �

was used to constrain that number to be between 0 and 1. There are

9 parameters, �2 = f c0, c1, b0, b1, a0, a1, s0, s1, � g, �ve of which

have a similar interpretation as in the hard trader. However, since we

can compute the gradient of the training criterion with respect to these

parameters, their value can be learned from the data. From the above

algorithmic de�nition of the function wt(w
0

t�1
; yt; �2) one can easily write

down the equations for @C

@yt;i
, @C

@w0

t�1;i

and @C

@�2
, when given the gradients

@C

@wt;j
, using the chain rule.

5 Experiments

We have performed experiments in order to study the di�erence between

training only a prediction module with the Mean Squared Error (MSE)

and training both the prediction and decision modules to maximize the

�nancial criterion de�ned in section 3 (equation 17).

5.1 Experimental Setup

The task is one of managing a portfolio of 35 Canadian stocks, as well as

allocate funds between those stocks and a cash asset (n = 35 in the above

sections, the number of assets is n+1 = 36). The 35 companies are major

companies of the Toronto Stock Exchange (most of them in the TSE35

Index). The data is monthly and spans 10 years, from December 1984

to February 1995 (123 months). We have selected 5 input features (xt is

5-dimensional), 2 of which represent macro-economic variables which are

known to inuence the business cycle, and 3 of which are micro-economic

variables representing the pro�tability of the company and previous price

changes of the stock.

We used ordinary fully connected multi-layered neural networks with

a single hidden layer, trained by gradient descent. The same network

was used for all 35 stocks, with a single output yt;i at each month t

for stock i. Preliminary experiments with the network architecture sug-

gested that using approximately 3 hidden units yielded better results

than using no hidden layer or many more hidden units. Better results

13



might be obtained by considering di�erent sectors of the market (dif-

ferent types of companies) separately, but for the experiments reported

here, we used a single neural network for all the stocks. When using a

di�erent model for each stock and sharing some of the parameters, sig-

ni�cantly better results were obtained (using the same training strategy)

on that data [GB97]. The parameters of the network are therefore shared

across time and across the 35 stocks. The 36th output (for desirability

of cash) was obtained from the current short-term interest rates (which

are also used for the multiplicative return of cash, rt;n).

To take into account the non-stationarity of the �nancial and eco-

nomic time-series, and estimate performance over a variety of economic

situations, multiple training experiments were performed on di�erent

training windows, each time testing on the following 18 months. For

each experiment, the data is divided into three sets: one for training,

one for validation (early stopping), and one for testing (estimating gen-

eralization performance). The latter two sets each span 18 months. Four

training, validation, and test periods were considered, by increments of

18 months:

1. Training from �rst 33 months, validation with next 18 months, test

with following 18 months.

2. Training from �rst 51 months, validation with next 18 months, test

with following 18 months.

3. Training from �rst 69 months, validation with next 18 months, test

with following 18 months.

4. Training from �rst 87 months, validation with next 18 months, test

with following 18 months.

Training lasted between 10 and 200 iterations of the training set, with

early stopping based on the performance on the validation set. The

overall return was computed for the whole test period (of 4 consecutive

sets of 18 months = 72 months = 6 years: March 89 - February 95).

When comparing the two training algorithms (prediction criterion versus

�nancial criterion), 10 experiments were performed with di�erent initial

weights, and the average and standard deviation of the �nancial criterion

are reported.

A buy-and-hold benchmark was used to compare the results with

a conservative policy. For this benchmark, the initial portfolio is dis-

tributed equally among all the stocks (and no cash). Then there are no

transactions. The returns for the benchmark are computed in the same

way as for the neural network (except that there are no transactions).
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The excess return is de�ned as the di�erence between the overall return

obtained by a network and that of the buy-and-hold benchmark.

5.2 Results

In the �rst series of experiments, the neural network was trained with a

mean squared error criterion in order to predict the return of each stock

over a horizon of three months. We used the \hard decision trader"

described in section 4.1 in order to measure the �nancial pro�tability of

the system. We quickly realized that although the mean squared error

was gradually improving during training, the pro�ts made sometimes

increased, sometimes decreased. This actually suggested that we were

not optimizing the \right" criterion.

