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Ce papier étudie une classe de jeu de Cournot à deux étapes, où dans
une première étape, des firmes rivales manipulent leurs coûts marginaux de
production en supportant des coûts de manipulation, de manière à pouvoir choisir
le type de jeu qu'elles veulent jouer en deuxième étape. Les coûts marginaux sont
manipulés en redistribuant les actifs productifs, ou en choisissant leur localisation,
ou en créant des marchés internes d'inputs. Une formulation générale de ce type de
jeu, dit « jeux de manipulation des coûts avec coût à manipuler », est fournie, et
plusieurs applications du modèle sont analysées. Nous montrons que souvent
l'allocation optimale des ressources au sein d'un oligopole à la Cournot peut être
asymétrique, même dans le cas ou les firmes sont symétriques ex-ante. Nous
caractérisons le degré d'asymétrie en fournissant la solution globale d'un programme
convexe (ou concave). Notre approche est assez générale pour pouvoir être
appliquée aux jeux de Bertrand avec produits différenciés, aux jeux de localisation
avec coût de transport (les modèles de Hotelling et de Salop) et aux jeux de
Stackelberg.

This paper analyzes a class of two-stage Cournot games where rival
firms, in the first stage, incur real resource costs in jointly manipulating their
marginal costs of production, so as to influence the outcome of game they want to
play in the second stage. Marginal costs may be manipulated by various means,
such as redistribution of productive assets, or choice of location, or by creating an
internal market for inputs. A general formulation of the game is provided, and
several applications of the model are analyzed. We show that often the optimal
allocation of resources within a Cournot oligopoly can be asymmetric, even when
firms are ex ante symmetric, and we characterize the degree of asymmetry by
finding a global solution to a convex (or concave) program. Our formulation of
cost manipulation games with cost of manipulating is general enough to apply to
Bertrand games with differentiated products, games involving location and
transport costs (the Hotelling and Salop models), and Stackelberg games.

Mots Clés : Oligopole, jeux de Cournot, manipulation des coûts

Keywords : Oligopoly, Cournot games, cost manipulation

JEL : L13, L23



1 Introduction

Firms in an oligopoly are not always in an adversarial relationship. In a
recent book entitled \Co-opetition," Nalebu� and Brandenburger (1996)
describe many real world situations of alliances between rival �rms. They
develop the theme that �rms may modify the rules of their games in or-
der to achieve partial cooperation while remaining rivals in the �nal good
market1. Their insightful discussion is an invitation for economists to
develop a unifying framework for the analysis of a class of games in which
rival �rms have the ability, in an earlier stage of the game, to determine
the set of actions or outcomes that are admissible in the subsequent sub-
games. An interesting example of two-stage games that involve coopera-
tion at one level and rivalry at another level is the creation of competing
divisions within a multi-divisional �rm. Baye, Crocker and Ju (1996)
analyze \strategic incentives to divide production among autonomous
competing units through divisionalization, franchising, or divestiture".
A related phenomenon is the establishment of an internal input market
within an oligopoly, of which the intra�rm resource ows and knowl-
egde ows constitute a special case. It may be argued that these ows
are created partly to inuence the outcome of rivalry in a second stage
of a game. Trade between parent �rms and their foreign a�liates that
are potential rivals (e.g. Sony products made in Malaysia versus almost
identical Sony products made in China) may be analyzed in terms of a
two-stage game. The importance of intra�rm resource ows is well doc-
umented in the World Investment Report (1993). In manufacturing, the
share of intra�rm transactions in foreign sales by US foreign a�liates
rose from 30 per cent to 36 per cent over the period 1977-89. Data for
the US on royalties and licence fees indicate that more than 70 per cent
of all receipts and 50 per cent of all payments were intra-transnational
corporation transactions (World Investment Report, 1993, p.164.).

Another example of two-stage games is the formation of a production
joint venture (denoted as PJV, as distinct from research joint venture,
RJV) by rival �rms2. Many production joint ventures have the features
that participants that use the joint venture's output as their intermediate
inputs are rivals in the �nal good market. Gale (1994) cites as exam-
ples (i) �rms sharing natural gas pipelines, (ii) an aluminium rolling mill
jointly owned by Alcan and Arco. Participants cooperate in the alloca-

1The semi-collusion aspect of oligopoly has been emphasized by Friedman and

Thisse (1993), and Fershtman and Gandal (1994).
2See Spencer and Raubitschek (1996), Gale (1994) for models of PJVs, and

d'Aspremont and Jacquemin (1988), Suzumura (1992), Kamien et al. (1992) for

RJVs.
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tion of the output of the PJV to them, who act as rivals in a diferent
stage of the game.3

In this paper we provide a general methodology for analyzing a class
of two-stage games among oligopolists, and illustrate the usefulness of
our approach by considering a number of applications. We are concerned
with \games of cost manipulation in the presence of costs of manipula-
tion". The costs of manipulating costs play an important role. These
costs may be in the form of internal production of an essential input, ca-
pacity choice, or choice of the �rm's locatio, etc. We seek to characterize
the solution of this type of games in terms of the concavity or convex-
ity of the overall objective function in the �rst stage. Our resolution
is geometric in nature. We show that the stage one objective function
may display, under quite general assumptions, a fundamental convexity
in the choice variables.

A major common thread in the applications that we focus on is the
following broad issue: why do internal markets for certain crucial inputs
emerge within an oligopoly? It will be seen that a large organization con-
sisting of independent rival units may have an incentive to generate an
internal input market as a means of fostering collusion.While we analyse
only a few examples, it will become clear that our framework is suitable
for the analysis of various aspects of behavior of multi-divisional �rms,
multi-national �rms, production joint ventures, and so on. In addition to
providing a general framework of analysis, we also obtain some speci�c
results. Among these is the result that, contrary to the general presump-
tion that ex-ante symmetric �rms will choose to be ex-post symmetric in
their joint pro�t maximization decisions, it is quite often the case that
the solution of the above class of games is asymmetric, even if �rms are
ex-ante symmetric. The intuition behind this result is as follows. In a
Cournot oligopoly4, with a �xed number of �rms each having a constant
marginal cost, the equilibrium industry output in stage 2 depends only
on the sum of their marginal costs (see Bergstrom and Varian (1985a));
it follows that if this sum is kept constant, while some �rms' marginal
costs are made to increase and other �rms'marginal costs are made to
decrease, then industry output, price, and total revenue will remain un-

3Two-stage games of a similar nature, with or without collusion or government
intervention in the �rst stage, include learning-by-doing by oligopolists (�rst period

output levels have an inuence on second period cost; see Fudenberg and Tirole

(1983), Krouse (1994) for example); technology choice (investment decision concern-

ing equipment types in period one determines the level of constant marginal cost in

period two; see DeGraba (1990), and Newbery (1990, especially pp.344-345).
4More generally, a modi�ed version of his result applies also to Bertrand games,

Stackelberg games, and games involving location such as the Hotelling and Salop

models.
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changed, and therefore industry pro�t will rise because the same total
output is now produced at lower cost (as �rms with decreased marginal
costs will expand their market shares at the expense of �rms with in-
creased marginal costs). This is the e�ciency motive for cost manipula-
tion. In the context of a simple model of research joint venture without
the cost of manipulating costs, this result has been formalized by Long
and Soubeyran5 (1995a): industry pro�t is an increasing function of the
variance of the distribution of the constant marginal costs. In this pa-
per, we deal with the issue of manipulation of marginal costs in a much
more general fashion, by (i) introducing real resource costs of manipu-
lating costs, (ii) providing a global characterization of the solution, and
(iii) dealing with both the cases of constant marginal costs and rising

marginal costs. Our approach relies on the decomposition principle (see
Rockafellar, 1970, Section 28, or Luenberger 1969, Ch. 8).

