
Série Scientifique
Scientific Series

98s-35

Pricing and Hedging
Derivative Securities with
Neural Networks and a

Homogeneity Hint

René Garcia, Ramazan Gençay

Montréal
Novembre 1998



CIRANO

Le CIRANO est un organisme sans but lucratif constitué en vertu de la Loi des compagnies du Québec.
Le financement de son infrastructure et de ses activités de recherche provient des cotisations de ses
organisations-membres, d=une subvention d=infrastructure du ministère de l=Industrie, du Commerce, de
la Science et de la Technologie, de même que des subventions et mandats obtenus par ses équipes de
recherche. La Série Scientifique est la réalisation d=une des missions que s=est données le CIRANO, soit
de développer l=analyse scientifique des organisations et des comportements stratégiques.

CIRANO is a private non-profit organization incorporated under the Québec Companies Act. Its
infrastructure and research activities are funded through fees paid by member organizations, an
infrastructure grant from the Ministère de l=Industrie, du Commerce, de la Science et de la Technologie,
and grants and research mandates obtained by its research teams. The Scientific Series fulfils one of the
missions of CIRANO: to develop the scientific analysis of organizations and strategic behaviour.

Les organisations-partenaires / The Partner Organizations

$École des Hautes Études Commerciales
$École Polytechnique
$McGill University
$Université de Montréal
$Université du Québec à Montréal
$Université Laval
$MEQ
$MICST
$Alcan Aluminium Ltée
$Banque Nationale du Canada
$Bell Canada
$Caisse de dépôt et placement du Québec
$Développement des ressources humaines Canada (DRHC)
$Egis
$Fédération des caisses populaires Desjardins de Montréal et de l=Ouest-du-Québec
$Hydro-Québec
$Imasco
$Industrie Canada
$Microcell Labs inc.
$Raymond Chabot Grant Thornton
$Téléglobe Canada
$Ville de Montréal

© 1998 René Garcia et Ramazan Gençay. Tous droits réservés. All rights reserved.
Reproduction partielle permise avec citation du document source, incluant la notice ©.
Short sections may be quoted without explicit permission, provided that full credit, including © notice,
is given to the source.

ISSN 1198-8177

Ce document est publié dans l=intention de rendre accessibles les résultats préliminaires de la
recherche effectuée au CIRANO, afin de susciter des échanges et des suggestions. Les idées et les
opinions émises sont sous l=unique responsabilité des auteurs, et ne représentent pas nécessairement
les positions du CIRANO ou de ses partenaires.
This paper presents preliminary research carried out at CIRANO and aims to encourage discussion
and comment. The observations and viewpoints expressed are the sole responsibility of the authors.
They do not necessarily represent positions of CIRANO or its partners.



Pricing and Hedging Derivative
Securities with Neural Networks

and a Homogeneity Hint*

René GarciaH, Ramazan GençayI

Résumé / Abstract

                                                
* Corresponding Author: René Garcia, CIRANO, 2020 University Street, 25th floor, Montréal, Qc,
Canada H3A 2A5    Tel: (514) 985-4014    Fax: (514) 985-4039    e-mail: garciar@cirano.umontreal.ca
This paper has benefited from the comments of seminar participants at Cornell University, CREST, Ohio
State University, McGill University, Université du Québec à Montréal, and the 1998 Econometric Society
Summer Meeting (Montréal). We thank Sami Bengio, Yoshua Bengio, Jean-Paul Laurent, Nour Meddahi,
and Éric Renault for useful discussions and comments. We gratefully acknowledge financial support from
the Social Sciences and Humanities Research Council of Canada and the Natural Sciences and
Engineering Research Council of Canada. René Garcia also thanks the Fonds pour la formation de
chercheurs et l'aide à la recherche du Québec (FCAR) for financial support.

†  Université de Montréal, CRDE and CIRANO

‡  University of Windsor and Bilkent University

À l'aide d'un modèle de réseaux de neurones, nous estimons une
formule d'évaluation d'option généralisée qui a une forme fonctionnelle similaire
à la formule de Black-Scholes habituelle. Cette forme fonctionnelle s'obtient lorsque
le prix d'option est une fonction homogène de degré un par rapport au prix de l'actif
sous-jacent et au prix d'exercice. Nous montrons que cette forme généralisée de
Black-Scholes nous permet de prévoir plus précisément les prix d'options. Au lieu
de construire notre réseau d'apprentissage en entrant directement le rapport prix de
l'actif sous-jacent / prix d'exercice et l'échéance dans la fonction de prix, nous
décomposons cette dernière en deux parties, l'une contrôlée par le rapport prix de
l'actif sous-jacent / prix d'exercice l'autre par une fonction de l'échéance. Les
résultats indiquent que la forme fondée sur l'homogénéité permet toujours de
réduire l'erreur quadratique moyenne de prévision hors échantillon par rapport à un
réseau de neurones n'utilisant pas l'homogénéité. Les deux réseaux, avec ou sans
l'homogénéité, produisent des erreurs de couverture comparables qui sont petites
par rapport à la performance de couverture du modèle de Black-Scholes. Toutefois,
le modèle fondé sur l'homogénéité produit une performance de couverture plus
stable.

We estimate a generalized option pricing formula that has a functional
shape similar to the usual Black-Scholes formula by a feedforward neural network
model. This functional shape is obtained when the option pricing function is
homogeneous of degree one with respect to the underlying asset price and the
strike price. We show that pricing accuracy gains can be made by exploiting this
generalized Black-Scholes shape. Instead of setting up a learning network mapping



the ratio asset price/strike price and the time to maturity  directly into the
derivative price, we break down the pricing function into two parts, one controlled
by the ratio asset price/strike price, the other one by a function of time to maturity.
The results indicate that the homogeneity hint always reduces the out-of-sample
mean squared prediction error compared with a feedforward neural network with
no hint. Both feedforward network models, with and without the hint, provide
similar delta-hedging errors that are small relative to the hedging performance of
the Black-Scholes model. However, the model with hint produces a more stable
hedging performance.