This problem can be visualized in Figures 5 and 6. The scatter plots

were obtained by taking the values of excess return and mean squared er-

ror over 10 experiments with 200 training epochs (i.e, with 2000 points),

both on a training and a test set. Although there is a tendency for re-

turns to be larger for smaller MSE, many di�erent values of return can

be obtained for the same MSE. This constitutes an additional (and un-

desirable) source of variance in the generalization performance. Instead,

when training the neural network with the �nancial criterion, the corre-

sponding scatter plots of excess return against training criterion would

put all the points on a single exponential curve, since the excess return

is simply the value of the training criterion normalized to obtain yearly

returns (by dividing the log-returns by the number of years in the se-

quence, and taking the exponential), and from which the average return

of the benchmark is substracted.

For the second series of experiments, we created the \soft" version

of the trader described in section 4.2, and trained the parameters of the

trader as well as the neural network in order to maximize the �nan-

cial criterion de�ned in section 3 (which is equivalent to maximizing the

overall excess return). A series of 10 training experiments (with di�erent

initial parameters) were performed (each with four training, validation

and test periods) to compare the two approaches. Table 1 summarizes

the results. During the whole 6-year test period (March 89 - February

95), the benchmark yielded returns of 6.8%, whereas the network trained

with the prediction criterion and the one trained with the �nancial cri-

terion yielded in average returns of 9.7% and 14.2% respectively (i.e,

2.9% and 7.4% in excess of the benchmark, respectively). The direct

optimization approach, which uses a specialized criterion specialized for

the �nancial task, clearly yields better performance on this task, both

on the training and test data.
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Figure 5: Scatter plots of MSE versus excess return of network, trained

to minimize the MSE, (a) on training set, (b) on test set.
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Figure 6: Evolution of excess return during training for network trained

directly to maximize return (full line) and network trained to minimize

MSE (dashed line), (a) on training set, (b) on test set.
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Table 1: Comparative results: network trained with Mean Squared Error

to predict future return vs network trained with �nancial criterion (to

directly maximize return). The averages and standard deviations are

over 10 experiments. The test set represents 6 years, 03/89-02/95.

Average Excess (Standard Average Excess (Standard
Return on Deviation) Return on Deviation)

Training Sets Test Sets
Net Trained
with MSE 8.9% (2.4%) 2.9% (1.2%)
Criterion
Net Trained
with Financial 19.9% (2.6%) 7.4% (1.6%)
Criterion

Following a suggestion of a reviewer, the experiments were replicated

using arti�cially generated returns, and similar results were observed.

The arti�cially generated returns were obtained from an arti�cial neu-

ral network with 10 hidden units (i.e., more than the 3 units used in

the prediction module), and with additive noise on the return. Again

we observed that decreases in mean squared error of the predictor were

not very correlated with increases in excess return. When training with

respect to the �nancial criterion instead, the average excess return on

the test period increased from 4.6% to 6.9%. As in the experiments

with real data, the �nancial performance on the training data was even

more signi�cantly superior when using the �nancial criterion (corrobo-

rating the hypothesis that as far as the �nancial criterion is concerned,

the direct optimization approach o�ers more capacity than the indirect

optimization approach).

6 Conclusion

We consider decision-taking problems on �nancial time-series with learn-

ing algorithms. Theoretical arguments suggest that directly optimizing

the �nancial criterion of interest should yield better performance, accord-

ing to that same criterion, than optimizing an intermediate prediction

criterion such as the often used mean squared error. However, this re-

quires de�ning a di�erentiable decision module, and we have introduced

a \soft" trading module for this purpose. Another theoretical advan-

tage of such a decision module is that its parameters may be optimized

numerically from the training data.

The inadequacy of the mean squared error criterion was suggested to
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us by the poor correlation between its value and the value of the �nancial

criterion, both on training and test data.

Furthermore, we have shown with a portfolio management experi-

ment on 35 Canadian stocks with 10 years of data that the more direct

approach of optimizing the �nancial criterion of interest performs better

than the indirect prediction approach.

In general, for other applications, one should carefully look at the

ultimate goals of the system. Sometimes, as in our example, one can

design a di�erentiable cost and decision policy, and obtain better results

by optimizing the parameters with respect to an objective that is closer

to the ultimate goal of the trained system.
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