It is clear from the above discussion that asymmetric solution to a
symmetric problem arises when there is lack of concavity in the objective
function. By deriving the properties of the equilibrium pro�t function

for oligopoly, our model explains a key source of this lack of concavity.
But we should point out that there are situations where the cost of
manipulation of costs has a high degree of convexity, so that the objective
function becomes concave, giving rise to the optimality of symmetric
solutions. Both cases are discussed in Section 2, where we also treat the
more realistic case where �rms are ex-ante asymmetric.

The paper is organized as follows. In Section 2 we present the gen-
eral methodology and some general results, under the assumption that
marginal costs are independent of the scale of output. Section 3 ex-
tends the results to the case of multiplicatively separable scale-dependent
marginal costs. In Section 4 we illustrate the use of our general method
on some speci�c applications. Section 5 and the Appendix o�ers some

5A closely related result was proved by Bergstrom and Varian (1985b). They

assume that �rms have identical constant marginal costs, but face di�erent tax rates,

and show that tax revenue is a decreasing function of the variance of the tax rates.

At a less formal level, several authors have provided numerical examples where an

increase in the dispersion of (constant) marginal costs in a duopoly will increase

the sum of their pro�ts. See Newbery (1990, pp. 344-345) and Salant and Sha�er

(1992). Neither paper gave a formula relating industry pro�t to the variance of

the distribution of marginal costs and both papers assumed linear demand. While
working on the present paper, we received a paper by Salant and Sha�er (1996)

addressing the same topic. The latter paper gives su�cient conditions for a solution to

be asymmetric, in terms of gains achieved by a marginal deviation from a symmetric

point. Our approach is di�erent: we provide a global resolution of a convex or concave

problem, and characterize fully the degree of asymmetry. The question concerning

the (integer) number of �rms achieving di�erent levels of cost reduction in the optimal

solution is also answered.

3



further extensions.

2 The Model

We consider an oligopoly consisting of m �rms that produce a homoge-
nous good. Let M � f1; 2; :::;mg: Let qi denote �rm i's output, i 2M .
The inverse demand function is

P = P (Q); P 0(Q) < 0

where Q =
P

i2M qi. (Generalization to the case where P = P (Q+Q�)
where Q� is the output of another set of �rms, possibly located some-
where else, can be easily achieved at a small cost, in terms of additional
notation.) Assume that �rm i's current marginal cost of production is
independent of its current output level qi but is dependent on the level of
a choice variable made in an earlier stage, such as the �rm's investment
in capital equipment, or the amount of entrepreneurial time committed
to monitoring, or accumulated experience, or the result of R&D in previ-
ous periods. For simplicity, we represent this variable by a non-negative
real number ei. We capture the cost-saving e�ect of ei by postulating
that the marginal cost of output is decreasing in ei:

ci(ei) = ci � ri(ei); ri(0) = 0; r0i(ei) � 0 (1)

where ri(:) is the reduction in marginal cost.
In some applications, the cost reduction achieved by one �rm may

depend not only on its choice variable (such as its nominal R&D ex-
penditure) but also on the activity of other �rms (eg. their nominal
R&D expenditures) because of spillover e�ects. In such cases, our for-
mulation (1) need to be re-interpreted; for example, in the presence of
R&D spillovers, ei would then represents �rm i 's e�ective R&D, which
is a variable that takes into account the spillover e�ects.(See Long and
Soubeyran (1995b).)

The class of two-stage Cournot games considered in this paper has
the following main charateristic: in the �rst stage, the variables ei are
either collusively determined, or are independently chosen by the �rms
under the direct inuence of a dominant actor (as in the case of a govern-
ment agency that allocates �rm-speci�c R&D subsidies, or that imposes
�rm-speci�c pollution standards). This determines each �rm's constant
marginal cost in stage two, when the �rms are Cournot rivals. In the
case of collusive behavior in stage one, the objective is to maximize
joint pro�ts. In the case of a dominant actor, the objective may be to
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maximize some social welfare function if the dominant actor is a govern-
ment agency. Regardless of the speci�c formulation of the problem in
stage one, a necessary step in understanding the game is to analyze the
Cournot equilibrium in stage two. We now turn to this task.

2.1 Analysis of Cournot equilibrium in stage two

At the beginning of stage two, the variables ei have been chosen. Firm i's
marginal cost is then ci(ei); which we denote in this subsection by ci for
short. We assume that for each i the feasible range of ei is [0; e

max
i ]. This

means ci is restricted in the range [cmin
i ; ci], where c

min
i � ci � ri(e

max
i ).

Firms compete in quantities. At a Cournot equilibrium, outputs are
determined by the following conditions:

@�i

@qi
= P 0( bQ)bqi + P ( bQ)� ci � 0 (2)

bqi � 0; bqi @�i
@qi

= 0 (3)

In addition, if bqi > 0; then the following second order condition must
hold: P 00( bQ)bqi + 2P 0( bQ) � 0: This condition may be expressed as

2� siE � 0 (4)

where E � �P 00( bQ) bQ=P 0( bQ) is the elasticity of the slope of the demand
curve and si � bqi= bQ is �rm i's market share.

Assumption S: The second order condition (4) is satis�ed.

We will consider only situations where the values of (c1; :::; cm) are
such that all �rms produce in equilibrium, and where for each vector
(c1; :::; cm) there exists a unique Cournot equilibrium. (Su�cient condi-
tions for the existence and uniqueness of Cournot equilibria are given by
Nishimura and Friedman (1981), Kolstad and Mathieson (1989), Gaudet
and Salant (1991), Long and Soubeyran (1999.) Under the assumption
that (2) holds with equality for all �rms, the sum of these m equations
yields

P 0( bQ) bQ+mP ( bQ) = X
i2M

ci � C (5)

where C is the sum of the marginal costs. Note that C is restricted in the
range [Cmin; Cmax] where Cmin �

P
i2M cmin

i and Cmax �
P

i2M ci. As
pointed out by Bergstrom and Varian (1985a), equation (5) shows that
equilibrium industry output depends only on the sum of the marginal
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costs. To ensure uniqueness and interiority of the solution, additional
assumptions are imposed below.

Given m, we de�ne the function

 (Q) = P 0(Q)Q+mP (Q);  (0) = mP (0) > 0

Clearly, if  (Q) is a decreasing function for all Q > 0 and if there
exists some Q# > 0 such that  (Q) < 0 for all Q greater than Q#,

then (5) has a unique solution bQ = bQ(C) for each C in the interval
0 � C � mP (0). The condition that  (Q) is decreasing can be expressed
as P 00(Q)Q+ (m+ 1)P 0(Q) < 0, or equivalently as

E < m+ 1 (6)

where E is the elasticity of the slope of the demand curve. Condition
(6) is also a familiar stability condition for Cournot equilibria (see Dixit
(1986), for example). Finally, the assumption that the equilibrium out-
put qi is positive for all �rms is justi�ed if P (Q(C)) > ci: (If the demand
function is P = A�BQ, a su�cient condition for this is A > (m+1)ci:)
It is useful to state our assumptions more formally:

Assumption E: There exists some positive Q#such that  (Q#),
 (Q) < 0 for all Q greater than Q#, and for all output level Q < Q#,
the elasticity of the slope of the demand curve is less than m+ 1:

Assumption I: For all C in the range [Cmin; Cmax], ci < P ( bQ(C))
for all i:

Assumption I ensures that all �rms produces in equilibrium. We are
now ready to state a few important lemmas, the �rst one being a simple
re-statement of a result stated in Bergstrom-Varian (1985a).6

Lemma 1:Under assumptions S, E and I, the equilibrium industry
output bQ is uniquely determined by C and is independent of the distri-
bution of marginal costs among the oligopolists.

Having determined the function bQ(C), we can now express the equi-
librium output of �rm i , and its equilibrium pro�t, as a function of only
two parameters, C and ci.