Mots Clés : Prix d'options, méthodes non paramétriques, réseaux de neurones,
homogénéité

Keywords : Option pricing, nonparametric methods, feedforward networks,
homogeneity hint



1 Introduction

In a recent paper, Hutchinson, Lo and Poggio (1994) demonstrated that
learning networks can be used successfully to estimate a pricing formula
for options, with good out-of-sample pricing and delta-hedging perfor-
mance. This nonparametric pricing method has the distinct advantage
of not relying on speci�c assumptions about the underlying asset price
dynamics and is therefore robust to speci�cation errors that might af-
fect adversely parametric models. Huchinson et al. (1994) assume that
their option pricing network formula is homogeneous of degree one in
the underlying stock price and the strike price which enables them to
use a smaller number of inputs in learning the nonparametric pricing
function. This parsimony is an advantage since the rate of convergence
of nonparametric estimators slows down considerably as the number of
inputs increases. Broadie et al. (1996a), who also use nonparametric
methods to estimate an option pricing function, invoke the nonstation-
arity of option and stock prices to justify such a homogeneity property.

This homogeneity assumption is not consistent with any asset price
dynamics. Merton (1973) shows that serial independence of asset returns
for the data generating process is a su�cient condition for homogene-
ity. In a non-arbitrage context, Garcia and Renault (1995) establish that
conditional independence under the pricing probability measure between
future returns and the current price is a necessary and su�cient condition
for homogeneity of the option pricing function. Several processes obey
these objective or risk-neutral distributional assumptions and lead there-
fore to homogeneous option pricing formulas1. These formulas can be
characterized as generalizations of the Black-Scholes formula in the sense
that the normal distribution function is replaced by another distribution
function in an otherwise similarly shaped formula which stems from the
convexity of the terminal payo�. Garcia and Renault (1995) also pro-
vide a dynamic asset pricing equilibrium model in a general stochastic
framework that leads to a homogeneous option pricing formula which
keeps the main functional shape of the usual Black-Scholes formula and
nests most of the usual parametric option pricing formulas2.

In this paper, we show that pricing accuracy gains can be made

1For example, jump processes (see Hull, 1993, p. 454) or stable distributions
(McCulloch, 1996).

2They obtain as special cases the formula derived by Amin and Ng (1993) and
a fortiori all the other pricing formulas that were nested in the latter: of course
the Black-Scholes formula, but also the Hull-White (1987) and Bailey-Stulz (1989)
stochastic volatility option pricing formulas and the Merton (1973), Turnbull-Milne
(1991), and Amin-Jarrow (1992) stochastic interest rate option pricing formulas for
equity options.
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by exploiting the implications of this homogeneity property in terms
of functional shape. Instead of setting up a learning network mapping
the stock price to strike price ratio (St=K) and the time to maturity (� )
directly into the derivative price, we break down the pricing function into
two parts, one controlled by the ratio St=K, the other one by a function
of time to maturity. In each part, a learning network is �t with St=K

and � as inputs. We just mentioned that this separation into two blocks
is consistent not only with the Black-Scholes model, but with an array of
other models which keep the homogeneity property of the option pricing
function. It is this homogeneity restriction that we call a hint. In general,
hints based on additional prior information about the properties of the
unknown function to be learned guide the learning process. Because
hints impose additional constraints on the set of allowable solutions to
which the learning process may converge, they may tend to worsen the
in-sample performance by excluding some solutions that might otherwise
�t the data better. This constraint clearly helps to avoid over�tting in
the learning algorithms. The main purpose of using hints is to improve
the out-of-sample performance of the learning algorithms.

To assess the potential gains that can be made by using the homo-
geneity hint in setting up the nonparametric model, we simulate option
prices that obey the Black-Scholes formula. In this experimental setting,
we obtain out-of-sample pricing accuracy gains of about 25 percent in
average. To assess the empirical relevance of this additional structure
consistent with homogeneity, we estimate pricing functions for European
call options on the S&P 500 index for various sampling periods between
1987 and 1994. The homogeneity hint always reduces the out-of-sample
mean squared prediction error compared with a feedforward neural net-
work with no hint. The feedforward network models provide smaller
delta-hedging errors relative to the Black-Scholes model. Between the
feedforward network models, the models with hint provide more stable
average delta hedging errors relative to the networks without the homo-
geneity hint.

Recently, a number of papers have used nonparametric methods to
price options. Ghysels et al. (1996) provide a survey of this literature.
Two papers appeal to �nancial theory to complement a strictly non-
parametric approach. Gouri�eroux, Monfort and Tenreiro (1995) apply a
Kernel M-estimator methodology to the option pricing problem by ex-
tending the Black-Scholes formulation3. In doing so, they recognize that
the Black-Scholes formula is not strictly valid, but that its shape can

3A��t-Sahalia and Lo (1997) also use the same semiparametric approach, along with
their purely nonparametric approach.
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still be useful to recover a pricing formula more in line with observed
data. More precisely, they keep the Black-Scholes functional shape but
they make the volatility parameter which is assumed �xed in the Black-
Scholes model a function of some observable state variables such as the
St=K ratio. Apart from the fact that we use a feedforward neural net-
work estimation technique instead of a kernel estimator, our approach
can be seen as a generalization of their approach since we dispense with
the log-normality assumption of the asset underlying the Black-Scholes
model. A��t-Sahalia and Lo (1997) use kernel estimation techniques for
the option pricing function. They also point out that several of the
partial derivatives of the option pricing function are of special interest.
Apart from the well-known delta of the option, i.e. the �rst derivative of
the option pricing formula with respect to the stock price, it is possible
to recover the state price density (SPD) through the second derivative
of the option pricing function with respect to the strike price4. In the
context of complete markets, this state price density is very useful since
it provides an arbitrage-free method of pricing complex or less liquid
options given observed prices on liquid basic options.

By contrast, the two latter papers underline an important issue. In
Gouri�eroux, Monfort and Tenreiro (1995), the parameters of the volatil-
ity function correcting the Black and Scholes model are estimated ac-
cording to a speci�cally chosen objective function based on an empirical
criterion, what they call objective-driven inference. In A��t-Sahalia and
Lo (1997), although the ultimate objective might be to extract the risk
neutral density, it is the pricing function that is estimated through ker-
nel methods. Although kernel methods or feedforward networks can
estimate consistently the derivatives of a function, it might be impor-
tant to target directly the statistical or �nancial criterion of interest (see
Bengio (1997)). If the goal is to hedge a portfolio, the training or the
validation of the learning network should be done according to the hedg-
ing criterion which involves the �rst derivative of the function. As we
will see, the architectures of the networks selected for pricing and hedg-
ing will be very di�erent. Choosing the best pricing model for hedging
purposes could lead to important �nancial losses, especially in networks
without the homogeneity hint.