Lemma 2:Under Assumptions S, E and I, �rm i's equilibrium output
is

bqi = P ( bQ(C)) � ci

[�P 0( bQ(C))] � bqi(ci; C) (7)

6Bergstrom and Varian (1985a,b) noted that several authors had been aware of

this result.
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and its equilibrium pro�t is given by

�i =
h
P ( bQ(C)) � ci

i bqi =
h
P ( bQ(C))� ci

i2
[�P 0( bQ(C))] � �i(ci;C) (8)

We now turn to industry pro�t in a Cournot equilibrium. Using
Lemma 2, it is easy to arrive at the following result:

Proposition 1( The Industry Equilibrium Pro�t Function):

Average industry pro�t in a Cournot equilibrium, under Assumptions
S, E and I, is a linear and increasing function of the variance of the
distribution of marginal costs accross �rms:

�M =
X
i2M

�i(ci; C)

m
=
VM (c; C) + [P ( bQ(C)) � (C=m)]2

[�P 0( bQ(C))] � �M (c; C)

(9)
where c � (c1; :::; cm) is the vector of marginal costs and VM (c; C) is the
variance of their distribution:

VM (c; C) �
1

m

X
i2M

[ci � (C=m)]
2
�

1

m

X
i2M

[ci � cM ]
2

(10)

Proof: Summing (8) over all �rms to obtain

[�P 0]m�M =
X
i2M

h� bP � cM

�
+ (cM � ci)

i2
=
X
i2M

(cM � ci)
2 +

X
i2M

( bP � cM )2 (11)

Remark: The second term in the numerator of (9) is the square of
the average mark-up.

The intuition behind Proposition 1 is as follow. Take the simplest
case where the industry consists of two identical �rms. Now let �rm
1's constant marginal cost be shifted upward by � and that of �rm 2 be
shifted downward by � . The two reaction functions will then be shifted,
one outwards and the other inwards, in a compensating fashion, and
hence the industry equilibrium output will remain unchanged. Hence
the equilibrium price and industry revenue are una�ected. On the other
hand, industry production cost will be lower than before, because more
than half of industry output will be produced by the lower cost �rm. It
follows that industry pro�t will be greater than before.
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The above argument shows that the Cournot oligopolists have an in-
centive to a�ect a change in the distribution of marginal costs among
�rms as the gainers can more than compensate the losers, if such re-
distribution does not use up any signi�cant amount of real resources
and does not violate anti-trust laws. In what follows, we deal with the
more general case where the manipulation of marginal costs involves real
resource costs.

The next result links average industry pro�t to the Her�ndahl index
of industry concentration:

Corollary 1:(Link between Industry Pro�t and the Her�nd-

ahl Index) Given the marginal cost sum C, the equilibrium industry
pro�t is an increasing function of the Her�ndahl index of concentration.

Proof: See the Appendix.

Next, consider social welfare, de�ned as the sum of consumers' sur-
plus and producers' surplus. Consumers' surplus is

S( bQ) � Z bQ

0

P ( ~Q)d ~Q� bQP ( bQ)
Since bQ = bQ(C) in a Cournot equilibrium, social welfare is

W (c; C) � S( bQ(C)) +m�M (c; C) (12)

From (12) and Corollary 1, we obtain the following result:

Corollary 2: For a given sum C of marginal costs, an increase in
the Her�ndahl index, made possible by increasing the dispersion of the
distribution of marginal costs, will improve both industry pro�t and
social welfare.

2.2 Analysis of Stage 1: Manipulation of Marginal

Costs

We now turn to Stage 1. This stage is characterized by some sort of
collusive behavior. In the most obvious applications, the rival �rms
collude by reallocating resources among themselves so that for any given
marginal cost sum C they maximize their joint pro�ts. The problem
would be trivial if �rms can costlessly \redistribute" their marginal costs,

8



in the sense that one �rm's marginal cost could be reduced by � as long
as another �rm's marginal cost is increased by �. We deal with the more
realistic case where redistribution of marginal costs involves real costs,
which may be called \cost of manipulating costs".

It is convenient to invert the cost reduction function ri (ei) to obtain
ei = ei (ri) ; where ri is restricted to be in the interval [0; rmax

i ]. With
a slight abuse of notation, we express the dependence of equilibrium
output on C in an alternative form:

bQ = bQ(rM ) (13)

where

rM �
1

m

X
i2M

ri (14)

The direct cost to �rm i for taking action ei will be denoted by �i (ei).
Then �rm i's net pro�t is

�neti �

h
P ( bQ(rM ))� ci + ri

i2
[�P 0( bQ(rM ))]

� �i (ei (ri)) (15)

The objective function for the problem in stage one is to maximize net
joint pro�ts

m�netM �
1

[�P 0( bQ(rM ))]

X
i2M

h
P ( bQ(rM ))� ci + ri

i2
�
X
i2M

�i (ei (ri))

(16)
subject to 0 � ri � rmax

i :

To facilitate an intuitive comprehension of the nature of this problem,
and particularly, to sharpen the focus on the crucial issue of asymmetric
versus symmetric solutions, it is helpful to decompose the problem (16)
into two subproblems. First, for a given rM ; how should the ri 's be
chosen? The second subproblem is the choice of the optimal rM . It is the
�rst subproblem that commands our attention here, because the question
of optimality of asymmetric allocation when �rms are ex-ante symmetric
is not well understood. The separation of the two subproblems has the
avor of the traditional separation of income and substitution e�ects in
the theory of the consumer, or the separation of cost minimization from
pro�t maximization in the theory of the �rm.

To summarize, in the �rst subproblem, we take a given rM and seek
to maximize �M by choosing a non-negative vector of cost reductions r

9



belonging to a feasible set G(rM ) de�ned by

G(rM ) � f(r1; :::; rm) : 0 � ri � rmax
i ;

mX
i=1

ri = mrMg (17)

The solution of this subproblem7 yields ri = ri(rM ). In the second sub-
problem, the optimum rM is determined. The main merit of this two-step
procedure is that when we �x rM we e�ectively �x the Cournot equilib-
rium price and thus we are able to separate the revenue considerations,
as represented by the term P (Q(r M ))Q , from the cost minimization
considerations (the allocation of cost reductions among �rms, holding
rM constant, and the tradeo� between, on the one hand, the e�ciency
gain resulting from this allocation, and on the other hand, the costs
of manipulating costs, as represented by the change in the sum of the
�i(ei)'s). In what follows we will analyze the �rst subproblem only, and
the the second subproblem will be dealt with in Appendix 2.

Let us de�ne the vector x � (x1;:::; xm) where

xi � ci � P ( bQ(rM )) (18)

(One may interpret �xi = P� ci � mi as the pro�t margin, net of ri).
Then given rM the objective function (16) becomes:

max
r

 (r) �
1

[�P 0( bQ(rM ))]
k r� x k2 �

mX
i=1

�i(ei(ri)) (19)

where k r� x k2� v(r) is the square of the Euclidean distance between
the vector r (to be chosen from the set G(rM )) and the �xed vector x.
Let

�(r) �

mX
i=1

�i(ei(ri)) (20)

If �(:) = 0 identically then the problem (19) is simply one of �nding
a point r in the set G(rM ) that is of maximal distance from the given
point x. Since v(r) is a strictly convex function, and G(rM ) is a convex
set de�ned by linear inequalities, the solution must occur at a corner of
the feasible set G(rM ).

In general �(:) is not zero. We will focus on three cases. In the �rst
two cases, we assume that all �rms are ex-ante identical, so that for all
i in f1; 2; :::;mg, ci = c; rmax

i = rmax; etc., while in the third case, we

7It can be shown that all qi are positive when the ri's are between 0 and r
max.
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allow �rms to be ex-ante asymmetric, but the function �(:) is strictly
concave.

Case 1 (Ex ante identical �rms, strictly concave objective

function): �(:) is su�ciently convex in r such that  (r) is strictly
concave in r despite the convexity of v(r).

Case 2 (Ex ante identical �rms, strictly convex objective

function): �(:) is concave or linear (or only mildly convex) in r; so that
 (r) is strictly convex in r.

Case 3 (Ex ante asymmetric �rms, strictly concave objective

function)

Clearly, in Case 1, for any given rM 2 [0; rmax] the solution is

r1 = r2 = ::: = rm = rM (21)

This follows from the fact that  (:) is symmetric and strictly concave
in (r1; :::; rm).

In Case 2, we consider two subcases.
Subcase (2a): mrM < rmax

Subcase (2b): mrM � rmax

Without loss of generality, we adopt the convention that whenever
there is an asymmetric solution -that is, ri 6= rj , for some pair (i; j)- we
will describe it in the form r1 � r2 � r3 � ::: � rm. We now state our
results For both cases:

Proposition 4: Assume that �rms are ex-ante identical.
(i) If the objective function  (r) is strictly convex (i.e., case 2), then

� Under Subcase (2a), the solution is

r1 = mrM < rmax ; r2 = r3 = ::: = rm = 0

� Under Subcase (2b), let m0 denote the greatest positive integer
that belongs to the setK(rM ) of all positive integers k that satis�es
the inequality krmax � mrM . The solution is: if m0rmax = mrM ,
then

r1 = r2 = ::: = rm0 = rmax; rj = 0; j � m0 + 1

and if m0rmax < mrM , then

r1 = r2 = ::: = rm0 = rmax; rm0+1 = r+ < rmax;

rj = 0; j � m0 + 2

where r+ � mrM �m0rmax > 0.

11



(ii) If the objective function  (r) is strictly concave, i.e., Case 1, then
the solution is symmetric, as given by (21).
(iii) If  (r) is neither concave nor convex, then it is possible to have two
or more levels of cost reductions that are in the interior of the set G(rM ).
Remark: Proposition 4 tells us that, given that �rms are ex-ante iden-
tical, in the strictly convex case, the solution is asymmetric in a simple
way: there are at most three types of �rms, with one bunch at the
top (achieving the maximum possible cost reduction), one bunch at the
bottom (achieving no reduction in cost) and at most a single �rm that
achieves an intermediate level of cost reduction, r+.

We now outline the proof of part (i) of Proposition 4. Part (ii) is
obvious, and for part (iii) the reader is referred to the example in Long
and Soubeyran (1995b) in the context of research joint ventures.
Proof: From (19), and (17) we form the Lagrangian

L =  (r) + �

"
mrM �

X
i2M

ri

#
+
X
i2M

�iri +
X
i2M

�i[r
max � ri] (22)

where  (r) may be expanded as follows

 (r) �
1

[�cP 0]

X
i2M

[ri � rM ]
2
+
m
h bP � c+ rM

i2
[�cP 0]

�
X
i2M

�i(ei(ri)) (23)

First, we must prove that it is not possible to have a solution with
more than one �rm achieving intermediate level of cost reductions. We
o�er a proof by contradiction. Thus, suppose at the solution point there
are two �rms, say i and j, with 0 < ri < rmax, and 0 < rj < rmax. Then
for h = i; j

2(rh � rM )

[�cP 0]
�
@�h
@rh

= �; h = i; j (24)

Since the left-hand side of (24) is increasing in rh (due to the assumption
that  (:) is convex), it follows that ri = rj = r� , say. But then a small
departure from this common value r� by adding � to ri and substracting
� from rj will improves the value of  (r) as given in (23). In particular,
note that the �rst term on the right hand side of (23) is the familiar vari-
ance expression, which will increase with such a departure. At the same
time, the \cost of manipulating costs term", the third term, being the
sum of m identical concave functions, decreases with such a departure.
It follows that at most one �rm can have an intermediate cost reduction
level 0 < r < rmax:

12



More formally, let �(x) denote the greatest integer smaller than or
equal to the real number x. The requirements that (i)

P
i2M ri = mrM ,

(ii) at most one ri is in the interior of [0; rmax], and (iii) 0 � rj � rmax

imply that there is only one solution:

m0 = �
hmrM
rmax

i
; rj = rmax for all j � m0

rm0+1 = mrM �m0rmax; rh = 0 for all h � m0 + 2 (25)

This concludes the proof.2

So far we have focussed on the two polar cases with ex ante identical
�rms, where  is either (strictly) concave, or (strictly) convex. If  is
neither concave nor convex, then it is possible to have two or more levels
of cost reduction that are strictly interior even though �rms are initially
identical. See Long and Soubeyran (1995b) for this case.

We now turn to case 3, where �rms are ex-ante asymmetric. For sim-
plicity we assume that the function  (r) is strictly concave. Proposition
5 below characterizes the optimal cost reductions. For givem rM , let us
de�ne

 i(ri) =
1

(�P 0)
[P � �ci + ri]

2
� �i(ei(ri))

 i is assumed to be strictly concave. Let yi =  0i(ri) and �yi =  0i(r
max
i ):

Without loss of generality, let �y1 � �y2 � ::: � �ym: Assume that at the
optimum all �rms strictly reduces their unit cost. Then there will be
two subsets of �rms, denoted by M+ and �M such that all �rms j in �M
reduce their cost by the maximum posssible amount, rmax

j , while all �rms
i in M+ reduce their cost by less than rmax

i . Clearly, the optimal cost
reductions for all the �rms in M+ must satisfy  0i(r

�
i ) = � (a constant).

Applying the inverse function of  0i, we have r
�
i =  0�1i (�) � !i(�): We

de�ne 
(�) =
P

i2M+ !i(�).
Proposition 5: (The ex-ante asymmetric case, with strictly concave
 i(ri))

If at the optimum all �rms reduce their costs then there exists an inte-
ger m+ � m such that all �rms in the set M+ of indices i = 1; 2; :::;m+

achieve the cost reduction r�i = !i(�) and all �rms in the set �M =
fm+ + 1; :::;mg achieve their respective maximum cost reduction rmax

j .
The optimal � and m+ satisfy the following conditions


(�) = mrM �
X
j2 �M

rmax
j ; �ym+ � � < �ym++1

Proof: Omitted.
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3 Generalization: Increasing Marginal Costs

We now provide an extension of the results presented in the previous
section to the case of increasing marginal costs. Instead of assuming
that marginal cost is independent of output, we now suppose that �rm
i has a mutiplicatively separable cost function8

Ci(qi; �i) � �ic(qi) (26)

where c(0) = 0; c0(qi) > 0; c00(qi) � 0 and �i > 0. The �i's are in
turn functions of the amount of resource ki used by �rm i to reduce its
cost: �i = �i (ki), with �i(0) = �i > 0, �0i (ki) < 0 for 0 � ki � �k and
�i
�
�k
�
= �i > 0: No restriction is placed on �00i (ki) : The direct cost to

�rm i of procuring the amount of resource ki is �i (ki).
In the second stage of the game, the ki's have been chosen. The

Cournot equilibrium in the second stage implies the following conditions

bqicP 0 + bP = �ic
0(bqi) � �i (27)

where the hat over P and qi indicate that they are values at the Cournot
equilibrium, and �i is the (non-constant) marginal cost (also at the
Cournot equilibrium) of �rm i: The second order condition is

bqicP 00

+ 2icP 0 � �ic
00(bqi) � 0

Summing (27) over all i

bQcP 0 +m bP =
X
i2M

�i � m�M (28)

which gives bQ = bQ(�M ).
From (27),

bqi = bP � �i

[�cP 0]
(29)

therefore, at the Cournot equilibrium,

�i =
�i

c0(bqi) = �i

c0
h
bP��i

(�cP 0)

i � gi(�i; �M ) (30)

8The results of this subsection remain basically unchanged in more general convex

cost formulation. The assumption of multiplicative separability in this subsection

helps simplify the exposition. See Appendix A2 for the general case.
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The equilibrium pro�t function for �rm i in stage two is

�i(�i;�M ) �

" bP � �i

(�cP 0)

# bP ( bQ(�M ))�
�ic
h
bP��i

(�cP 0)

i
c0
h
bP��i

(�cP 0)

i (31)