To show the usefulness of a learning network in pricing and hedging
options, Hutchinson, Lo and Poggio (1994) looked at several techniques
for modelling

4Cl�ement, Gouri�eroux and Monfort (1993) and Patilea and Renault (1995) esti-
mate an equivalent martingale measure by a nonparametric Bayesian method. Jon-
deau and Rockinger (1997) survey and compare several methods to extract risk neu-
tral densities with an applicaton to exchange rate options.
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onlinear statistical relationships nonparametrically: radial basis func-
tions, projection pursuit regression, and multilayer perceptrons. We use
only the last of these techniques to illustrate the accuracy gains that
could be made by exploiting the homogeneity property of the formula.
Whether similar gains can be made with the other techniques or any
other nonparametric approach remains to be investigated.

Section 2 discusses the nonparametric approach to option pricing
and the restrictions implied by the often assumed homogeneity of degree
one of the pricing function in the underlying stock price and the strike
price. Section 3 presents the feedforward neural networks used for esti-
mating the option pricing function. In section 4, we report the results
of a Monte-Carlo experiment aimed at assessing the pricing and hedging
accuracy gains provided by the homogeneity restriction. Section 5 mir-
rors section 4 with actual price data on options written on the S&P 500
index. Section 6 concludes.

2 Nonparametric Option Pricing with Ho-

mogeneity

A natural nonparametric function for pricing a European call option on a
non-dividend paying asset will relate the price of the option to the set of
variables which characterize the option, i.e. the price of the underlying
asset St, the strike price K; and the time to maturity � . Therefore, the
option pricing function can be written as:

Ct = f(St;K; �): (1)

This approach is followed by Hutchinson, Lo and Poggio (1994). The
function will also be valid to learn prices generated by a Black-Scholes
model as the interest rate and volatility parameters present in the for-
mula are constant and cannot be identi�ed by a nonparametric estimator
of the function f: It is generally more di�cult to estimate nonparamet-
rically such a function when the number of input variables is large. To
reduce the number of inputs, Hutchinson, Lo and Poggio (1994) divide
the function and its arguments by K and write the pricing function as
follows:

Ct

K
= f(

St

K
; 1; �): (2)

This form assumes the homogeneity of degree one in the asset price
and the strike price of the pricing function f: Another technical reason
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for dividing by the strike price is that the process St is nonstationary
while the variable St

K
is stationary as strike prices bracket the underlying

asset price process. This point is emphasized in Ghysels et al. (1997).
The crucial question is to determine to what extent this homogeneity
property is restrictive for the nonparametric learning of the option pric-
ing function. FromMerton (1973), we know that the call pricing function
is homogeneous of degree one in the asset price and the strike price when
the unconditional distribution of returns is independent of the level of the
asset price. In Garcia and Renault (1995), Proposition 2 establishes that
a necessary and su�cient condition for homogeneity is the conditional
independence (under the pricing probability measure) between future
returns and the current price, given the currently available information
other than the history of the underlying asset price. This property must
be understood as a noncausality relationship in the Granger sense from
the current price to future returns (for a given informational setting) and
not as an independence property. This characterization of homogeneity
is more general than the su�cient condition proposed by Merton (1973),
not only since the independence requirement is replaced by a more spe-
ci�c noncausality assumption, but also since it is stated in terms of the
pricing probability measure rather than the data generating process. In
such a setting, risk premiums may depend on the level of the asset price
St: Very general processes are also admissible for the underlying asset,
such as for example a stochastic volatility model, except that the volatil-
ity function cannot be a function of the asset price level as in implied
tree models (see Rubinstein (1994)).

Garcia and Renault (1995) further propose an equilibrium model that
ensures the homogeneity property5. Given a conditional (on state vari-
ables) log-normality assumption about the fundamentals of the economy,
they derive an extended Black-Scholes option pricing formula. They
stress that such an additional assumption is not really restrictive once
the assumptions required for homogeneous option pricing are maintained
since log-normality follows from a standard central limit argument. There-
fore, the Black-Scholes shape of the option pricing formula will be robust
when one remains true to homogeneity. Their general pricing formula
for European call options is given by:

Ct

K
= Et

�
St

K
QXY (t; T )�(d1)� eB(t; T )�(d2)

�
; (3)

5Corollary 2.1 in Broadie et al. (1996b) also states that such a homogeneity prop-
erty holds in a fairly general stochastic volatility model. One restriction is that the
drift and di�usion functions of the stochastic volatility process may not depend on
the asset price itself.
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where QXY (t; T ) is a function of preference parameters and of condi-
tional moments of future growth rates of consumption (X) and divi-

dends (Y ); eB(t; T ) a stochastic discount factor also a function of prefer-
ence parameters and future growth rates of consumption (X), �(:) the
cumulative normal distribution function and:

d1 =

ln

�
StQXY (t;T )

KeB(t;T )
�

(
PT

�=t+1 �
2
Y � )

1=2
+
1

2
(

TX
�=t+1

�2Y � )
1=2;

and

d2 = d1 � (

TX
�=t+1

�2Y � )
1=2:

The expression inside the expectation in (3) keeps the Black-Scholes
functional shape. For a nonparametric characterization of the option
pricing function, we therefore use a generalized Black-Scholes formula:

Ct

K
=

St

K
f1(

St

K
; � )� b(� )f2(

St

K
; � ): (4)

Theoretical restrictions stemming from the absence of arbitrage or
from equilibrium constrain the functions f1 and f2 to approximate the
same function (for example the normal distribution function in the Black-
Scholes formula), with possibly di�erent arguments or di�erent signs for
the same arguments. We account for these theoretical restrictions by
constraining the neural network structure to be the same for f1 and f2:

Since we limit the arguments of the functions to St
K and � , we let the

signs of the inputs unconstrained within each function. The function
b(� ) is a general function of the maturity of the option.

3 Learning Networks

Hutchinson, Lo and Poggio (1994) used learning networks based on three
techniques: radial basis functions, multilayer perceptrons, and projection
pursuit regression. Our ultimate goal is to assess the usefulness of the
homogeneity hint for learning the option pricing function. We select the
multilayer perceptron or feedforward neural network technique for this
purpose, hoping that similar results could be obtained with the other
techniques.
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3.1 Feedforward Neural Networks and Hints

Let a typical regression function be written as f(x; �), where x stands for
the explanatory variables, � is a vector of parameters and the function
f determines how x and � interact. This representation is identical
to the output function of a feedforward network such that the network
inputs are interpreted as the explanatory variables and the weights in the
network are interpreted as the parameters, �. In a typical feedforward
network, the input units send signals xj across weighted connections
to intermediate or hidden units. Any given hidden unit j receives the
sum of all the p weighted inputs, j0 +

Pp
i=1 jixi. The �rst term j0

is an intercept or a bias term. The weights ji are the weights to the
jth hidden unit from the ith input. The hidden unit j outputs a signal
hj = G(j0 +

Pp
i=1 jixi) where the activation function G is:

G(x) =
1

1 + e��x
;

a logistic function which has the property of being a sigmoidal6 function.
The signals from the hidden units j = 1; : : : ; d are sent to the output
unit across weighted connections in a manner similar to what happens
between the input and hidden layers. The output unit receives the sum
of the weighted hidden units , �0 +

Pd
j=1 �jhj . If the expression for hj

is substituted into the latter expression, it yields the output of a single
layer feedforward network

f(x; �) = �(�0 +

dX
j=1

�jG(j0 +

pX
i=1

jixi)) (5)

as a function of inputs and weights.
Many authors have investigated the universal approximation prop-

erties of neural networks (Gallant and White (1988, 1992); Cybenko
(1989); Funahashi (1989); Hornik, Stinchcombe andWhite (1989, 1990)).
Using a wide variety of proof strategies, all have demonstrated that under
general regularity conditions, a su�ciently complex single hidden-layer
feedforward network can approximate a large class of functions and their
derivatives to any desired degree of accuracy where the complexity of a
single hidden layer feedforward network is measured by the number of
hidden units in the hidden layer. One of the requirements for this uni-
versal approximation property is that the activation function has to be

6G is a sigmodial function if G : R ! [0; 1], G(a) ! 0 as a ! �1, G(a) ! 1 as
a!1 and G is monotonic.
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a sigmoidal such as the logistic function presented above7. We estimate
� by nonlinear least squares. Gallant and White (1992) show that the
least squares estimates are consistent in the Sobolev norm, provided that
the number of hidden units increases with the size of the data set.

All learning network methods share the same fundamental premise
of learning from input and output pairs. For a method to learn an
unknown function from data, it must be able to make generalizations
to the out-of-sample setting from the limited input-output pairs upon
which it is trained. In general, a learning network technique knows
nothing about the unknown function it is trying to learn, except what
is provided in the sample of input-output pairs. If the provided pairs
contain irrelevant information or a substantial amount of noise, the �t
will be poor. Accordingly, the method will provide poor out-of-sample
generalizations.

A method which provides additional information to the learning algo-
rithm is the method of hints. A method with hints describes a situation
where, in addition to the set of input-output pairs of an unknown func-
tion, there is additional prior information about the properties of the
unknown function which is provided to the learning algorithm. In gen-
eral, hints provide auxiliary information about the unknown function
which can be used to guide the learning process. The idea of using aux-
iliary information about the target function to help the learning process
is clearly a basic one, and has been used in the literature under di�erent
names such as hints, prior knowledge and explicit rules. Furthermore, a
model with hint provides additional guidance to the learning algorithm
in the presence of noisy data and a limited number of observations.

There are di�erent types of hints common to di�erent applications.
Invariance hints of Duda and Hart (1973), Hinton (1987), Hu (1962)
and Minsky and Papert (1988) are the most common types of hints in
pattern recognition applications. An invariance hint asserts that the
target function is invariant under certain transformations of the input.
Monotonicity hints, as in Abu-Mostafa (1993), are common in appli-
cations such as medical diagnosis and credit rating where the target
function is assumed to be monotonic in certain variables8. Symmetry
hints are commonly used in foreign exchange predictions by technical
analysts. Abu-Mostafa (1994, 1995) indicate that appropriately placed
restrictions may lead to improved out-of-sample generalizations.

7For an excellent survey of the feedforward and recurrent network models, the
reader may refer to Kuan and White (1994) and White (1992).

8The methodology proposed by Abu-Mustafa (1993) is to create virtual examples
from the observed data and add them to the training set as hints to improve the out-of-
sample predictability. A similar methodology could be used to impose homogeneity.

8



3.2 The Estimated Networks

For the architecture of our networks, with and without the homogeneity
hint, we follow the general choice of the identity function for � and the
logistic function for G. Therefore, we will estimate the following two
models, respectively for the model without hint (6) and with hint (7):

fNN(St=K; � ; �) = �0+

dX
j=1

�j
1

1 + exp(�j0 � j1(St=K)� j2� ))
(6)

f
WH

(St=K; � ; �) = �
0

(7)

+
St

K

 
dX
j=1

�
1

j

1

1 + exp(�1j0 � 1j1(St=K)� 1j2�))

!

�e
���

 
dX
j=1

�
2

j

1

1 + exp(�2j0 � 2j1(St=K)� 2j2�))

!

From a statistical point of view, one drawback of the feedforward
neural network technique is the virtual absence of inferential procedures
to determine the best model speci�cation. There are a number of infor-
mation theoretic criteria such as the Schwarz Information Criteria (SIC)
or the Akaike Information Criteria (AIC) which could be used for this
purpose, but they support the choice of feedforward network models
which do not generalize well. Swanson and White (1995) report that
the SIC fails to select su�ciently parsimonious models in terms of be-
ing a reliable guide to the out-of-sample performance. Cross-validation
based methods are also available and require heavy computational time
to determine the network complexity.

We select the complexity of the networks based on their performance
in an out-of-sample validation period. From (6) and (8), it can be seen
that the networks for the model with hint will always have about twice
as many parameters as the networks without the hint for a given number
of hidden units. To compare fairly the performance of the two networks,
we adopt a three-step strategy. First, we estimate networks with 1 to 9
hidden units9 for the regular neural networks and 1 to 5 hidden units for
the networks with hint over half of the data points for a particular sam-
ple, the training period. Next, we choose the network in each family that

9We also experimented with feedforward network models with 10 hidden units,
but they were never selected in the validation period.
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gives the best mean square prediction error (MSPE) over half of the re-
maining data points in the sample, called the validation period. Finally,
we assess the prediction performance (MSPE) of the best model chosen
in the previous step for the models with and without the homogeneity
hint over the last quarter of data, the prediction period.

To gauge the improvement achieved with the homogeneity hint in
a model kept as simple as possible, we limit our investigation to two
inputs, namely St

K and � . It also makes our results comparable to the
study of Hutchinson, Lo and Poggio (1994) who used the same inputs.
Of course, the introduction of various estimates of the volatility of the
underlying assets could further improve results but this avenue will not
be pursued here. The interest rate is estimated by the parameter � in
the model with hint (8) but is absent from (6)10. Again, introducing the
observed interest rate could add useful information.