Invert the function �i (ki) to obtain ki = ki (�i) de�ned over [�i; �i]
with ki (�i) = 0 and k0i < 0. Firm i 's net pro�t is

�netM � �i(�i;�M )� �i (ki (�i)) (32)

where �i is given by the third expression in equation (30).
The objective function in stage one is to maximize net joint pro�ts

by choosing the vector � = (�1; :::; �m):

m�netM �
X
i2M

�i(�i;�M )�
X
i2M

�i (ki (gi(�i; �M ))) (33)

This may be re-written as

m�netM �
X
i2M

�f(�i;�M )�
X
i2M

�i (ki (gi(�i; �M ))) +
m[ bP � �M ] bP

[�cP 0]
(34)

where

f(�i; �M ) �
�ic
h
bP��i

(�cP 0)

i
c0
h
bP��i

(�cP 0)

i
The method of analysis used in Section 2 can be applied to this more
general formulation: First, for a given �M , choose the �i's to maximize
the objective function subject to

P
i2M �i = m�M : The next step is

to choose �M . A special case of interest is where c(:) has a constant
elasticity, c0(q)q=c(q) � � = constant. (Note that � = 1 in the case of
constant marginal costs.)Then

f(�i; �M ) =
�i bP [1� �i]

[�cP 0]�
(35)

which is convex in �i's for given �M . This shows clearly that asymmetric
solution can emerge even with increasing marginal costs. In fact using
(35) the gross pro�t function can be expressed as

�M =
bP

[�cP 0]

� bP � �M

�
1 + �

�

��
+
�2M + VM

[�cP 0]�
(36)
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where VM is the variance of the distribution of marginal costs, de�ned as
VM � (1=m)

P
i2M [�i � �M ]2. Note that 1=� is a measure of the degree

of increasing return. If it is not a constant, a similar furmula can be
derived, using an `adjusted' variance.

Finally, corollary 2 (the link between industry pro�t and the Her�nd-
ahl index) can be generalized to the non-constant cost case. Let �i(qi) �
qic

0(qi)=c(qi) and let qM � (1=m)
P

i2M qi denote the mean output. De-
�ne the adjusted mean output by qaM � (1=m)

P
i2M [qi=�i]. Then we

can show that industry pro�t in a Cournot equilibrium is related to an
adjusted Her�ndahl index:

m�M = m[qM � qaM ] bP + (�cP 0) bQ2Ha
M (37)

where Ha
M is the adjusted Her�ndahl index de�ned by

Ha
M �

X
i2M

1

�i

� bqibQ
�2

4 Applications

In this section we illustrate the usefulness of our approach by apply-
ing it to a number of problems. The models we consider below exhibit
a common theme: an internal allocation problem is solved within an
oligopoly, and the solution often takes the form of the emergence of
an internal market for productive resources. This solution has a col-
lusive e�ect on the behavior of the �rms (or independent divisions of
a multi-divisional �rm) that must behave as rivals in the second stage.
The outcome may involve unequal treatment of equals. While we focus
on multi-divisional �rms and transfer of productive assets, other obvious
applications suggest themselves: production joint-ventures, subcontract-
ing, internal market for intermediate goods. External input markets can
also be analyzed in a similar fashion. One can think of problems such as
reciprocal access, and access pricing (in telecommunication, for exam-
ple), the establishment of an input-purchasing cartel, and so on.

4.1 Divisionalization and capacity decisions

An interesting question in the industrial organization literature is: what
are the motives for a �rm to set up several competing divisions that
produce almost identical products. (See Baye et al.(1996) for some real
world examples.) Several reasons have been o�ered as possible explana-
tion. Firstly, divisionalization can be a response to the loss of operational
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control when a �rm become too large, see Williamson (1975). Secondly,
a monopolist may use divisionalization as a commitment mechanism for
producing an output level that would prevent entry (see Schwartz and
Thompson (1986), and Veendorp (1991)). Thirdly, given the divisional-
ization decisions of its rivals, an existing oligopolist may have an incen-
tive to divisionalize (see Baye et al. (1996)) in order to increase its pro�t;
this result is the mirror image of the proposition that mergers that do
not result in monopoly (or near monopoly) are generally not pro�table,
under the assumption that merging leaves unchanged the production
cost (see Salant et al. (1983)). Here, we add another consideration: if
the capacity decisions by the divisionalized �rm is made by the center,
and not by the divisions themselves, should the allocated capacities be
the same for all divisions?

Veendorf (1991) has pointed out that while divisions are allowed to
make their own output decisions, capacity decisions are often made cen-
trally. He showed that centralized capacity decisions can improved the
pro�t of a divisionalized �rm. However, he assumed for simplicity that
all divisions have the same allocated capacity, or capital stock. In this
sub-section, we apply our method developed in Sections 2 and 3 to shed
light on the possible optimality of asymmetric capacity allocation by a
divisionalized �rm.

We now describe our model. A monopolist is facing the threat of
entry of a potential rival �rm. He must decide whether to accommodate
entry, or to pre-empt it. The game structure is as follows. In stage 1,
the monopolist decides on the number of independent divisions it will set
up. These divisions are instructed to maximize divisional pro�t, and to
behave as Cournot rivals. In stage 2, the monopolist makes centralized
capacity decision for each division. (Here, we interpret \capacity" not
as an upper limit on output, but as the size of the capital stock, which
a�ects marginal cost.) In stage 3, the potential entrant chooses whether
to enter or not, and the number of divisions to be set up if it enters; at
this stage it incurs a set-up cost Ae > 0 per division if the decision is to
enter. In stage four, if there is entry, then the divisions of the entrant
and the divisions of the incumbent compete as Cournot rivals; if there is
no entry, the divisions of the incumbent also compete as Cournot rivals.

We solve the game backwards, and consider stage four �rst. Suppose
that entry has taken place in stage 3. Assume for simplicity that the
entrant is a divisionalized �rm with n divisions, all with the same capac-
ity, and that each of the entrant's division has a constant marginal cost
�e . The incumbent has m divisions, and the capacity of division i is
ki. Let qi denotes the output of division i. We assume that the variable
cost of producing qi is �(ki)c(qi), where c

0 > 0, and c00 � 0, and a0 < 0.
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Division i also has incurred (in stage 2) the cost Fi = A + �(ki). (The
ki's are determined in Stage 2.) Given entry, the Cournot equilibrium9

in stage four is characterized by (27) for each division i (i = 1; :::;m),
and, for each division j of the entrant,

bqejcP 0 + bP = �e (j = 1; :::; n:) (38)

(we assume that the Cournot equilibrium is an interior solution.) Sum-
ming (38) over j and the m equations (27), we obtain an expression
similar to (28):

bQP 0( bQ) + (m+ n)P ( bQ) = m�M + n�e

This gives bQ = bQ(m�M + n�e;m+ n). From the de�nition of �i,

bqi = c0�1(�i=�(ki)) = c0�1(�i=�i) (39)

A conventional way to proceed would be to substitute this into (27) to

get �i = b�i(�i;m�M + n�e;m + n). From this, and m�M =
P

� �i, we

would obtain (with a slight abuse of notation) �i = b�i(�;n�e;m + n),
where � = (�1; :::; �m) and where �i stands for �(ki). Using (29), the
equilibrium net pro�t of the incumbent's division i in stage four, given
entry, is

b�neti =

" bP � �i

(�cP 0)

#
P ( bQ(m�M+n�e;m+n))��(ki)c

" bP � �i

(�cP 0)

#
��(ki)�A

where �i stands for b�i(�;n�e;m+n) andm�M stands for
P

i
b�i(�;n�e;m+

n). In stage 2, the incumbent divisionalized �rm would choose the ki's
(i = 1; :::;m).

It is analytically more convenient, however, to use the approach de-
veloped in section 3, and obtain

�i =
�i

c0(bqi) = �i

c0
h
bP��i

(�cP 0)

i � g(�i;m�M + n�e;m+ n) (40)

From this, we proceed to obtain expressions similar to (31)-(34) in sec-
tion 3. For concreteness, let us take the cost function c(q) = (1=")q"

where " � 1, and the demand function P = 1 �Q. Then in a Cournot
equilibrium, the equilibrium net pro�t of the incumbent's division i is

9We assume that su�cient conditions for uniqueness, such as those given in Gaudet

and Salant (1991), or Long and Soubeyran (1999), are met.
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b�neti = bP bqi � 1

"
�ibqi � �(ki(�i))�A (41)

where �i = g(�i;m�M +n�e;m+n), as is given in (40). Using (27), and
P 0 = �1, we re-write (41) as:

b�neti =

� bP �
�i

"

�� bP � �i

�
� �[ki(g(�i;m�M + n�e;m+ n))]�A

where bP = P ( bQ(m�M + n�e;m+ n)):
The gross pro�t (before substracting the set-up cost which has been

incurred in Stage 3) of each division j of the entrant is

b�ej = � bP � �e

�2
(42)

(using (38) with P 0 = �1.)
In Stage 3, the potential entrant decides whether it should enter, and

if it does enter, how many divisions it will have. No entry means that
n = 0. It follows from (42) that, in Stage 3, the potential entrant will
not enter if h

P ( bQ(m�M + n�e;m+ n))� �e

i2
< Ae (43)

for all n � 1. (It can be shown that if (43) holds for n = 1 then it
also holds for n > 1: an increase in the number of rivalrous divisions
will reduce the net pro�t of each division, and hence, if each division is
making a negative net pro�t, the sum of their net pro�ts will fall.10).
The potential entrant's decision can be written as n� = n�(�;m).

In Stage 2, given that the number of divisions of the incumbent �rm
is m, the incumbent decides on the investment allocations across its divi-
sions. This amounts to choosing the �i 's, taking as given the potential
entrant's decision rule n� = n�(�;m), to maximize

m�netM =

mX
i=1

b�i
subject to � � �i � ��.

In what follows, due to space limitation, we will restrict attention
to the case where parameter values are such that the incumbent �nds
it optimal to prevent entry. Then �M is chosen to satisfy (43). We

10If each division is making a positive net pro�t, an increase in the number of

divisions may increase the sum of their net pro�ts, even though each division's net

pro�t will fall.
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then seek to �nd out if, at the optimal �M , the investment allocation is
asymmetric. An example will su�ce. Assume the function form

k(�) = ��� �; � � � � ��

and �(k) = k,  > 0. Then from (40) �i = �i=( bP � �i)
"�1. Thus

m�netM =

" bP mX
i=1

( bP � �i)

#
�

"
1

"

mX
i=1

�i( bP � �i)

#

�mA� m��+

mX
i=1

�i=( bP � �i)
"�1 (44)

where bP = P (Q(m�M )). If " = 1, then �i = �i and problem (44) reduces
to maximizing with respect to the �i

m�netM = m( bP � 2�M ) bP �mA� m��+ m�M +

mX
i=1

�2i

subject to
Pm

i=1 �i = m�M (given) and � � �i � ��. Clearly, since m�netM

is convex and increasing in the �i's, the solution of this constrained
maximization problem is a corner one. For example, if m = 2 and �M is
such that 2� < 2�M < � + ��, then, given �M , the optimal pair (�1; �2)
is (�; �M � �), which is asymmetric.

Similarly, if " = 2, then �i = �i=( bP � �i): Then the constraint � �

�i � �� is equivalent to

�� bP
��+ 1

� �i �
� bP
�+ 1

and again a corner solution is possible if  is small.
Symmetric solutions emerge if the function �(k) is su�ciently convex.

For example, if �(k) = k2 and  is su�ciently great, then the optimal
solution is symmetric.

A digression: The optimal number of divisions.

As noted above, if �(k) is su�ciently convex, we will have a symmet-
ric solution. In this case, under linear demand, it is relatively simple to
calculate the optimal number of divisions from the point of view of the
incumbent �rm.
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4.2 Production Joint Ventures

It is not uncommon for rival �rms to jointly own a production joint
venture. For examples, rival gas distributors may own a common gas
pipeline, which reduce their distribution costs. In stage 1, the �rms
jointly decide on the total capacity of the pipeline, and the fraction of
the total capacity to be allocated to individual participants. In stage 2,
they are Cournot rivals. We will show that, under certain conditions,
�rms that are ex-ante symmetric would �nd it pro�table to be unequal
ex-post.

Let E denote the capacity of the pipeline, and U(E) the total cost
of having that capacity. Let ei denote the amount of capacity allocated
to �rm i, and E =

Pm

i=1 ei. Here we assume that capacity does not
constrain output, but it has a favorable impact on distribution cost:
the greater is the capacity, the lower is the distribution cost per unit.
Consider �rst the �nal stage of the game, when the decisions on the ei's
(and hence on E) have been made. Firm i's distribution cost per unit
of output is given by (1). Assume that �rm i must pay a share of the
capacity cost. Its payment is �(E)ei where �(E) = U(E)=E. Firm i's
net pro�t is

�neti = Pqi � [�ci � ri(ei)]qi � �(E)ei

Again, we invert ri(ei) to get ei = ei(ri).
The equilibrium net pro�t is

�neti �

h
P ( bQ(rM ))� ci + ri

i2
[�P 0( bQ(rM ))]

� �(

mX
j=1

ej(rj))ei (ri)

The sum of the pro�ts is

m�netM �
1

[�P 0( bQ(rM ))]
k r� x k2 ��(

mX
j=1

ej(rj))

24 mX
ij+1

ej(rj)

35
where x is a vector with the typical component xi given by (18). In the
�rst stage of the games, the �rms jointly make the decisions on the ri's
to maximize the sum of their pro�ts, given that they will be rivals in
the product market. It is easy to construct numerical examples showing
that the optimal solution involves asymmetric allocation of capacity to
participants of the production joint ventures. (An example is available
from the authors, upon request.)
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4.3 Inter�rm Transfer of Productive Assets

This section is an attempt to incorporate the idea, advanced by man-
agerial writers, that �rms are characterized by collections of resources
that must be developed internally. This is known the resource-based
approach11. The resource-based view tends to explain di�erences in
performance across �rms in terms of access to, and ability to develop
valuable resources that enhance e�ciency. We sketch below a model in
which �rms develop their resources internally with a view of reducing
cost. We then add the observation that rival �rms may transfer in-
ternally developed resources among themselves as a means of fostering
collusion12.

Consider a Cournot oligopoly consisting of n �rms. The �rst m �rms
are called the insiders, for example, they are independent divisions of a
multi-divisional �rms, or a�liates of a transnational corporation. The
remaining m�(= n �m) �rms are the outsiders. Let M � f1; 2; :::;mg
and M� � fm+1; :::;m+m�g. Firm i's marginal cost is ci = ci� ri(ki)
where ki is the amount of resources used to reduced production cost.
These resources may be internally trained managers, or scientists. We
assume that ri(0) = 0, r0i(ki) � 0, and ri(ki) � rmax

i � ci for all ki.
In the absence of inter�rm transfer of resources, each �rm would have
to produce its own ki, at the cost �(ki). De�ne C �

P
i2M ci � mcM ,

C� �
P

j2M� cj � m�cM� , Q �
P

i2M qi and Q� �
P

j2M� qj . Let
P = P (Z); where Z � Q + Q�. A straightforward generalization of
Lemma 1 shows that the equilibrium output is a function of C + C�.