Hutchinson, Lo and Poggio (1994) also evaluated their pricing model
in terms of hedging performance. We compare the two families of neural
networks, with and without the hint, according to this criterion. We
proceed in the same way as for the MSPE criterion. We choose the best
model on an intermediate validation period and evaluate the forecasted
average hedging error over a �nal prediction period. We also present the
percentage of options, in this �nal period, for which the hedging error is
less than the Black-Scholes hedging error.

4 Learning with a Homogeneity Hint: A

Monte Carlo Experiment

To run our Monte Carlo experiment, we adopt a Black-Scholes frame-
work. The price of the underlying asset on which the option is written
follows a geometric Brownian motion:

dSt = �Stdt+ �StdWt:

We adopt the same setting as Hutchinson, Lo and Poggio (1994)
with S0, the initial price of the stock set equal to $50, � equal to 10
percent and a yearly volatility � to 20 percent. To make our experiment
comparable to our performance assessment strategy with actual daily
data, we simulate a year of daily-return data by drawing 253 random
normal variates Zt with mean �=253 and standard deviation �=

p
253:

The price series fSt; t = 1; :::; 253g is obtained as follows:

10We impose the positivity of the corresponding parameter in the networks with
hint.
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St = S0 exp(

tX
i=1

Zi):

Given this path of daily stock prices, we create stock options accord-
ing to the rules of the Chicago Board Options Exchange (CBOE), sum-
marized in the Appendix, and generate 3333 data points. As described
in the previous section, we train the two families of networks over the
data points that correspond to the �rst six months of the sample, which
amounts to 1612 points in our experiment. Given the estimated net-
works, we predict the option prices over the next three months, a period
which represents 916 data points. Based on these predicted prices, we
compute the MSPE over this validation period in order to select in each
family the network that delivers the lowest MSPE. We have now selected
two competing models, one for each family of neural networks, with and
without the homogeneity hint. We compute for each model the MSPE
over the last part of the sample which counts 805 data points11. Since
the estimation result of the networks depends on the random seed from
which initial values are drawn for the parameters, we run this procedure
�ve times12. Table 1 presents the average MSPE over the prediction
period for each family of networks, along with the average complexity in
parentheses, as well as the standard deviation over the �ve experiments.

First, it should be noticed that the procedure selects in average a
lower complexity than the maximum hidden units allowed for both mod-
els. The complexity is also roughly equivalent in terms of parameters for
each family of models. The average MSPE is about 20 percent lower for
the model with hint. To see if this di�erence is statistically signi�cant,
we compute the Diebold and Mariano (1995) test statistic (DM here-
after)13. This statistic tests the null hypothesis of no di�erence in the

11The out-of-sample forecast is therefore done over these 805 data points. Notice
that the same estimated parameters are kept for the whole period. Of course, in a
real-time forecast exercise, the networks should be reestimated as new information
becomes available.
12For each experiment and each network (1 to 5 units for the networks with the

homogeneity hint and 1 to 9 units for the networks without the hint), we draw 200
sets of parameters starting from di�erent seeds and select the set with the smallest
mean squared error as the starting values for our nonlinear least square estimation
over the �rst half of the sample for each year. The number of units reported in the
table corresponds to the networks that obtained the lowest MSPE over the validation
period, averaged over the �ve runs.
13With this statistic, forecast errors can be serially correlated and contempora-

neously correlated. The test statistic is computed by averaging the forecast error
di�ererences of the 25 pairs of models that result from the �ve estimations of each
type of network.
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forecasting accuracy of the two models. Given that the statistic is dis-
tributed as a N(0; 1) variable, the value of 20.57 means that the equality
of the two forecasts is overwhelmingly rejected in favor of the model with
hint.

Hutchinson, Lo and Poggio (1994) argue that a more meaningful per-
formance measure for a given option pricing formula is the tracking error
associated with a replicating portfolio that delta-hedges an option posi-
tion. The hedging ratios (the derivative of the option price with respect
to the stock price) are computed based on the pricing formulas. To com-
pute the tracking errors, we follow the procedure described in detail in
Hutchinson, Lo and Poggio (1994) and summarized in the Appendix.

An average hedging error is reported, where the average is computed
across all options hedged in the prediction sample. We also report the
number of times that " computed from the networks is less than the "
obtained with the Black-Scholes formula, as a percentage of the number
of options hedged over the prediction period. For computing the hedging
performance, the sample is split into three parts as we did for pricing. In
the validation period though, for reasons that we will elaborate on in the
next section, we select as the best model in each family of networks the
one that minimizes the average hedging error and not the MSPE. Table
2 reports the average tracking error over the �ve runs for both models as
well as the average complexity of the networks. Contrary to the pricing
performance, the networks without hint produce a slightly lower average
hedging error. As it was the case for pricing, the complexity is similar
in both networks. The percentage of cases where the hedging error is
less than the Black-Scholes hedging error is around 20 percent for both
networks, which is expected since the Black-Scholes model is the true
model and the only source of error comes from discrete hedging. In
the next section, we assess to what extent these simulation results are
con�rmed with actual data.

5 Assessment of the Relevance of the Ho-

mogeneity Hint for Pricing and Hedging

S&P 500 Call Options

The data are daily S&P 500 Index European options obtained from the
Chicago Board Options Exchange for the period January 1987 to Octo-
ber 1994. The S&P 500 index option market is extremely liquid and it is
one of the most active options markets in the United States. This mar-
ket is the closest to the theoretical setting of the Black-Scholes model.
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In constructing the data used in the estimation, options with zero vol-
ume are not used. For each year, the sample is split into three parts:
�rst half of the year (training period), third quarter (validation period)
and fourth quarter (prediction period). One possible drawback of such
a setup is that we will always evaluate the predictive ability of our net-
works on the last quarter of the year. The advantage is that it will
facilitate comparison between years, especially with reference to the last
quarter of 1987, when a market crash occurred. Since our main purpose
is to compare the feedforward networks with and without the homogene-
ity hint, the last quarter of each year is as good for prediction purposes
as any other period. Moreover, since our methodology for choosing the
best architecture involves estimating numerous networks for each family
of models and repeating the estimation for �ve di�erent seeds, it requires
a lot of computation and forces us to limit somewhat the scope of our
investigation. In the next two subsections, we will analyze the results in
terms of predictive performance for pricing and hedging respectively.