Using an argument similar to the proof of Proposition 1, we obtain

�netM = e�M �
1

m

X
i2M

�i(ki) (45)

where e�M =
VM + [ bP � cM ]2

[�cP 0]

�netM� = �
1

m�

X
i2M�

�i(ki) (46)

where e�M� =
VM� + [ bP � cM� ]2

[�cP 0]

11See Foss, Knudsen and Montgomery (1995, pp. 6-8.) for a survey, and the
references listed therein.
12Our model can also be interpreted as a more general version of the model of

transfer of capital by Farrell and Shapiro (1990a).
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The Her�ndahl index for group M is

HM �
X
i2M

hqi
Z

i2
=

m�M

[�P 0]Z2
(47)

From (47) and (45)

HM

m
=
VM + [ bP � cM ]2

[�cP 0]2Z2
=
VM + [ bP � cM ]2

n2[ bP � cN ]2
(48)

where cN = (C + C�)=n. This shows that, for a given sum of marginal
costs, the combined pro�t of group M is an increasing function of its
Her�ndahl index, which is in turn an increasing function of the variance
of marginal costs within the group. It follows that if marginal costs
could be costlessly redistributed within the group without changing the
marginal cost sum C, then �rms in group M would have an incentive to
maximize their Her�ndahl index.

However, since in general the relationship between a �rm's stock of
resources ki and its marginal cost is not linear, a transfer of resources
will change the marginal cost sum. This will change the equilibrium
industry output and price, at the same time as it changes the variance
of marginal costs. Therefore one cannot conclude that a resource transfer
from a small �rm to a large �rm is always pro�table for the groupM . A
convenient way of analyzing this problem is to use the analogue of the
function  (:) of Section 2.

For given rM� � (1=m�)
P

j2M� rj , the �rms in group M reallocate
the internally produced resources among themselves to maximize the
sum of their pro�ts. Let vi denote �rm i's production of the resources,
i 2 M and let vi � ki denote the net transfer it makes to other �rms in
the group. Let ki(ri) be the inverse of the function ri(ki). Given any
rM � 0; consider the set

G(rM ) � f(r1; :::; rm) : 0 � ri � rmax
i ;

X
i2M

ri = mrMg

For any given rM , group M chooses a vector r = (r1; :::; rm) in G(rM )
to maximize the sum of their net pro�ts

m�netM =
1

[�cP 0]

X
i2M

[ bP � ci + ri]
2 �

1

m

X
i2M

�i(vi) (49)

subject to
P

i2M vi �
P

i2M ki(ri). The analysis in Section 2 applies to
this problem without any signi�cant modi�cation.
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5 Further Extensions and Other Applica-

tions

Our framework can also be modi�ed to deal with semi-collusion in models
of Bertrand competition in prices, Hotelling model of location choice,
Salop model of �rms located on a circle, and Stackelberg games13. It
can be seen from the analysis in the preceding sections (and from the
Appendix) that our formulation applies generally to games where each
player has a pay-o� function Gi(�i; ai;

P
aj) where ai is agent i's action,

and �i is a parameter of manipulation cost. The �rst stage of the game
involves solving a sub-convolution problem of the form

max
�i

X
i2M

fi(�i; �M )

subject to
P

i2M gi(�i; �M ) � 0, and
P

i2M �i = m�M , where �i is �rm
i's marginal cost. We consider only two examples below.

5.1 Semi-collusion in Bertrand Games

Consider a multidivisional �rm that has m independent divisions pro-
ducing di�erentiated products. In stage two of the game, the divisions
choose their prices simultaneously. Let pi denote division i's price and
p�i denote the vector of prices chosen by its opponents. The demand for
division i's output is qi = Di(pi; p�i). The total cost of producing qi is
Ci(qi; ki); where ki is the capital stock of division i: Let bpi denote �rm i's
price at the Bertrand equilibrium, and bqi the corresponding quantity.The
following conditions characterize an interior Bertrand equilibrium, which
we assume to be unique:

bpi = �i +
bqi

[�Di
i]

(50)

where @Di

@pi
� Di

i < 0 by assumption, and �i �
@Ci(bqi;ki)

@qi
> 0 Division i's

equilibrium pro�t is

�i = bpiDi � Ci =

�
�i +

Di

[�Di
i]

�
Di � Ci =

bq2i
[�Di

i]
+ (�i � 1)Ci (51)

where �i � qi�i=C
i is the elasticity of the cost function Ci.

Let the average price be denoted by pM = (1=m)
P

i2M pi and assume
that the demand functions take the form

13See Long and Soubeyran (1997b).
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qi = di (pM )� �ipi (52)

where �i > 0; and 0 � d0i(pM ) � �i, so that if all division increase their
prices by the same amount, then the quantity demanded falls. Then,
from (50) and (52) bpi = 1

2

�
�i +

1

�i
di(bpM )

�
(53)

Summing (53) over all i, we obtain the analog of Lemma 1, that is, the
average price in a Bertrand equilibrium is uniquely determined by the
sum of marginal costs � =

P
i2M �i and is independent of the distribu-

tion of marginal costs among the divisions:

bpM �
X
i2M

di(bpM )

2m�i
=

�

2m
(54)

Thus bpM = bpM (�) with bp0M (�) > 0. Substituting this function into
(52), and using (53), we obtain the equilibrium output for each division:

bqi(�i;�) = 1

2
[di(bpM (�))� �i�i] (55)

Finally, substituting (55) into (51), we obtain the equilibrium pro�t func-
tion

�i(�i;�) =
[bqi(�i;�)]2

�i
+ (�i � 1)Ci (bqi(�i;�); �i) (56)

In the �rst stage of the game, the multi-divisional �rm allocate capital
stocks to the division, so as to maximize overall pro�t. The two-stage
game with Bertrand competition in the second stage is therefore very
similar to the two-stage Cournot games analyzed in Section 2.

5.2 Semi-collusion in the Hotelling model of location

In thee Hotelling model (see Tirole (1988, pp. 279-281)) with a linear
city, it is assumed that two �rms compete in prices in the second stage,
and make their location choice in the �rst stage. Consumers are uni-
formly located in the city, and they incur a quadratic transport cost td2

if d is the distance they must travel to get to good. The two extremes of
the linear city are denoted by 0 and 1. Let a and b be �rm 1's and �rm
2's location respectively, where 0 � a � b � 1. Tirole (1988, p. 281)
shows that the Nash equilibrium choice of location exhibits maximal
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distance between the �rms. Our approach can be adapted to study the
collusive choice of location in the �rst stage of the game. To generalize
the model a bit further, assume that a �rm's unit cost depends on its
location, possibly because of proximity to input suppliers etc. It can be
shown that given a and b, the equilibrium pro�ts in stage one are

�1 =
1

18t(1� a� b)
ft
�
(2� b)2 � (1 + a)2

�
� 2[c1(a)� cM (a; b)]g2

and

�2 =
1

18t(1� a� b)
ft
�
(2� a)2 � (1 + b)2

�
� 2[c2(1� b)� cM (a; b)]g2

where cM is the average of c1(a) and c2(1� b).
The sum of the two pro�t expressions is

� =
1

18t(1� a� b)

�
ht2 � 4t�+ 8VM

�
(57)

where VM is the variance of the costs, as de�ned by (10), which in this
case depends on a and b, and where

h =
�
(2� b)2 � (1 + a)2

�2
+
�
(2� a)2 � (1 + b)2

�2
and

� = 4t(c1� cM )
�
(2� b)2 � (1 + a)2

�
+4t(c2� cM )

�
(2� a)2 � (1 + b)2

�
Suppose, for example, that each �rm's cost is a decreasing function of its
distance from the city center (the point 1=2). Then VM will be minimized
when a = b = 1=2. Since (57) is increasing in VM there is an incentive
for the two �rms to agree to be located rather far apart. The precise
solution depends on the speci�cation of the functions c1(a) and c2(1�b),
and examples can be constructed to show that asymmetric locations are
optimal for this semi-collusion problem.

6 Conclusion

We have provided a framework for analysis of two-stage games of cost
manipulation, where the manipulation involves real resource costs. The
basic model of this paper describes one important aspect of \co-opetition"
within an oligopoly: how rival �rms jointly manipulate their costs of pro-
duction, by implicit or explicit cooperation, using real resource, in the
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�rst stage of the game. This form of semi-collusion can place (semi)
rival �rms in a better position in the second stage, where they are really
rivals. We showed that cost manipulations may give rise to symmetric
or asymmetric outcomes. We characterized the solution, using a global
approach, and show the geometric nature of the solution. We focused on
the constant marginal cost case, but the generalization given in Section
3, for the case of `rankable convex costs', the �rst application in Section
4, and the extensions considered in Appendix A2 show that our approach
has a wide range of applications.