5.1 Pricing Errors

The network pricing performance measure is the Mean Squared Pre-
diction Error (MSPE) in the prediction sample. Results are presented
in Table 3. For each year, we report the average MSPE obtained over
the �ve experiments for each family of networks, along with the average
number of hidden units selected. First, it should be observed that the
average MSPE for the models with the homogeneity hint (WH) is always
smaller than the MSPE of the models with no hint (NN). The average
MSPE ratios of the models with and without hint for 1987 to 1993 are
46, 89, 98, 92, 93, 92 and 72 percent, respectively. Furthermore, the
ratio of the MSPE standard deviations across the �ve experiments sub-
stantially favours the model with the homogeneity hint. In most years,
this ratio is lower than 50 percent. The values of the DM statistic are
all large and positive, which means that we strongly reject the equality
of the forecast errors in favor of the feedforward neural networks with
hint.

The performance of the linear and the Black-and-Scholes models are
also presented in Table 3. Not surprisingly, the linear model provides
the poorest performance in terms of MSPE. The MSPE performance of
the Black and Scholes (BS) model is signi�cantly better than the linear
model but worse than the feedforward network models. Over all years
except 1987, the BS MSPE is 3 to 10 times larger than the feedforward
networks. The result in 1987 might then appear surprising. It is less
so when one realizes that the BS model incorporates information from
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the third quarter of the year that is not part of the training sample of
the networks. Indeed, the volatility in the BS model is based on the
stock returns over the last sixty days preceding the �rst day of the last
quarter. If we give a comparable information to the networks, in the
sense that we train them over the �rst nine months of 1987 and forecast
the option prices over the last quarter, the MSPEs are 6.50 and 4.11
for the NN and WH models respectively. Therefore, with comparable
information, the model with hint does slightly better than the BS model
in 1987. This emphasizes the fact that in Table 3 the BS model is given
an informational advantage compared with the other three models. The
relative pricing performance of the networks is all the more remarkable.

To investigate for which options the two types of networks di�er in
their out-of-sample pricing performance, we report in Table 4 the out-
of-sample MSPE for various categories of options based on maturity and
moneyness for the year 1993. The ratios of the means and standard
deviations of the feedforward networks with and without the homogene-
ity hint are lowest for the two ends of the spectrum, the short-term
out-of-the money options and the long-term in-the-money options. The
networks predict with the least di�erence for the medium-term near-the-
money options. This breakdown of predictions by maturity and mon-
eyness emphasizes that the homogeneity hint appears most useful to
generalize out of sample when there are less observations in the learn-
ing sample. The number of options in sample for each category is very
similar to the number reported for the prediction period. The results
reported for the year 1993 are representative of what is obtained for the
other years.

To conclude this assessment of the pricing performance of the com-
peting feedforward network models, we can safely say that the networks
with hint predict better than the networks without hint.

5.2 Average Hedging Errors

Does a good pricing model produce a small average hedging error? One
certainly gets this impression when looking at the results in Hutchinson,
Lo and Poggio (1994). However, it should be remembered that they keep
the architecture of the learning networks �xed. There was no procedure
to select the optimal number of units. To answer the question in our
setting, let us evaluate the average hedging error that would be obtained
when the best pricing models selected in the previous section are used to
compute the delta hedging ratios. In the last quarter of the year 1988,
the model without hint would have produced an average hedging error
over the �ve runs greater than 30, compared with 4.50 for the linear
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model. The model with hint does much better comparatively with an
average hedging error of 3.80. Still, both feedforward network models
fail to do better than the BS model. The same pattern emerges for the
other years.

Then, the best model in terms of out-of-sample pricing performance
is not necessarily a good tool to delta hedge a portfolio. This result
might suggest that one should train the networks based on the perfor-
mance criterion ultimately used. The idea is basically the same as the
objective-driven inference concept introduced by Gouri�eroux, Monfort
and Tenreiro (1995) and has also been put forward in the learning net-
work literature (see Bengio (1997)). However, it might be numerically
di�cult to estimate the parameters of the networks by minimizing an
average hedging error criterion. We therefore suggest below a computa-
tionally easier route.

The networks are still trained by minimizing a mean square crite-
rion over the �rst half of the sample, as we did in the previous section.
However, in the validation phase over the third quarter of each year, we
choose as best models among the two families of feedforward network
models the ones that minimize the average hedging error. The average
number of units for the selected models appear in parentheses on the
average performance x line in Table 5. It should be noticed that the
models selected are more parsimonious than the models selected on a
pricing criterion. For the feedforward networks without hint, the aver-
age number of units is either 4 or 5, while it was close to 7 for the pricing
criterion (see Table 3). Similarly, for the networks with the homogeneity
hint, the average is close to 3 units instead of 4.

Based on this selection procedure on a hedging criterion over the
validation sample, the hedging performance of the selected models is
evaluated for the options traded in the last quarter of the year. Contrary
to what was obtained for the MSPE performance criterion, the ratios
of the average hedging errors between the two families of feedforward
neural networks are very close to one in most years. Therefore, the
result found in the simulation exercise based on Black-Scholes prices is
con�rmed in the data. However, the standard deviation of the average
hedging error over the �ve runs is often much smaller for the networks
with the homogeneity hint, except in 1991. This result shows that the
models with hint produce a more consistent hedging performance. The
average hedging errors of the networks with the homogeneity hint are
more stable across di�erent starting values of the nonlinear optimizers
and models with di�erent numbers of hidden units.

It should also be emphasized that both feedforward neural networks
are better for hedging than the BS model as the ratio is as low as 67
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percent in 1991. This is also reected in the percentages of options for
which the AHE of the networks is less than the BS AHE. This statistic
is always greater than 50 percent and exceeds 70 percent in 1991.

6 Conclusions

In this paper, we show that pricing accuracy gains can be made by
exploiting the implications of the homogeneity property of the options
prices in a neural network framework. Instead of setting up a learning
network mapping the ratio St=K and the time to maturity (� ) directly
into the derivative price, we break down the pricing function into two
parts, one controlled by the ratio St=K, the other one by a function of
time to maturity. The results indicate that the homogeneity hint always
reduces the out-of-sample mean squared prediction error compared with
a feedforward neural network with no hint. Our study con�rms that the
feedforward network models provide smaller delta-hedging errors relative
to the Black-and-Scholes model, but does not reveal any signi�cant dif-
ference between the feedforward network models themselves. However,
the hedging performance of the networks with hint appears to be more
stable across the estimated models.

The study of the average hedging error showed that the performance
criterion should be taken into account to select the best models. In
Hutchinson, Lo and Poggio (1994) the model selection issue was not
dealt with as the complexity of the learning networks was �xed. In
practice, the complexity of the model is always chosen based on various
criteria such as information criteria or out-of-sample prediction errors.
Naturally, the same idea will apply to another important use of the esti-
mated pricing function which is the extraction of the risk neutral density.
Estimating this density involves computing the second derivative of the
option pricing function with respect to the strike price. The selection
of the best pricing model might cause a poor estimation of the deriva-
tives of the option pricing function and a�ect negatively the estimation
of the hedging ratio or of the risk neutral density. These issues will be
investigated in future research.
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Appendix

1. Rules for creation of the options

Stock options are on a January, February, or March cycle. The Jan-
uary cycle consists of the months of January, April, July, and October.
The February cycle consists of the months of February, May, August,
and November. The March cycle consists of the months of March, June,
September, and December. If the expiration date for the current month
has not yet been reached, options trade with expiration dates in the cur-
rent month, the following month, and the next two months in its cycle.
If the expiration date of the current month has passed, options trade
with expiration dates in the next month, the next-but-one month, and
the next two months of the expiration cycle. When one option reaches
expiration, trading in another is started.

To set the strike prices at which options can be written, the rule
followed by the exchange is to use a $5 spacing when the stock price is
between $25 and $200. When options expire, a new expiration date is
introduced. The two strike prices closest to the current stock price are
usually selected by the exchange. If one of these is very close to the
existing stock price, the third strike price closest to the current stock
price may also be selected. If the stock price moves outside the range
de�ned by the highest and the lowest strike price, trading is usually
introduced in an option with a new strike price. We set the price of each
option according to the Black-Scholes formula.

2. Procedure for computing the tracking errors

At date 0, we make up a portfolio by selling one call option and
simultaneously purchasing � (the derivative of the option pricing func-
tion with respect to the stock price) shares of stock. Since the stock
purchase is �nanced through the sale of the option and riskless borrow-
ing, the value of the portfolio at time 0 is zero:

V (0) = VS(0) + VB(0) + VC(0) = 0;

where VS(0);VB(0);and VC(0) are the values of stocks, bonds and op-
tions at time 0. At any time t, the value of the portfolio is given by

V (t) = VS(t) + VB(t) + VC(t):

We want to evaluate the value of the portfolio at time T , that is the
di�erence between the terminal value of the option and the value of the
positions in bonds and stocks. To make this measure comparable over all
options hedged in a given sampling period, we take the present value of
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its absolute value. For a particular option, the tracking error is therefore
given by

" = e�rT jV (T )j :

The value of the stock position VS(T ) is equal to S(T )�, where �
is the delta hedge ratio corresponding to the option pricing formula. In
our comparison, we assess the average tracking error of four models:
the neural networks with and without the homogeneity hint, the linear
model and the Black-Scholes model. Even if we generate our option
prices according to the Black-Scholes model, there is a tracking error for
this latter model caused by the fact that our hedging strategy is discrete
and not continuous. For the linear model, � is the estimated parameter
of the variable St=K in the regression of Ct=K on a constant, the ratio
St=K and the time to maturity of the option. For the Black-Scholes
model, it is given by �(d1); where � is the standard normal cumulative
distribution function and

d1 =
ln(St=K) + (r + �2=2)T

�
p
T

:

The value of the bond position VB(T ) is constructed by recursion.
We start with VB(0) from the equation above and compute recursively
for each period until T

VB(t) = exp(r)VB(t� 1)� S(t)(�(t) ��(t� 1)):
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Table 1

Out-of-Sample Mean Square Prediction Errors on Simulated Call

Option Black-Scholes Prices

(Total Sample: 1612, Validation Sample: 916, Prediction Sample:

805)

Statistics MSPE MSPE Ratio MSPE
With Hint No Hint Linear

�x 0.1708 (3) 0.2321 (6) 0.74 37.35
� 0.0623 0.0360 1.73
DM 20.57

Notes: This table presents the out-of-sample mean square prediction error (MSPE)
performance of a neural network with a homogeneity hint, a regular feedforward
network with no hint, and of a linear model for call option prices generated with
the Black-Scholes formula. The table reports the average (�x) of the �ve MSPEs
corresponding to �ve networks estimated from di�erent seeds. The average number
of hidden units of the �ve runs are reported between parentheses next to the average
MSPEs. � is the standard deviation of the �ve MSPEs of the estimated networks.
The Ratio is the ratio between the corresponding statistics between the feedforward
network model with hint and without hint. DM refers to the Diebold and Mariano
(1995) test for a mean loss di�erential. This test statistic is distributed standard
normal in large samples. AllDM test statistics are calculated from the loss di�erential
of the mean square prediction errors between the feedforward network models with
and without the homogeneity hint. MSPE reported �gures have been multiplied by

105:

Table 2

Average Hedging Errors on Simulated Call Option Black-Scholes

Prices

(Number of Options Hedged: 18)

Stats AHE % < AHE % < Ratio AHE AHE
With Hint BS No Hint BS Linear BS

�x 0.2153 (3) 0.21 0.2022 (7) 0.17 1.06 12.28 0.0874
� 0.0299 0.0086 3.50

Notes: This table presents the average hedging error (AHE) of a neural network with
a homogeneity hint, of a regular feedforward network with no hint, of the Black-
Scholes model (BS) and of the linear model for call option prices generated with
the Black-Scholes formula. �x corresponds to the average of the �ve di�erent AHEs
estimated networks from �ve di�erent seeds. The average number of hidden units
of the �ve runs are reported between parentheses next to the average AHEs. � is
the standard deviation of the �ve AHEs of the estimated networks. The column
(% < BS) is the average of the percentage of options where the delta hedging error
was less than the BS delta hedging error.
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Table 3

Out-of-Sample Mean Square Prediction Errors of the SP500 Call Options

(1987, Total Sample: 3610, Validation Sample: 2010, Prediction Sample:

2239)

Statistics MSPE MSPE Ratio MSPE
With Hint No Hint Linear/BS

�x 16.70 (3) 36.23 (6) 0.46 98.96/4.38
� 9.51 43.20 0.22
DM 7.86

(1988, Total Sample: 3434, Validation Sample: 1642, Prediction Sample:

1479)

Statistics MSPE MSPE Ratio MSPE
With Hint No Hint Linear/BS

�x 0.7114 (4) 0.7959 (7) 0.89 8.41/2.07
� 0.0429 0.0931 0.46
DM 9.91

(1989, Total Sample: 3052, Validation Sample: 1565, Prediction Sample:

1515)

Statistics MSPE MSPE Ratio MSPE
With Hint No Hint Linear/BS

�x 0.4138 (4) 0.4206 (8) 0.98 3.75/1.42
� 0.0068 0.0160 0.43
DM 6.99

(1990, Total Sample: 3605, Validation Sample: 2075, Prediction Sample:

2166)

Statistics MSPE MSPE Ratio MSPE
With Hint No Hint Linear/BS

�x 0.6761 (3) 0.7253 (6) 0.92 8.15/2.62
� 0.0763 0.1222 0.62
DM 5.04

(1991, Total Sample: 4481, Validation Sample: 1922, Prediction Sample:

2061)

Statistics MSPE MSPE Ratio MSPE
With Hint No Hint Linear/BS

�x 0.3498 (4) 0.3775 (8) 0.93 3.45/1.73
� 0.0148 0.0336 0.44
DM 11.57
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Table 3 (Cont'd)

(1992, Total Sample: 4374, Validation Sample: 1922, Prediction Sample:

1848)

Statistics MSPE MSPE Ratio MSPE
With Hint No Hint Linear/BS

�x 0.1511 (4) 0.1649 (7) 0.92 2.39/1.36
� 0.0115 0.0126 0.91
DM 14.97

(1993, Total Sample: 4214, Validation Sample: 1973, Prediction Sample:

2030)

Statistics MSPE MSPE Ratio MSPE
With Hint No Hint Linear/BS

�x 0.1054 (4) 0.1453 (6) 0.72 2.28/0.74
� 0.0222 0.0498 0.44
DM 11.24

Notes: This table presents the out-of-sample mean square prediction error (MSPE)
performance of a neural network with a homogeneity hint, a regular feedforward
network with no hint, and of a linear model for call option prices from the SP500
call options. The table reports the average (�x) of the �ve MSPEs corresponding to
�ve networks estimated from di�erent seeds. The average number of hidden units of
the �ve runs are reported between parentheses next to the average MSPEs. � is the
standard deviation of the �ve MSPEs of the estimated networks. The Ratio is the
ratio between the corresponding statistics between the feedforward network model
with hint and without hint. DM refers to the Diebold and Mariano (1995) test for
a mean loss di�erential. This test statistic is distributed standard normal in large
samples. All DM test statistics are calculated from the loss di�erential of the mean
square prediction errors between the feedforward network models with and without

the homogeneity hint. MSPE reported �gures have been multiplied by 104:
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Table 4

Out-of-Sample Mean Square Prediction Errors per Maturity and Moneyness
S&P 500 Call Options -Year 1993

MSPE Nb. of Mean Mean Ratio SD SD Ratio
x104 Options No With No With

Hint Hint Hint Hint

Short term

Out 128 0.0720 0.0492 0.68 0.0271 0.0149 0.55
Near 473 0.1168 0.0910 0.78 0.0155 0.0149 0.96
In 143 0.2160 0.2323 1.08 0.0834 0.0385 0.46
Medium term

Out 198 0.0292 0.0216 0.74 0.0068 0.0064 0.94
Near 409 0.0511 0.0503 0.91 0.0067 0.0060 0.92
In 72 0.1962 0.1907 0.97 0.0140 0.0176 1.25
Long term

Out 186 0.0672 0.0512 0.76 0.0131 0.0193 1.47
At 337 0.0526 0.0439 0.84 0.0118 0.0016 0.14
In 84 1.5109 0.8149 0.54 1.0780 0.3484 0.32

Notes: This table presents a comparison between the out-of-sample mean square
prediction error (MSPE) performance of a neural network with a homogeneity hint
(WH) and of a regular feedforward network (NN) for S&P 500 European call op-
tions of di�erent maturity and moneyness. The means and standard deviations are
computed over �ve MSPEs obtained from �ve estimated networks starting from �ve
di�erent seeds. The maturity cuto� points are: less than 0.1 (short term), between
0.1 and 0.2 (medium term), above 0.2 (long term). The moneyness cuto� points are:
less than 0.97 (out of the money), between 0.97 and 1.05 (near the money), above
1.05 (in the money).
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Table 5

Average Hedging Errors on SP500 Call Options

(1988, Number of Options Hedged: 110)

Stats AHE % < AHE % < Ratio AHE AHE
With Hint BS No Hint BS BS Linear

�x 1.5911 (3) 0.5764 1.9901 (5) 0.5036 0.80 1.8433 4.5110
� 0.0507 0.6183 0.08

(1989, Number of Options Hedged: 108)

Stats AHE % < AHE % < Ratio AHE AHE
With Hint BS No Hint BS BS Linear

�x 3.014 (3) 0.5463 2.8060 (5) 0.5685 1.07 3.2343 4.7572
� 0.1335 0.3255 0.41

(1990, Number of Options Hedged: 132)

Stats AHE % < AHE % < Ratio AHE AHE
With Hint BS No Hint BS BS Linear

�x 2.6260 (3) 0.5818 2.6175 (4) 0.6091 1.003 3.2422 6.6553
� 0.1266 0.5865 0.22

(1991, Number of Options Hedged: 131)

Stats AHE % < AHE % < Ratio AHE AHE
With Hint BS No Hint BS BS Linear

�x 1.6844 (4) 0.7267 1.7349 (5) 0.7023 0.97 2.5043 4.6615
� 0.1974 0.07 2.69
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Table 5 (Cont'd)

(1992, Number of Options Hedged: 100)

Stats AHE % < AHE % < Ratio AHE AHE
With Hint BS No Hint BS BS Linear

�x 2.2100 (2) 0.5780 2.2406 (4) 0.6060 0.99 2.4522 5.8540
� 0.0848 0.1055 0.80

(1993, Number of Options Hedged: 145)

Stats AHE % < AHE % < Ratio AHE AHE
With Hint BS No Hint BS BS Linear

�x 1.4259 (3) 0.5324 1.4470 (4) 0.5255 0.99 1.5046 2.8114
� 0.0212 0.0934 0.23

Notes: This table presents the average hedging error (AHE) of a neural network with
a homogeneity hint, of a regular feedforward network with no hint and the linear
model from the SP500 call options. �x corresponds to the average of the �ve di�erent
AHEs estimated networks from �ve di�erent seeds. The average number of hidden
units of the �ve runs are reported between parentheses next to the average AHEs. �
is the standard deviation of the �ve AHEs of the estimated networks. The column
(% < BS) is the average of the percentage of options where the delta hedging error
was less than the BS delta hedging error.
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