The various applications discussed in this paper share a common
characteristic: �rms' marginal costs are manipulated by the allocation
and/or production of resources, such as the stock of internally produced
assets (human or non-human), or by using other choice variables such as
location. There are, in general, non-linear tradeo�s between reduction
of production costs in stage two, and resource costs in stage one. Our
model o�ers an explanation of the emergence of an internal market within
a multi-divisional �rm, or more generally, a group of oligopolists. While
we have focused on the theory of oligopoly, it is clear that our framwork
is applicable to other situations, for example, investment to manipulate
peer pressure and guilt in a social or economic partnership (see Kandel
and Lazear (1992) for an interesting discussion.)

A quite di�erent class of cost manipulation, with cost of manipu-
lating, involves the use of taxes and subsidies. It may be thought at
�rst that these are pecuniary transfers and thus have no real costs.
Upon reection, however, there is the cost of public �nance, because
any subsidy to �rms must typically be �nanced by taxing consumers in
a distortionary manner. Also, to the extent that some �rms are partly
foreign-owned, subsidies are partially `leaked' away from the home coun-
try. The optimal taxation problem in the context of two-stage Cournot
oligopoly games is therefore not trivial. An analysis of this class of cost
manipulation problem is the subject matter of a companion paper, Long
and Soubeyran (1997a).
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Appendices

A.1: Proof of Corollary 1:

From (8) and (7), industry pro�t is

m�M �
X
i2M

�i(ci; C) =
X
i2M

(�P 0)q2i (58)

and the Her�ndahl index is

HM �
X
i2M

�
qi

Q

�2
=

1

Q2

X
i2M

q2i (59)

Therefore
m�M = (�P 0)Q2HM (60)

This completes the proof.2
A.2: A unifying treatment of the models of \co-opetition".

The second stage of the various games we considered in the main
text takes the following generic form: Player i 2 N = f1; :::; ng has
the pay-o� function Gi(xi; nxN ; �i)where xN = (1=n)

P
i2N xi, where

xi 2 Xi is the action taken by i and �i is a parameter that all the
players jointly manipulate in stage one. Let � = (�1; :::; �n). The
Nash equilibrium (assumed to be unique) in the second stage gives the
equilibrium bxi(�), i 2 N . Let M be a subset of players that collude in
stage one, even though they will be rivals in stage two. Without loss
of generality, let M = f1; :::;mg. The sum of the stage two equilibrium

payo�s of members of M is
P

i2M Gi(xi; nxN ; �i) = m bGM . (In what
follows we set M = N for simplicity, and consider Cournot games, so
that we identify the action xi with the output qi; and the parameter �i
is used to inuence the marginal cost �i.)

Let �rm i's production cost be Ci(qi; �i) where both partial deriva-
tives are positive. Assume Ci(qi; �i) is strictly convex in qi: Let bqi be
the ournot equilibrium output of �rm i. Let �i denote the marginal cost
at the equilibrium:

�i �
@Ci(bqi; �i)

@qi

Invert this equation to obtain �i = �i(bqi; �i). The industry output in

the Cournot equilibrium in stage 2 is bQ = Q(�M ). Then

bqi = bP � �i

[� bP 0]
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Much simplicity is achieved by noting that the manipulation of the �is is
equivalent to manipulating the parameters ais, in view of the one-to-one
relationships that must hold at a Cournot equilibrium:

�i =
@Ci

@qi
(bqi; �i) = @Ci

@qi

 bP � �i

[� bP 0]
; �i

!

This gives �i = �i(�i; �M ). Firm i's cost function can thus be repre-
sented as eCi(�i; �M ) = Ci

" bP � �i

[� bP 0]
; �i(�i; �M )

#
(61)

and its equilibrium pro�t function is

b�i(�i; �M ) =
bP � �i

[� bP 0]
P ( bQ(�M ))� eCi(�i; �M ) (62)

The industry gross pro�t (i.e,. before subtracting the costs of manipu-
lating costs �i(�i; �M )) in the Cournot equilibrium is

mb�M =
bP � �M

[� bP 0]
P ( bQ(�M ))�

X
i2M

eCi(�i; �M ) (63)

De�ne

G(�M ) =
bP � �M

[� bP 0]
P ( bQ(�M )) (64)

From (63) and (64) , it is clear that the �rst stage problem has the
following form:

max
�i

J = �
X
i2M

fi(�i; �M )

subject to
P

i2M �i = m�M . (with �i � 0.) Note that fi(�i; �M ) stands
for Ci(�i; �M )� (1=m)G(�M )+ �i(�i; �M ). We solve this problem in two
steps.

(i) First we �x the mean marginal cost �M . It is as if we �xed the
�nal price of the good, when N = M , which is the case we consider
here.) At this step, we solve the simpli�ed problem:

minS =
X
i2M

fi(�i; �M )

subject to
P

i2M �i = m�M (with �i � 0, and �M is �xed). (It is possible
to include another constraint of the form

P
i2M g(�i; �M ) � 0 which
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represents resource constraints on the manipulation of costs; however
we shall omit this for simplicity.) This is a well-known separable non-
linear programming problem, called the inf-convolution problem. Its
resolution uses duality theory via conjugate functions, see Rockafellar
(1970, section 28), Luenberger (1969, Chapter 8). Note that by �xing
�M , the �nal price of the good is �xed, and so is total industry output.
Given this stage two equilibrium, in stage 1 the rivals jointly manipulate
their marginal costs �i, i 2 M , to minimize the industry's total cost
of producing the given equilibrium output bQ(�M ) (including the cost
of manipulating costs), given that they are rivals in stage two. Let
us describe the inf-convolution approach. We face the standard inf-
convolution problem:

max
�i2M

�
X
i2M

fi(�i; �M )

subject to
P

i2M �i = m�M , �i � 0, for a given �M . This is where the
mathematical duality theory can be applied, with the use of the concept
of conjugate functions, as described below. Construct the Lagrangian

L = �
X
i2M

fi(�i; �M ) + �

"
�m�M +

X
i2M

�i

#

Then, making use of the separability property, we obtain

L =
X
i2M

[��i � fi(�i; �M )]� �m�M

For an interior solution, the �rst order conditions @fi
@�i

(�i; �M ) = � give

�i = e�i(�; �M ). Following Rockafellar (1970), de�ne the conjugate func-
tion f�i of fi as follows

f�i (�; �M ) = sup
�i�0

[��i � fi(�i; �M )]

Then f�i (�; �M ) = �e�i(�; �M )� fi(e�i(�; �M ); �M ):

Recall that � must satisfy
P

i2M
e�i(�; �M ) = m�M , and this equation

gives � = e�(�M ). (More generally, e�(�M ) can be obtained from the
saddle-point Lagrangian theorem.)

Next, the optimal �M is obtained from solving the problem

max
�M

eL = �e�(�M )m�M +
X
i2M

f�i (
e�(�M ); �M ) (65)
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Here, the use of duality, as reected in the conjugate functions f�i ; is
illuminating. The duality saddle-point theorem allows us to dtermine

the optimal �M as the solution of @eL
@�M

= 0. From (65), we get

@eL
@�M

= �e�(�M )m�m�M
@e�
@�M

+
X
i2M

"
@f�i

@e� @e�
@�M

+
@f�i
@�M

#

Using the envelope property that
@f�
i

@e�
= e�i, we obtain the simpli�ed

condition
@eL
@�M

= �e�(�M )m+
X
i2M

@f�i
@�M

= 0

where, again due to the envelope theorem,
@f�
i
(e�;�M )

@�M
= �

@fi(�i;�M )

@�M
.This

equation determines the optimal �M .
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